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Abstract— Data Pipeline[1][2] is a series of actions which moves data from the one source to the destination, the 

complexity of Data Pipeline varies from use-case to use-case. The traditional data pipeline cleanups the data, aggregates 

the data and move it from one place to another, it sounds simple but it’s very complex as the organization deals with huge 

and complex data and the expectation from pipeline is that it should be robust, fast, notify about the status and it should do 

the same task repeatedly without failing. The modern data pipelines are slightly different in nature they are supposed to 

deal with Petabytes of data, they stores the data in various flavors of the cloud, should provide real-time data analysis. 

Apache Airflow is one such tool which simplifies the entire Data Pipeline creation to a great extent and the only pre-

requisite is the basic Python Knowledge. This paper focuses on the  stock-exchange data pipeline creation by using the 

Airflow concepts such as DAGs and Operators.  
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I.  INTRODUCTION  

 

Pipelines can be categorized into two, ETL Pipeline[4][5] 

and Data Pipelines[6][7]. ETL stands for Extract 

Transform and Load whereas Data Pipeline is generic 

which is supposed to move data from various systems to 

another and it may or may not transform the data in 

between, transformation may include filtering, 

aggregating, cleaning and data analysis while moving data 

from source to destination.  

 

 
                Figure 1: Description of ETL flow  

 

There are various challenges in the ETL data flow [8] the 

data extraction process can be much slower depending on 

the data volume because if the volume is huge, it can 

impact the extraction process. As well as Orchestration and 

monitoring process can be complicated too because we 

need to monitor at various levels of extraction. Whereas 

the Data Pipelines are supposed to be Modern in nature, 

they should provide real-time data processing updates, they 

should be seamlessly deployable to any Cloud [9][10], and 

the architecture should be fault tolerant. 

 
                   Figure 2: Description of Data Pipeline  

 

Whether any step failed during the processing the 

expectation is the pipeline should provide real-time update, 

it should notify the users what’s going on with-in the 

pipeline. Pipeline should process large volume of data and 

they should operate in self manage mode, by self-manage 

mode means they should trigger either automatically or on 

demand basis, in case of failures Pipeline should know 

how and when to cleanup, also every pipeline should be so 

modern that it has some managed services available for 

deployment on the cloud [10][11] for example: The 

managed service for Spark [12] on Google Cloud Platform 

is Dataproc similarly the tool we are using to create our 

pipelines should have some managed service on the cloud. 

To simplify the characteristics and the challenges we 

discussed in both Traditional ETL Pipeline and Modern 

Data Pipeline we can build our pipelines using Apache 

Airflow[13] 
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II. RELATED WORK 

 

The Mission in this paper is to create a efficient pipeline 

using Apache Airflow, we must understand what Airflow 

is and the core components of Airflow which helps in 

Pipeline Creation. Apache Airflow[13] is an open-source 

workflow management tool and it is based on Python, 

fundamentally the Pipeline in Airflow is represented as 

DAG and DAG stands for Directed Acyclic Graph.  

 

 
                   Figure 3. Airflow Pipeline Example  

 

In the Figure above we can there is a Source and bunch of 

Operators which is running inside a DAG and a destination. 

In simple words Airflow Pipeline consists of DAG which in 

turn consists of Operators and in combination it formed a 

Modern Pipeline, as discussed in Introduction section about 

the characteristics of modern pipeline which consists of 

efficient monitoring, real-time updates about the pipeline 

etc, all these characteristics in a DAG will be coded as 

Airflow Operator, let’s understand in detail about DAG and 

Operators.  

 

A. Directed Acyclic Graph (DAG): DAG[14][15][16] is a 

kind of a grapg with nodes and edges, edges should always 

be directed in a DAG and node in a graph is a task, let’s 

understand by an simple example, consider we are 

establishing a Pipeline for setting up dataproc on GCP 

using Airflow. Figure 4 represents a valid DAG where 

every edge is directed although it’s sequential but it is 

correct, Step first is creating a DataProc cluster on GCP 

this is done via ready-  

 

 
Figure 4: Pipeline Creating DataProc Cluster on GCP 

 

made Operator called ‘DataprocCreateClusterOperator’, 

step 2 is submitting a Spark Job because Dataproc is a 

managed service on GCP which runs Spark Job, 

Submitting a Job another Node and node is Operator this 

step is taken care by ‘DataprocSubmitJobOperator’, step 3 

is deleting a cluster which can be done via 

‘DataprocDeleteClusterOperator’, so we can say that DAG 

in Airflow consists of Operator and it should not contain 

any loop, all the edges should always be directed.  

 

 
Figure 5: Example of Invalid DAG in Airflow 

 

The Invalid DAG contains a Loop, in the  above diagram 

after submitting a Job again a call will be made to create a 

Cluster, this DAG will never terminate and it’s a very 

expensive DAG as it is stuck in a Loop and keep creating 

multiple Clusters on Google Cloud Platform.  

Below program is the simple DAG written in Python 

Programming Language  

 
def display(): 

    print("Example of DAG one") 

 

with DAG(dag_id="dagOne", 

start_date=datetime(2021,5,23), 

schedule_interval="@hourly", 

         catchup=False) as dag: 

 

    task = PythonOperator( 

        task_id="display", 

        python_callable=display) 

 

task 

 
Figure 6: DAG with Single Operator 

 

This the pictorial representation of the sample code of the 

DAG, it contains of only one Operator which is 

PythonOperator and PythonOperator is used to invoke 

Python Functions in a DAG.  

 

B. Operators:  Operators are tasks in Airflow, there are 

various ready to use Operators available in Airflow for 

various uses, as we have already seen four operators so far, 

for creating a Dataproc Cluster, Submitting a Spark Job, 

Deleting a Cluster and PythonOperator for executing 

Python functions. Airflow tasks can run in parallel as we 

have seen each task is a Operator but there are several 

Operators can run in parallel in Airflow. PythonOperator is 

a very powerful Operator exists in Airflow, as of now there 

are no ready to use operators available for Kafka 

Integration, say we have a csv file and we want to send 

each row of the csv file to Kafka as a part of Airflow 

Pipeline we can use PythonOperator, sample code may 

look like  

 
def csvRowsToKafka(**context): 

 

    filename = 'sample.csv' 

    file = open(filename, 'r') 

    file_reader = csv.DictReader(file) 



   International Journal of Computer Sciences and Engineering                              Vol.10(8), Aug 2022, E-ISSN: 2347-2693 

  © 2022, IJCSE All Rights Reserved                                                                                                                                    3 

 

    for row in file_reader: 

        """ 

        Send row data to Kafka 

        """ 

    return 

 

 

with 

DAG(dag_id="kafkaDag",start_date=datetime(2021,5,23), 

schedule_interval="@hourly", catchup=False) as dag: 

     

 

  task = PythonOperator( 

       task_id="csv_data_to_kafka", 

       python_callable=csvRowsToKafka) 

 

Airflow has a collection of lots of Operators which are 

ready to use for almost every cloud platform, GCP, AWS, 

Azure and much more.  

 

 C. Monitoring 

  Airflow UI is very intiuitive and excellent for monitoring.  

 

 
Figure 7: Airflow UI Running on Local 

 

  The above Image is a execution of below code  

 
def taskOne(): 

    print("Task One Completed") 

 

 

def taskTwo(): 

    print("Task Two Completed") 

 

 

def taskThree(): 

    print("Task Three Completed") 

 

with DAG(dag_id="dagOne", 

start_date=datetime(2022,1,23), 

schedule_interval="@hourly", catchup=False) as dag: 

 

    task_one = PythonOperator( 

        task_id="taskOne", 

        python_callable=taskOne) 

 

    task_two = PythonOperator( 

        task_id="taskTwo", 

        python_callable=taskTwo) 

 

    task_three = PythonOperator( 

        task_id="taskThree", 

        python_callable=taskThree) 

 

 

task_two.set_upstream(task_one) 

 

task_three.set_upstream(task_two) 

  

It’s a straightforward DAG with three Operators and all of   

them are PythonOperators which is simply executing a 

Python functions and functions in turn displaying messages 

on the console. The UI is very detailed, apart from tracking 

the real time progress we can also track the performance of 

each task, how much time each task has taken to execute  

     Figure 8: Performance of each task 

 

In case if any task failed during execution, it highlights the 

failed task as well.  

 

 
Figure 9: Failed Task 

 

C. Running tasks in Parallel:  In the above DAG all 

thtasks are running sequentially, Running tasks in parallel 

is straightforward in Airflow, all we need to do is to tweak 

the execution at the end and in turn it executes the tasks in 

Parallel. Consider a DAG with three tasks and let’s airflow 

execute them in parallel.  

 

 
Figure 10: Task Execution in Parallel 

 

We can see Airflow executed the task in parallel and the 

simple change is to put the tasks in brackets  

 
def taskOne(): 

    print("Task One Completed") 

 

def taskTwo(): 

    print("Task Two Completed") 

 

def taskThree(): 

    print("Task Three Completed") 

 

with DAG('dagOne', 
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         start_date=datetime(2022, 1, 1), 

         schedule_interval="@hourly") as dag: 

 

    t1 = PythonOperator( 

        task_id='task_one', 

        python_callable=taskOne, 

        email_on_failure=True, 

        dag=dag) 

 

    t2 = PythonOperator( 

        task_id='task_two', 

        python_callable=taskTwo, 

        dag=dag) 

 

    t3 = PythonOperator( 

        task_id='task_three', 

        python_callable=taskThree, 

        dag=dag)  

 

t1 >> [t2, t3] 

 

t1 >> [t2, t3] will execute the tasks in Parallel. In this 

section we have learned the building blocks of Airflow.  

 

III. MEHODOLOGY 

 

In this paper we are going to build pipelines, we are going 

to learn by developing multiple pipelines, we have already 

seen one use case of building a GCP Dataproc Cluster 

using Airflow, the first use-case would be to building 

Stock Exchange Pipeline,  

 

A. Use-Case One 

 
Figure 11: Stock Exchange Pipeline 

 

In this use case we will explore the stock exchange dataset 

from Kaggle, imagine the file is uploaded on Google 

Cloud Storage the file will be downloaded first from 

GCS[20] then each row is parsed and published to Kafka 

as well as each row is transformed, here transformation 

means filtering, we will be filtering all the rows where 

value of Index is ‘NYA’ and the value of ‘Open’ is greater 

than 600 plus Date should be greater than 1
st
 Jan 2020. 

Once the filtering is done, all the filtered rows will be 

written to a separate CSV and top 5 rows with highest 

value ‘Open’ will plotted and email is sent to the team 

stating the data pipeline execution is successful. Below is 

the snapshot of the data set from Kaggle. 

 

 
 

Below Figure showcases the Stock Exchange Pipeline in 

execution, this pipeline is a combination of Parallel task 

execution and sequential task execution.  

 
Figure 12: Stock Exchange Pipeline in Execution 

 

Code below is the DAG, which consists of four tasks as 

discussed and show-cased in the Figure 12 above.  
 

with DAG('data_pipeline', 

         start_date=datetime(2022, 1, 1), 

         schedule_interval="@hourly") as dag: 

 

    t1 = PythonOperator( 

        task_id='download_file', 

        python_callable=download, 

        email_on_failure=True, 

        dag=dag) 

 

    t2 = PythonOperator( 

        task_id="csv_data_to_kafka", 

        python_callable=csvRowsToKafka) 

 

    t3 = PythonOperator( 

        task_id='transform', 

        python_callable=transformAndPlot, 

        dag=dag) 

 

    t4 = EmailOperator( 

        task_id="SendStatusEmail", 

        to='sameer.shukla@gmail.com', 

        subject='Pipeline Status!', 

        html_content='<p>Pipeline execution successful! 

<p>', 

        dag=dag) 

 

chain(t1,  [t2, t3]) 

[t2,t3] >> t4 

This DAG is slightly different than what we have seen so 

far, it is using the ‘chain’ function to chain the sequential 

and parallel task.  

 

Let’s check each function used in DAG  

 
def csvRowsToKafka(**context): 

    index_file = 'indexData.csv' 

    file_name = open(index_file, 'r') 

    file = csv.DictReader(file_name) 

    for row in file: 

        """ 

        Publish Rows To Kafka 

        """ 

    return 

 
def transformAndPlot(): 

    df = pd.read_csv('./indexData.csv', 

skipinitialspace=True) 

     

    nyadf = df[(df['Index'].str.replace(' ', '') == 

'NYA') & (df['Open'] > 600) & (df['Date'] > "2020-01-

01")] 

     

    sortdf = nyadf.sort_values(by='Open', 

ascending=False).iloc[0:5] 

     

    sortdf['Open'].plot(kind="bar") 

 

Result of transformAndPlot function discussed below 
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Figure 13: Filtered Stock Exchange Pipeline in Execution 

 

Plot 

 

 
Figure 14: Top 5 Open Data 

 

B. Use-Case Two 

 

 
Figure 15: Sample ETL Pipeline 

 

The above picture depicts the use-case two, which is very 

much like the Use-case one. The difference is, in this case 

data will be fetched from different data sources like 

Postgres DB and files from GCS Bucket, the entire data is 

submitted to Dataproc as Spark Job for further Data 

Processing and once done send an email to Users.  

 
with DAG('spark_pipeline', 

         start_date=datetime(2022, 1, 1), 

         schedule_interval="@hourly") as dag: 

 

    t1 = PostgresOperator( 

        task_id="postgres_task", 

        postgres_conn_id="postgres_default", 

        sql="SELECT * FROM Table;", 

        ) 

 

    t2 = PythonOperator( 

        task_id="download_file_from_GCS", 

        python_callable=download) 

 

    t3 = DataprocSubmitJobOperator( 

        task_id='submitSparkJob', 

        python_callable=submitSparkJob, 

        dag=dag) 

 

 

    t4 = EmailOperator( 

        task_id="SendEmail", 

        to='sameer.shukla@gmail.com', 

        subject='Status!', 

        html_content='<p>Pipeline execution successful! 

<p>', 

        dag=dag) 

 

chain(t1,  [t2, t3]) 

[t2,t3] >> t4 

 

Above sample code represents DAG with various 

Operators required for the execution of the pipeline. 

PostgresOperator is a ready to use Operator for interacting 

with Postgres, DataprocSubmitJobOperator is an operator 

used for Submitting Spark Job again it’s a ready to use 

operator in Apache Airflow. The image below shows the 

Pipeline in execution  

 

 
Figure 16: Spark Job Pipeline 

 

C. Use-Case Three 

This is the most interesting use-case, using Apache 

Airflow in Microservices environments. Imagine we have 

multiple REST Microservices running in the environments, 

and we want to create a dashboard of how many HTTP 

Requests each one of them is receiving. Every 

microservice should have an Actuator[22][23] exposed, we 

can leverage an Actuator endpoint called httpTrace, the 

httpTrace Endpoint can provide information on how many 

HTTP Requests received and what kind of Responses 

served by the service. Utilizing this Actuator endpoint, we 

can create a dashboard using Pandas, Matplotlib, 

Microservice Actuator and Airflow.  

 

 
Figure 17: Airflow invoking Actuator 

 

This use-case is not limited to /httpTrace there are various 

other Actuators exists one of them is /logfile to find the 

contents of the logs and that can be hand it over to Spark 

for further analysis. We have already seen how to submit 

the Job in Spark on GCP on Dataproc.  
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Figure 18: Airflow invoking REST APIs 

 

For invoking REST APIs in Airflow 

“SimpleHTTPOperator” should be used and again it’s a 

ready to use operator.  

 
with DAG('rest_pipeline', 

         start_date=datetime(2022, 1, 1), 

         schedule_interval="@hourly") as dag: 

 

    t1 = SimpleHttpOperator( 

        task_id='serviceOne', 

        method='GET', 

        http_conn_id='call_service_one', 

        headers={"Content-Type":"application/json"}, 

        dag=dag) 

 

    t2 = SimpleHttpOperator( 

        task_id='serviceTwo', 

        method='GET', 

        http_conn_id='call_service_two', 

        headers={"Content-Type": "application/json"}, 

        dag=dag) 

 

    t3 = SimpleHttpOperator( 

        task_id='serviceThree', 

        method='GET', 

        http_conn_id='call_service_three', 

        headers={"Content-Type": "application/json"}, 

        dag=dag) 

 

    t4 = PythonOperator( 

        task_id='dashboard', 

        python_callable=dashboard, 

        dag=dag) 

 

chain([t1, t2, t3], t4) 

 

Since the three services are invoked In Parallel that’s why 

they are chained.  

 

IV. RESULTS AND DISCUSSION   

 

Apache Airflow is an excellent open-source workflow 

management tool which can be used to design and develop 

any kind of Pipeline, it doesn’t matter how complex is the 

pipeline it is simplified by Airflow to a great extent. 

Apache Airflow UI provides us with all sorts of details 

about the DAGs like the performance of each task, Let’s 

consider again a DAG with four tasks  

 
Figure 19: Sample Pipeline with Four tasks 

 

Through UI we can monitor how much time each task has 

taken to complete and what’s the performance in a day, 

from the Task Duration tab we can check the progress  

 

 
Figure 20: Metrics of all Four tasks 

 

Also, we can check how many tries each task has 

performed even re-tries as well. The Monitoring tool is too 

intuitive and easy to debug, monitor, configure and track 

the pipeline.  
 

 
Figure 21: Tries of all Four tasks 

 

Landing times,  

 
Figure 22: Landing times. 
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The Landing Page of the monitoring tool show cases all 

the DAGs deployed in the Airflow  

 

 
Figure 23: All DAGs in Airflow 

 

Each DAG can be executed, refreshed, and deleted on 

demand-basis. DAG will be hot deployed to Airflow we 

don’t have to manually deploy, it’s real time deployment. 

As soon as we make changes in the DAG (.py file) it will 

be refreshed and deployed automatically. Configurations of 

sending failure email in case the task is failed for some 

reason is extremely simple, by using Simple Python 

dictionaries we can configure the DAG below code 

showcases how to send email in case of failures.  

 
t3 = SimpleHttpOperator( 

    task_id='serviceThree', 

    method='GET', 

    http_conn_id='call_service_three', 

    headers={"Content-Type": "application/json"}, 

    on_failure_callback=email, 

    dag=dag) 

 

The attribute responsible for sending email in case of 

failure is “on_failure_callback” and the email is a python 

callable function  

 
def email(contextDict, **kwargs): 

    title = "Alert: {task_name} Failed because of 

reason".format(**contextDict) 

 

    body = """ 

    Hi Team, <br> 

    <br> 

    Task ID :{task_name} Failed.<br> 

    <br> 

    """.format(**contextDict) 

 

    title('abcd@gmail.com', title, body) 

 

V. CONCLUSION AND FUTURE SCOPE 

 

Airflow can work on any Cloud Platform including Google 

Cloud Platform, AWS, Azure, and others. Once deployed 

on Cloud it’s easily scalable because Airflow is managed 

by the Kubernetes engine. In Google Cloud Platform, 

Cloud Composer is a managed service for Apache Airflow, 

Cloud Composer has a seamless integration with other 

GCP components such as Google Cloud Storage, Big 

Query, Dataproc, Dataflow etc. This has a added advantage 

as Airflow can communicate to these services on Google 

Cloud Platform. There can be a use-case such as loading a 

file from one bucket from GCS and after processing it 

move to different GCS bucket, various ready to use 

operators are developed by Airflow team for such 

operations one of them is GCSToGCSOperator and the 

paper already described about the Dataproc Operators by 

Airflow. Airflow DAG can also be triggered by Google 

Cloud Function and Airflow DAG is also capable of 

calling Cloud Function during the Pipeline execution, the 

cloud function can be invoked simply by 

SimpleHTTPOperator, below code does the same.  

 
t5 = SimpleHttpOperator( 

    task_id="Cloud_Function_Task", 

    method='POST', 

    http_conn_id='http', 

    endpoint='functionaName', 

    data=({"schema": "", "table": ""}), 

    headers={"Content-Type": "application/json"}) 

 

Airflow is extremely flexible the DAG can run themselves 

in scheduled time and DAG can also be executed using 

Google Function or even through pub-sub event. Airflow 

UI is extremely efficient for monitoring and tracking 

progress of the tasks within the Airflow, the UI is so 

detailed that it provides logs, performance metrics using 

Graphs and Charts. Airflow can be setup on GCP using 

Cloud Composer and on local it can run on Docker, the 

sample docker-compose.yml is available to download and 

run Airflow inside Docker Container. The main 

components of Airflow to get started are DAG, Operator, 

Sensor, Executor, 3Com’s, Hook etc.  
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