
 © 2014, IJCSE All Rights Reserved 62

 International Journal of Computer ScienceInternational Journal of Computer ScienceInternational Journal of Computer ScienceInternational Journal of Computer Sciencessss and Engineeringand Engineeringand Engineeringand Engineering Open Access
Research Paper Volume-2, Issue-8 E-ISSN: 2347-2693

High Performance Spring Programming

Vamsi Krishna Myalapalli

Open Text Corporation, Mind Space IT Park, Hi-Tec City, Hyderabad, India

www.ijcaonline.org

 Received: 02/07/ 2014 Revised: 22/07/ 2014 Accepted: 17/08/ 2014 Published: 31 /08/ 2014

Abstract—In the contemporary world Spring Application Framework is the most prevalently used application framework due to
its IoC (Inversion of Control) property. Many of the Spring developers simply do programming with less concern towards
optimized processing. Though Spring Framework offers sundry ways of programming techniques to reach the same end, certain
practices are pre requisite to ensure that consequences will be prolific. This paper proposes miscellaneous, simple, reliable,
flexible and easy techniques to make programs more efficient. The exploration in this paper would serve as a benchmarking tool
for assessing best programming practices. Experimental results of analysis designate that maintainability, flexibility and
reusability are enhanced.

Keywords—Spring Best Practices; Spring Tuning; Spring Tactics; Spring Core; Spring Framework Tactics; Efficient Spring
Practices.

I. INTRODUCTION

The Spring Framework is an open source application
framework created to simplify the development of enterprise
Java software. The framework achieves this goal by
providing developers with a component model and a set of
simplified and consistent APIs that effectively insulate
developers from the complexity and error-prone boilerplate
code required to create complex applications.

The Core of the Spring Framework is its IoC (Inversion of
Control) container, which offers a reliable means of
configuring and managing Java objects using reflection. The
container takes responsibility of managing object lifecycles of
specific objects i.e. creating objects, calling their initialization
methods and configuring these objects by wiring them
together.

Dependency lookup or DI (Dependency Injection) is the
means through which Objects can be acquired.

This paper exposes proactive best practices or tactics that
the programmers should glean at.

II. BACKGROUND AND RELATED WORK

Spring advocates that not to create objects using ‘new’
operator i.e. objects will be created explicitly from the class
in a configuration file passively. (IoC technique externalizes
the creation and management of component dependencies).
POJO (Plain Old Java Objects) and POJI (Plain Old Java
Interfaces) makes Spring Framework as light weight.
The following are several benefits offered by DI
(Dependency Injection) over traditional programming
approach:

a) Coupling among modules is reduced.
b) Reduced Code.
c) Simplified Application Configuration.
d) Ability to manage common dependencies in a single

 repository.

e) Enhanced Testability.
f) Fosters good Application Design.

Figure 2.1: Hierarchy of Interfaces in Spring

The above portrait depicts the Hierarchy of Interfaces in
Spring Framework.

The Spring Framework features its own MVC (Model
View Controller) web application framework.

Spring supports classes for writing unit tests and
integration tests through its Testing module, and enables
implementing cross-cutting concerns through Aspect
Oriented Programming.

III. PROPOSED BENCHMARK

This paper brings out several best programming practices
in Spring Framework and serves as a Benchmarking tool.
Though there exists several tactics some best practices are
explained here and their corresponding programmatic
implementation is explained in Section 4.

Corresponding Author: Vamsi, vamsikrishna.vasu@gmail.com

 International Journal of Computer Sciences and Engineering Vol.-2(8), PP(62-69) August 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 63

1) ApplicationContext vs. BeanFactory interfaces:

Prefer ApplicationContext over BeanFactory. The

ApplicationContext is Spring’s main object registry and

integration point. It is usually configured via an XML file in

which beans and their dependencies are declared. The

ApplicationContext has many features, but its central role is

object creation and Dependency Injection. In most cases, the

ApplicationContext will be a transparent piece of our

applications, freeing our application logic from Spring-

specific integration.
BeanFactory provides basic functionality while

ApplicationContext provides advance features to our spring
applications which make them enterprise level applications,
like i18n, event publishing, JNDI access, EJB integration,
Remoting etc.
BeanFactory serves only as backward compatibility in
existing systems.

2) Every Configuration file with Header: Represent a

commenting header for every configuration file. This helps

in summarizing the beans or properties defined in

Configuration file(s). Commenting can be implemented

either with XML or using <description> tag.

3) Minimize Dependency: Minimize direct dependency

using the concept of Dependency Injection (DI). This

ensures minimizing the rate of coupling among classes.
Example: Using the object of one class in another class is a
kind of direct dependency.

4) Implementing Naming Conventions Consistently:

Naming conventions should be consistent across every

configuration file(s). Implementing consistent, clear and

descriptive naming convention(s) enhances readability of

configuration files and allows rest of the developers to

prevent abrupt bugs.

5) Sparingly represent Version in Schema References:

If versions are represented at higher rate, it necessitates

maintenance. Since Spring automatically chooses the recent

version from project dependencies (jars) the version

specification should be kept to minimum. On the other hand

as the project evolves the Spring version will be updated, so

we need not maintain every XML configuration file to look

into new features.

6) Choose Setter Injection method against Constructor

Injection: Among all Dependency Injections (Constructor

Injection, Setter Injection, Method Injection) Setter Injection

allows higher maintainability and flexibility. On the other

hand Constructor Injection provides less thread safety and

advocates that object will not be handed over to other beans

without complete initialization.
Use Constructor Injection to populate mandatory

dependencies, and Setter Injection to populate optional
dependencies.

7) Type vs. Index for Constructor Argument matching

in Constructor Injection: As per the previous tactic

Constructor injection should be deterred. On the occasion if

there is extreme requirement to use Constructor Injection

pick up parameter matching based on type instead of index.

Type based argument exhibits higher readability and are less

error prone.

8) Implement Shortcut forms for Expanded Forms:

Choose Short form(s) over Expanded form(s) for better

readability in XML files etc.

9) Bean Definition Reuse: Reuse bean definition(s) to

full extent inorder to ensure higher functional cohesion.

Example: Bean definition reuse for setter injection and

constructor injection.

10) Use ID as Bean Identifiers: Though Spring allows

recognizing beans using ‘id’ or by ‘name’, we should pick

up a bean with its ‘id’ instead of ‘name’. This is due to the

reason that ‘id’ would be unique every time, whereas the

‘name’ might not.

11) Deter Autowiring: The Spring container can autowire

relationships between collaborating beans without using

<constructor-arg> and <property> elements which helps cut

down on the amount of XML configuration you write for a

big Spring based application.

Though Autowiring offers lot of benefits, it has its

downside. As the size of project increases it triggers trouble

in recognizing precise dependency to use. Apart from this

Autowiring make the process of debugging harder.
Merits of Auto wiring:

a) Is less verbose than explicit configuration.
b) Keeps itself up to date.

Example: If we add more properties, they will
automatically be satisfied without the need to
update bean definition(s) of that class.

Demerits of Auto wiring:
a) Is less self-documenting than explicit wiring.
b) Cannot be used for simple configuration properties,

rather than object dependencies. But, we can still
explicitly set configuration properties on auto wired
beans.

The container's behavior at runtime isn't described in our
configuration, merely implied. However, Spring's policy of
raising a fatal error on any ambiguity means that unwanted
effects are unlikely.

12) Make use of Classpath Prefix: Use classpath as

prefix if XML config, resources or properties are imported.

This leads to clarity and consistency of resource location.

The IDE and Build tool determines the class path and is as

follows
src/main/java and src/test/java for Java code.

 International Journal of Computer Sciences and Engineering Vol.-2(8), PP(62-69) August 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 64

src/main/resources for Non-Java Dependencies and for
 Tests.

src/test/resources for Non-Java Resources.

13) Externalize the Properties: Never hard code the

values in configuration file(s), rather externalize them onto

property file(s). This practice prevents disturbing the actual

code for modifications. It is highly appreciated if properties

file(s) are grouped depending on its module or usage.

Example: All Java Database Connectivity related grouped in

‘jdbc.properties’ file.

14) Enforce Dependency check at Development Phase:

The attribute ‘dependency-check’ on bean definition should

be set to ‘simple’, ‘objects’ or ‘all’ (default is ‘none’) in

order to ensure that container perform explicit dependency

validation. This behavior is beneficial if all or some

categories of properties of a bean should be set explicitly or

through Auto wiring.

15) Singleton vs. Prototype Scope: Singleton beans are

not thread-safe in Spring framework. Absence of locks in

getSingleton method makes Singleton bean thread unsafe.

Locking makes sure that only one process goes on at a time

irrespective of the circumstance.
Example for unsafe threading:

Thread 1: Instantiates bean “X”. Adds “X” to the
 singleton Objects map even before completely
 resolving all the dependencies of that bean.

Thread 2: Asks for bean “A” and till this time
 Thread 1 has already added it into singleton Objects
 map but Thread 1 is still resolving
 dependencies.
 Prototype beans incur hit on performance during creation.
It should be avoided completely or designed carefully if it
uses resources such as database or network connections.
They are useful for factory to create new bean instances.
But now Thread 2 recognizes an instance of “A” which is
not completely initialized.

16) Enforce Single XML File: Use single XML
configuration file to bootstrap the application or tests.

17) Deem Inner Beans: Inner beans are beans that are
defined within the scope of another bean. Use Inner beans if
a bean is to be created/exist without its parent.

18) Isolate Deployment from Application Details: Isolate
Application Context from Deployment details.

19) Nulling a Property: Use </null> to set any property to
null value.

20) AOP vs. AspectJ: Prefer Spring AOP (Runtime
Weaving) or AspectJ (Compile time weaving) based on
requirement. Aspect-oriented programming (AOP) is a

programming paradigm that aims to increase modularity by
allowing the separation of cross-cutting concerns.
 Spring AOP is simpler than using AspectJ as there is no
requirement to introduce the compiler into build processes
for Compile Time Weaving.

21) Smart Logging: To ensure smart logging enforce the
following

a) Avoid using System.out
b) Avoid using System.err
c) Always use SLF4J
d) Always use Logback
e) Prohibit Apache Commons Logging also referred as

Jakarta Commons Logging
f) Prohibit Java Util Logging (JUL)

22) Deter the Use of Component Scanning: Spring defines
a set of stereotype annotations, which are markers for any
class that fulfills a role within an application. For example,
the @Repository annotation, which was introduced in Spring
2.0, is used for classes that fulfill the role of Data Access
Object of a repository. Spring provides an option to
automatically detect stereotyped classes and register
corresponding Bean definitions with the ApplicationContext,
eliminating the need to specify the stereotyped classes in the
XML configuration metadata file. This is achieved by
implicitly detecting the candidate components by scanning
the class path and matching against filters.
 When component scanning is enabled, during the
application initialization phase Spring will have to read a
large amount of data from the file system in real-time to scan
for the stereotyped classes on the class path. This can cause
the initial request to an App Engine application to take an in
deterministic amount of time to complete, despite the fact
that the App Engine’s virtual file system is a very high
performance system.

23) Breaking Larger Jar Files: Breaking up larger JAR files
can improve performance of class path scanning. This is
because the application does not have as many classes to
scan if Spring can determine which JARS are relevant.

24) Class path Scanning: It is not advisable to attempt to
perform class path scanning with UberJars or any other form
of JAR files generated from “JAR composing” build tools.

25) Avoid huge Up loadings: Try to avoid uploading a large
amount of .class files; attempt to “JAR up” these .class files
into smaller JAR files that will be compressed and therefore
faster to load.

26) Disabling XML Validation in Production: To further
reduce the loading time of an application, we can disable
XML validation in production.

27) Avoiding Constructor Injection by Name: Spring
supports using the constructor parameter name for value

 International Journal of Computer Sciences and Engineering Vol.-2(8), PP(62-69) August 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 65

disambiguation. Let’s consider the following sample class as
an example:
 public class Movie
 {
 private String name;
 private String description;
 public Movie(String name, String description)
 {
 this.name = name;
 this.description = description;
 }
 }

The corresponding configuration using injection by
name is shown as below:
 <bean id="movie" class="example.Movie">
 <constructor-arg name="name" value="ET" />
<constructor-arg name="synopsis" value="ItsMe
"/>
</bean>
 To make this work “out of the box”, Spring requires that
the code must be compiled with the debug flag enabled (-g
for all debugging info, or -g:vars to be precise, for the local
variable debug information). This allows Spring to look up
the parameter name in the debug information. However,
since this information is not cached in the JVM, it must be
loaded from disk which causes significant I/O time penalty.
To solve this problem we can use one of the following
guidelines:
a) Use the @ConstructorProperties annotation to explicitly
name your constructor arguments as shown next.
 public class Movie
 {
 // Fields omitted
 @ConstructorProperties(({“name”, “description”})
 public Movie(String name, String description)
 {
 this.name = name;
 this.description = description;
 }
 }
b) Define the bean without using constructor injection by
name:
 <bean id="movie" class="example.Movie">
 <constructor-arg index=0 value="ET" />
 <constructor-arg index=1 value="Help ET go home" />
 </bean>
 However, constructor injection by name is a bad
programming practice. It is an anti-pattern of dependency
injection which relies on the consistent naming of
constructor arguments. Here are the potential problems that
may lead to problems that are difficult to debug.
a) When utilizing software that we do not control, the
effective definition of the interface itself is extended to
include information that is not part of the standard method
signature in Java. Therefore, it is entirely possible that
someone could change the name of a constructor argument
without revising the major or minor versions of the built
artifact, causing your application to fail.

b) Constructor injection can become problematic with any
framework or system that rewrites the class byte code using
something similar to ASM. In Java, it is entirely possible to
obtain the byte code of a specific class and modify it to be
reloaded by a class loader. Doing so can break linkage of the
subsequently defined class with the source it was originally
defined with. This means the lookup of the names of the
constructor arguments will fail and this again may break the
application unpredictably.

28) Use “depends” if that Bean depends on any other bean:
If any bean is depended on other bean like any static variable
is using or something then we must specify that bean inside
the bean definition using the keyword “depends”. This helps
Spring to initialize that bean before the initialization of the
actual bean.

29) Aspect Oriented Programming in the necessary
situations: Use the ability of Aspect Oriented Programming
in the necessary times.

30) Every bean must have an id: Always use id to specify
the default name of the bean. If you need characters in your
bean name that are not allowed in the id attribute, then you
can provide additional names with the name attribute.

31) Declarative Caching services for Spring: Declarative
Caching Services for Spring provides declarative caching for
Spring-powered applications. Declarative caching does not
involve any programming and therefore it is a much easier
and more rapid way of applying and tuning caching services.
Configuration of caching services can be completely done in
the Spring IoC container. Spring provides support for
different cache providers such as EHCache, JBoss Cache,
Java Caching System (JCS), OSCache, and Tangosol
Coherence.

32) Configuring Spring Application context for different

locations: If the configuration is the same for all the
environments except for the developer’s machine, then make
(a) separate configuration file(s) with the configuration that
is different. Let this different configuration overwrite the
definition(s) in the original file(s).Make sure this different
configuration will never be placed in the other environments.
(b) Beans defined in the configuration locations (first
constructor-arg) overwrite the beans in the parent application
context (second constructor-arg).

33) Prefer static point cut over dynamic point cut: Static
point cut refers to a point cut that can be evaluated when a
proxy is created. Criteria for static point cuts cannot be
changed afterwards. Dynamic point cuts depend on runtime
information such as argument values or call stack. Dynamic
point cuts are slower to evaluate than static point cuts and
allow less potential for optimization. It’s always necessary to
evaluate them on each invocation.

 International Journal of Computer Sciences and Engineering Vol.-2(8), PP(62-69) August 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 66

34) Use regular expression advisors to fine tune interceptor

scope: Instead of using broad method point cuts and filtering
target methods in interceptor, use more sophisticated and
elegant regular expression at the application context level.

35) Use Auto proxying for large applications:

ProxyFactoryBean works well for small application but it
requires more verbose configuration. It allows control over
every aspect of the proxy. Spring ease the use of
ProxyFactoryBean by providing dedicated proxies such as
TransactionProxyFactoryBean and
LocalStatelessSessionProxyFactoryBean. Proxies also
prevent code duplication in configurations.

36) Aware of thread safe issues with AOP advice: Advice
instances are most often shared among threads, so we need
to consider thread safety issues. For example if the method
interceptor is responsible for generating unique id or count,
then consider using ThreadLocal variable with synchronized
method for incrementing the count.

37) Prefer to use apache Connection pooling bean: In the
spring DataSource Configuration we are commonly using
class is “org. springframework. jdbc. datasource.
DriverManagerDataSource”. We can implement connection
pooling using the class
“org.apache.commons.dbcp.BasicDataSource”. In order to
implement this, the necessary jars should be installed.

38) Handling Exceptions: Spring Gives a consistent
exception hierarchy in its DAO level. All the SQL as well as
DAO based exceptions are under the DataAccessException.
With the effective handling of this exception, we can easily
log the errors as well as we can more effectively assign
“ERROR MESSAGES” to the error objects. We can also use
Spring’s
“org.springframework.web.servlet.handler.SimpleMappingE
xceptionResolver” class to get the exceptions thrown and can
be displayed in the web level. This will help us to check the
“Exceptions in a real distributed environment”.

39) Prefer to use Springs Declarative Transaction
Capability: Spring provides Programmatic as well as
Declarative Transaction capabilities. And if we are using any
OR mapping tools then spring provides its own Transaction
manager to handle it.

40) Transaction Attribute Settings: Spring provides a
distinct “ISOLATION behaviors” for handling transactions.
In which the most efficient isolation level, but isolates the
transaction the least, leaving the transaction open to dirty, no
repeatable, and phantom reads. At the other extreme,
ISOLATION_SERIALIZABLE prevents all forms of
isolation problems but least efficient. So it’s better to choose
according to our needs.

41) Perform unit testing in the DAO layer: The Data Access
Part is the important part in which errors are popping up. So

if we complete a unit test here then it will be more useful for
our service layer programming. It’s very easy to write unit
tests in the spring DAO layers. Junit, easymock, unitils are
some of the useful as well as mostly used Unit testing
frameworks. Each one has its own advantages.

42) Prefer assembling bean definitions through

ApplicationContext over imports: Spring imports elements
that are useful for assembling modularized bean definitions.
Using ApplicationContext makes the XML configurations
easy to manage.

43) Communicate with team members for changes: When
you are refactoring Java source code, you need to make sure
to update the configuration files accordingly and notify team
members. The XML configurations are still code, and they
are critical parts of the application, but they are hard to read
and maintain. Most of the time, we need to read both the
XML configurations and Java source code to figure out what
is going on.

44) Don’t refer files directly: Do not reference any of the
file(s) directly in the source code but rather use one single
utility class responsible for returning references to different
groups of the configuration files used in different places.
Make sure that the methods returning these references uses
proper signature return type like an String[] even if we have
just one file for an specific domain or group of configuration
files. Spring provides the possibility of composing a
configuration file from multiple other files.

45) Commenting: Leave a one paragraph comment
describing the purpose of the document rather than leaving it
as it is. Do not leave room for next to come people to guess
where to put the new bean definitions, etc. But rather specify
it by leaving some comments if not documentation about the
configuration file.

46) Designing Thread Safe Objects: We can make our
Objects thread safe if we ensure the bean to be

a) Immutable
b) Stateless
c) Persistent
d) Lock enabled

47) IoC vs. Dependency Injection: Inversion of Control and
Dependency Injection are used interchangeably, but in fact
they are not the same. Inversion of Control is a much more
general concept, and it can be expressed in many different
ways. Dependency Injection is merely one concrete example
of Inversion of Control.

Inversion of Control (or IoC) covers a broad range
of techniques that allow an object to become a passive
participant in the system. When the IoC technique is applied,
an object will relinquish control over some feature or aspect
to the framework or environment. Some examples of control
include the creation of objects or the delegation to dependent
objects. IoC can remove these concerns from objects with

 International Journal of Computer Sciences and Engineering Vol.-2(8), PP(62-69) August 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 67

Dependency Injection and Aspect-Oriented programming,
respectively.

48) Handling Mutable Objects: For objects that are not
immutable, like Date, it’s a best practice to make our own
copies of the arguments before storing in the class or using
with some business logic. By using this technique, we
protect our class, as the client could change the internal
value of the argument after passing in the object, potentially
creating odd or inconsistent states.

49) Interface-driven Design: Interface-driven design is a
traditional OOP best practice. When we use interface-driven
design, the main components of our application are defined
in terms of interfaces rather than concrete classes.

50) Handling Common Tests: For a group of common tests
(e.g., test cases for controller classes, service layer testing
classes, and so on), it’s always a best practice to develop a
common abstract parent class that has the mandatory testing
infrastructure set up correctly.

51) Handling Action States: Extract reusable actions into
standalone action states. An action state simply defines one
or more actions to perform in a flow, and these actions will
be performed in the declared order.

52) Autoproxy Infrastructure: If we need to advise a large
number of objects, autoproxy infrastructure can produce
significant simplification in application configuration.

53) Bean Definition “Inheritance": Use bean definition
"inheritance" technique to eliminate duplication of
interceptor chain definitions and other AOP configuration(s).

54) Avoid unnecessary dependence on Spring API: There
should normally be no need to depend on Spring APIs for
configuration. (Using Spring abstractions, such as data
access APIs, is a different matter.) Part of the point of
Dependency Injection is to minimize the need for
dependency on any container. Becoming familiar with
capabilities of Spring's IoC container helps us to minimize
such dependencies, such as Method Injection.

55) Unit Testing (Testing Objects Individually): Unit testing
should be done without any container, Spring or other, and
without any further dependencies such as a database or JNDI
environment.

56) Prevent Resource Leaks: Close the resources after they
are used.

57) Lazy vs. Pre Loading: Lazy loading ensures that beans
are loaded on fly, whereas Preloading ensures that all
specified beans are loading even before they are used.
Choose required methodology based on need.

Example: Preloading can be preferred on performance
grounds i.e. on the occasion that there are less beans and
application should run faster.
Note: Preloading can be achieved only with
ApplicationContext and not with BeanFactory. But both
support Lazy Loading.

58) Miscellaneous: Concern should be kept on following
specious issues.

a) Bad coding
b) Not following standard
c) Not bothering about performance
d) History, Indentation, Comments are not appropriate.
e) Poor Readability
f) Open files are not closed
g) Allocated memory has not been released
h) Too many global variables.
i) Too much hard coding.
j) Poor error handling.
k) No modularity.
l) Repeated code

IV. EXPERIMENTAL SETUP

In this section some important practices which correspond

to tactics in section 3 are explained via programs.

1. ApplicationContext context = new
 ClassPathXmlApplicationContext("SpringConfig.xml");

Instead of

 BeanFactory context = new
 ClassPathXmlApplicationContext("SpringConfig.xml");
 Where ‘SpringConfig.xml’ is the xml file holding bean
 configurations.

2. <beans>
 <description>
 This configuration file will have all beans which control
 Database operations.
 </description>
 ...
 </beans>

3. Class A
 {
 B b = new B();
 }
 Class B
 {
 …
 }
 In the above scenario, class A is directly/fully dependent
 on class B i.e. Coupling is higher.

6. <!-- Setter injection -->
 <bean id="employee"
 class="com.opentext.myproject.Employee">
 <property name="datasource" ref="datasource">

 International Journal of Computer Sciences and Engineering Vol.-2(8), PP(62-69) August 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 68

 </bean>
Instead of

 <!-- Constructor injection -->
 <bean id="employee"
 class="com.opentext.myproject.Employee">
 <constructor-arg ref="datasource"/>
 </bean>

7. <!-- Type based constructor injection -->
 <bean id="emp"
 class="com.opentext.Employee">
 <constructor-arg type="java.lang.String" value="rest"/>
 <constructor-arg type="int" value="8080"/>
 </bean>

Instead of
 <!-- Index based constructor injection -->
 <bean id="employee"
 class="com.opentext.Employee">
 <constructor-arg index="0" value="rest"/>
 <constructor-arg index="1" value="8080"/>
 </bean>

8. <!-- Shorter/shortcut version -->
 <bean id="employeeDAO"
 class="com.howtodoinjava.dao.EmployeeDAO">
 <property name="datasource" ref="datasource"
 value="datasource">
 </bean>

Instead of
 <!-- Expanded version -->
 <bean id="employeeDAO"
 class="com.howtodoinjava.dao.EmployeeDAO">
 <property name="datasource">
 <ref bean="datasource"></ref>
 <value>datasource</value>
 </property>
 </bean>

10. <bean id="restaurantBean”
 class="org.opentext.Springpractice.MyTest" >

11. Auto wiring may look like following
 <bean id="myBean"
 class="com.opentext.spring.myTest"
 autowire="byName"/>

12. <!-- Always use classpath: prefix-->
 <import resource = "classpath: /META-
 INF/spring/applicationContextsecurity.xml"/>

13. Content of ‘Config.xml’ file
 <bean id="myBean"
 class="org.opentext.Springpractice.MyTest" >
 <property name="Note" value="${Note}">
 </property>
 </bean>
 <bean

class="org.springframework.beans.factory.config.Pr
 opertyPlaceholderConfigurer">
 <property name="locations">
 <value>classpath:spring.properties</value>
 </property>
 </bean>

</beans>
The above xml file refers the following

 ‘spring.properties’ file
Content of ‘spring.properties’ file
Note = Value from external file.

Instead of

 <bean id="restaurantBean"
 class="org.opentext.Springpractice.MyTest" >
 <property name="welcomeNote" value="Value
 from External file"> </property>
 </bean>

15. Bean with singleton scope.
 <bean id="myBean"
 class="org.opentext.Springpractice.MyTest"
 scope="singleton">
 </bean>
 Bean with prototype scope
 <bean id="myBean"
 class="org.opentext.Springpractice.MyTest"
 scope="prototype">
 </bean>

17. <bean id="outerBean" class="...">
 <property name="target">
 <bean id="innerBean" class="..."/>
 </property>
 </bean>

19. <bean class="myBean">
 <property name="address"><null/></property>
 </bean>

23. Disable component scanning by not using the following
 configuration element in the Spring XML
 configuration file:
 <!-- Component scanning will significantly slow down
 application initialization time -->
 <context:component-scan base-package=””/>
 Instead, explicitly declare your dependencies, such as:
 <bean id = ”myComponentBean”
 class=”org.opentext.MyComponent”/>
 <bean id=”myOtherComponentBean”
 class=”org.opentext.MyComponent”/>

28. <beanid="first" class="com.opentext.First"
 depends-on="second"/>
 <beanid = "second" class="com.opentext.Second"/>

32. Configuration example for this Coherence Cache is
 <bean id="customerTarget“
 class="org.opentext.cache.samples.dao.Customer” />

 International Journal of Computer Sciences and Engineering Vol.-2(8), PP(62-69) August 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 69

 <!-- Properties -->
 </bean>
 <coherence:proxy id="customerDao"
 refId="customerTarget“>
 <coherence:caching methodName="load"
 cacheName="customerCache" />
 <coherence:flushing methodName="update"
 cacheNames="customerCache" />
 </coherence:proxy>
 <bean id="customerManager"
 class =
 "org.opentext.cache.samples.business.
 CustomerManager" />
 <property name="customerDao" ref="customerDao" />
 </bean>

42. String[] requiredResources =
 {"file1.xml",
 "file2.xml"};
 ApplicationContext orderServiceContext = new
 ClassPathXmlApplicationContext(requiredResources);

Instead of

 <beans>
 <import resource="file1.xml"/>
 <import resource="file2.xml"/>
 <bean id="requiredService"
 class="com.opentext.spring.RequiredService"/>
 <beans>

56. ApplicationContext context = new
 ClassPathXmlApplicationContext("SpringConfig.xml");
 // Actual Code
 ((ClassPathXmlApplicationContext)context).close();

57. Lazy Loading
 <bean id="myBean"
 class="org.opentext.Springpractice.MyTest”
 lazy-init=”true”>
 </bean>
 Pre Loading
 <bean id="myBean"
 class="org.opentext.Springpract6ice.MyTest”
 lazy-init=”false”>
 </bean>

V. CLOSING COMMENTS

Spring is a light weight application framework and can be
treated as Framework of frameworks. Spring can be used for
developing any sort of applications. It can be stand alone,
web application, distributed and enterprise applications.
Spring is flexible, when compared to Struts (a framework) as
Struts is used for developing only web applications, whereas
Spring can be used for developing any sort of applications.
Spring simplifies the usage of existing java API’s by
providing abstractions for different APIs.

This paper brought several best practices and tactics in
Spring Application Framework upfront.

FUTURE WORK: I extend this work by bringing out more
appraisals, methodologies by testing and discussing with
several performance engineers and other experts.

VI. REFERENCES

[1] Rod Johnson, Juergen Hoeller, Alef Arendsen, Thomas
Risberg, Colin Sampaleanu, “Professional Java Development
with the Spring Framework”, Wiley Publishing, Copyright
2005.

[2] Willie Wheeler, “Spring in Practice”, Manning Publications,
Copyright 2013.

[3] Gary Mak, Josh Long, Daniel Rubio, “Spring Recipes”, 2nd
Edition, Apress Publications.Copyright 2010.

[4] http://en.wikipedia.org/wiki/Spring_Framework reffered on
27th December, 2013.

ABOUT THE AUTHOR

Vamsi Krishna completed his Bachelors in Computer Science from

JNTUK University College of Engineering,
Vizianagaram. He is Oracle Certified JAVA
SE7 Programmer, DBA Professional 11g,
Performance Tuning Expert, Database
Security Implementation Specialist & SQL
Expert. He is fervor towards Database
Security and associated research. His other
areas of interests entail SQL & Database
Tuning, Performance and Security
Engineering in Programming etc.

