
 © 2016, IJCSE All Rights Reserved 60

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-4, Issue-7 E-ISSN: 2347-2693

Security Model for Object Oriented Applications

Amanpreet Kaur

Department of Information Technology

Lovely Professional University, Jalandhar, Punjab, India

Available online at: www.ijcseonline.org

Received:20/Jun/2016 Revised: 30/Jun/2016 Accepted: 21/Jul/2016 Published: 31/Jul/2016

Abstract –Object oriented platform allow us to create ‘n’ number of objects of a class without imposing any constraints. By

taking advantage of this feature, unknown objects of known and unknown classes can also be created in an application by the

intruder. This paper presents a security model for object oriented platform to overcome such issues. In this paper, I have raised

security issues related to object oriented applications. I have also discussed the needs of security for these applications.

Keywords – Inheritance; Object; Unknown classes; Unknown Objects

I. INTRODUCTION

Objects are the basic run time entities in object oriented

system
. [1]

 They can represent a person, an employee, a

student, a table, or anything. Object oriented systems

divides a problem into number of entities called objects

and has data and functions associated with these objects.

It has features like data encapsulation, polymorphism,

message passing, inheritance, and dynamic binding.
[2]

Object oriented platform makes it easier for a developer to

convert a real life problem into a computer based

application by using the ‘reusability’ feature. It can be

used to develop business based applications effectively to

manage data of an organization
[3]

Example 1.1: ‘emp.cpp’

class emp

{

 int emp-id; //represents the id of an employee

 char *name; //represents the name of an employee

 public:

 emp() //default constructor of class ‘emp’

 {

 }

 void enter_id(int x,char *name)

 { //methods of class ‘emp’

 this->emp_id=x;

 this->name=name;

 }

 void show_id()

 {

 cout<<”\n id of an employee =”<<emp_id;

 cout<<”\n name of an employee=”<<name;

 }

};

class salary:public emp

{

int salary; //derived class ‘salary’ from ‘emp’

 public:

 salary() //default constructor of ‘salary’

 {

 }

 void enter_salary(int x)

 { //methods of class ‘salary’

 salary=x;

 }

 void show_salary()

 {

 cout<<”\n salary of an employee is=”<<salary;

 }

};

Description:

In the above example, salary is derived from emp to

add salaries with the names of employees. Two objects s1

and s2 of type salary are created to hold the data of

employees.

salary s1;

salary s2;

s1.enter_id(1,aman);

s1.enter_salary(10,000);

s2.enter_id(2,garima);

s2.enter_salary (20,000);

 TABLE 1

 EMP DATA

Objects ID Name Salary

s1 1 Aman 10,000

 s2 2 Garima 20,000

“Objects holding data of employees”

International Journal of Computer Sciences and Engineering Vol.-4(7), PP(60-65) Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 61

In an application, known classes and objects are those

which are created by an authorized person whereas

unknown classes and objects are those which are created

by an unauthorized person. Let us assume, s1 and s2 be

the known objects of known class ‘salary’.

In the below sections, security issues of object oriented

applications are discussed. A proposed security model for

object oriented applications is discussed.

II. SECURITY ISSUES OF OBJECT ORIENTED

APPLICATIONS

If an unauthorized person has access to class definitions

and methods of a defined class hierarchy then creating an

unknown objects of it is an easy task for him. Through

unknown objects of known classes, he will add unknown

data in the database of an application. [4]

Inheritance is the special feature of object oriented

system. It allows us to reuse a class ‘n’ number of times to

derive new and more functional classes without bothering

about any constraints. It can be used to develop effective

business applications to manage data of an organization. If

an intruder has access to class definitions and methods of

an application then he can easily inherit a defined class

hierarchy. He will add unknown classes to it. Through

unknown objects of unknown classes, he will add

unknown data in the database of an application.

Security issues are always different of different

organizations. So, there is a need of such an embedded

security model in object oriented platform which can be

easily customized by developer for his application.

III. PROPOSED SECURITY MODEL TO IDENTIFY

UNKNOWN CLASSES

The verification phase shown in Figure 5 should be

included as an inbuilt feature of object oriented platform.

Following should be the components of verification

phase:

 An inbuilt string type variable should store type of an

object before the object starts its inbuilt process of

creation. Its value should be updated whenever a new

object starts its process of creation. To understand the

functioning of the security model, let’s assume

‘check_type’ to be that variable.

 salary s1; [check_type= “salary”]

emp e1; [check_type= “emp”]

 department d1; [check_type= “department”]

 A file should be provided with object oriented

platform which would be maintained by the developer

(if he wishes to). The file should be designed to store

the names of classes. If file is empty, then verification

block will check nothing from it. In that file, developer

can add the names of classes, he wishes to create in an

application. The file permissions can be controlled by

the developer. He can make it non-readable and non-

editable for others to stop the addition of unknown

classes by unauthorized people. Let’s assume the name

of file is ‘type_database’.

Verification phase will crosscheck the current value of

‘check_type’ with the data of ‘type_database’ file,

whenever an object will start its process of creation. If the

current value of ‘check_type’ matches with any entry of

‘type _database’ file then object should be created else it

should be destroyed and an error on the output device

should be shown. In this way, unknown objects of

unknown classes will automatically got rejected.

Verification phase should be included as an inbuilt

process at the time of creation of an object in object

oriented platform. This phase will not only provide

security to the application, in fact, the complete object-

oriented platform on the system will be under the

developer's control.

The object oriented platforms should impose restriction on

creating more than one class with the same name. For

example: if 'salary' is an existing class on system then

another class designed to maintain the salaries of another

department should be created with the different name.

This approach will stop the entry of unknown classes

which are created on the same name of known classes.

IV. SECURITY MODEL TO STOP UNKNOWN OBJECTS OF

KNOWN CLASSES

An unauthorized person can create the unknown

objects of those classes which will pass the verification

phase. So, there is a need of protecting class definitions

and methods from intrusion.

Class definitions and methods should be non-editable

and non-readable for everyone except the authorized

person.
[7]

Known objects should be protected by developer

to avoid the modification of existing data in the database.

Class definitions and methods should be protected to stop

the addition of unknown classes in it.

Fig.1. Inbuilt Process to Create an Object of Class ‘Emp’

The inbuilt procedure of creating an object of the class

is: an implicit call to its own class default constructor at

run time i.e. calling emp ()
[8].

So, emp () should be

modified in a way that it rejects unknown objects of

known classes.

Example 4.1

int objects_created=0; //represents no. of objects created

by the developer in application so far//

International Journal of Computer Sciences and Engineering Vol.-4(7), PP(60-65) Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 62

int size=5; //represent constraint on number of

objects specified by developer//

void exit(void) //method to stop the further process of

creation of an unknown object//

{

 cout<<”\n unauthorized access”;

 getch();

 }

 class emp

{

 public:

 emp() //customized default constructor of ‘emp’//

 {

 object_created++;

 if (objects_created>=size)

 {

 exit();

 }

 }

};

Description:

When the object of emp class will call emp () at the

time of its creation, ‘objects_created’ variable will be

incremented. In the above example, developer will create

five objects of emp class according to his requirement.

After that, any object accessing emp () will be directed to

exit () method, which will show an error of ‘unauthorized

access’. Class definitions should be non-editable and non-

readable for everyone, except developer. So only he, can

change the constraints on number of objects. In this way,

an unknown object will be unable to access methods of

the class.

A. Security of Inheritance

Inheritance is the special feature of object oriented

system
.[8]

 Inheritance allows us to reuse a class ‘n’ number

of times to derive new and more functional classes

without bothering about any constraints. The inbuilt

process of creating the object of derived type class is

different from the non-derived type class. To reject

unknown objects, in case of inheritance, a different

approach will be used.

1) Security of Single Level Inheritance

Fig.2. Single Level Inheritance

Description:

Figure 2 shows that emp is a base class for salary.

These (emp and salary) are assumed as known classes of

defined class hierarchy.

Fig.3. Inbuilt process to create an object of ‘salary’

,and ’emp’

In single-level inheritance, the inbuilt process of

creating a derived class object is: first implicit call to its

base class default constructor, after that, an implicit call to

its own class default constructor. At the time of creation, a

memory address will be assigned to the object. The inbuilt

process of creating 'salary s1' is: first call to emp (), after

that, a call to salary ().Figure 3 shows that to stop the

creation of unknown objects of salary and emp, ‘emp ()’

should be programmed in such a way that it rejects

unknown objects of class salary.

Example 4.2: ‘emp.cpp’

int objects_created=0; //represents number of objects

created in an application so far//

int size=5; //represents constraint on number of objects

specified by developer//

void exit(void)

{ // method to stop the further process of creation of an

unknown object//

 cout<<”\n unauthorized access”;

 getch();

}

class emp

{

 emp() //customized default constructor of ‘emp’

 {

 if (objects_created>=size)

 {

 {

 exit();

 }

 }

 }

};

Class salary: private emp

{

International Journal of Computer Sciences and Engineering Vol.-4(7), PP(60-65) Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 63

 salary()

 {

 }

};

Description:

The above example shows class definitions and

methods of emp and salary. It is able to create five known

objects of either emp or salary or both because ‘size’

specified by developer is five. Only developer will be

able to change the constraints on number of objects

because class definitions are under his control. When

unknown objects (after fifth object) of salary or emp will

start their process of creation they will first access emp (),

which will call exit () method for them. Exit () method

will show an error of ‘unauthorized access’ and stop the

further process of creation of the unknown objects of

salary i.e. calling salary (). If unknown objects of class

salary or emp will not be created they will be unable to

access methods of these classes.

The verification phase is not used for identifying

unknown objects of known classes because in emp ()

developer can easily use different type of operators (>=,

<,>, <=) according to his requirements which would be

tough in case of verification phase.

2) Security of Multilevel Inheritance

Fig.4. Multilevel Inheritance

Description:

In Figure 4, Department inherited salary which is

derived from emp class. These are assumed as known

classes of an application.

Fig.5. Working of security model in an application

International Journal of Computer Sciences and Engineering Vol.-4(7), PP(60-65) Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 64

Fig.6. Inbuilt process to create an object of department,

salary, and emp

Description:

In multi-level inheritance, the inbuilt procedure of

creating a derived class object is: first implicit call to its

base class’s base class default constructor then an

implicit call to its own base class default constructor,

after that, an implicit call to its own default constructor.

To complete the creation process, ‘Department d1’ will

implicitly call emp() (default constructor of base class of

‘salary’) ,salary() (its own base class default constructor)

and department() in order. Figure 6 shows that to stop

the process of creation of unknown objects of

department and salary, emp()(default constructor of base

class ‘emp’) should be programmed like Example 4.2

according to requirements. Exit () method will stop the

further process of creation of the unknown objects of

department (i.e. calling salary () ->department) and

salary (i.e. calling salary ()).

3) Security Issues of Multiple Inheritance

Fig.7. Multiple Inheritance

Description:

In Figure 7, department and salary are assumed as

known base classes for emp. The inbuilt process of

creation of an object of derived type class in multiple

inheritance is different from that of multilevel

inheritance. In multiple inheritance the order of implicit

calling of base class default constructor follows the order

of position of base class in derived class declaration.

 For example class emp: public department, public

salary.

Fig.8. Inbuilt process to create an object of emp, salary, and

department

Description:

Figure 8 shows that to complete the inbuilt process of

Creation, ‘emp e1’ will implicitly call department () (the

first inherited base class default constructor), salary ()

(the second inherited base class default constructor) and

emp () (its own default constructor) in order. To put

constraint on the number of objects of emp and

department, department () should be customized

according to developer’s requirements like Example 4.2.

Customized department () will not be able to impose

restrictions on those objects which are of type ‘ salary’

as it is an independent class and its objects will call

salary() at the time of creation.

V. CONCLUSION

 Due to different security requirements of

organizations there is need of security model which can

be easily customized by the developer or owner.
[13]

 The

verification phase as an inbuilt feature in object oriented

platform will filter the unknown classes for a developer.

The verification phase will protect the object oriented

platform. The ‘type_database’ file can be easily

protected by the developer by changing the permissions.

Locking of class definitions and methods will stop the

unknown additions of classes in it. Putting constraints in

default constructor of a class will protect the methods of

a class by stopping the unknown access to them. So,

discussed methods will make object oriented platform

more secure.

International Journal of Computer Sciences and Engineering Vol.-4(7), PP(60-65) Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 65

REFRENCES

[1] E.B. Fernandez, R.C. Summers, and C. Wood,

“Database Security and Integrity,” Addison-Wesley,

February 1981.

[2] T.F. Keefe, “SODA: A Security Model For Object-

oriented Management Systems”, Proceedings of 15
th

International Computer Software and Applications

Conference, Tokyo, Japan, September 1991.

[3] Jonathan K. Millen and Teresa F. Lunt, “Security

for Object-Oriented Database Systems,” IEEE 1992.

[4] Elisa Bertino, “Data Hiding and Security in Object-

Oriented Databases”, Eighth International

Conference on Data Engineering, 338-347, February

1992.

[5] Juhnyoung Lee, Sang H.Son, Myung-Joon Lee,

“Issues in devolving object-oriented databases

systems for real-time applications,” IEEE 1994.

[6] Y. Oki, T. Chikaraishi, T. Shimomura and T. Ohta,

“A Design Method for Data Integrity in Object-

Oriented Database Systems,” IEEE 1995.

[7] Roshan K. Thomas and Ravi S. Sandhu, “A Trusted

Subject Architecture for Multilevel Secure Object-

Oriented Database,” IEEE Transactions on

Knowledge and Data Engineering, Vol. 8, No. 1,

February 1996.

[8] Elisa Bertino and Ravi Sandhu, “Database Security-

Concepts, Approaches, and Challenges”, IEEE

Transactions on Dependable and Secure Computing,

Vol. 2, No.1, January-March 2005.

[9] Ni Xianjun, “A Logic Specification and

Implementation Approach for Object Oriented

Database Security,” Workshop on Knowledge

Discovery and Data Mining, IEEE 2008.

[10] Sohail IMRAN and Dr. Irfan Hyder, “Security

Issues in Databases”, Second International

Conference on Future Information Technology and

Management EngineeringIEEE 2009.

[11] Leon Pan, “A Unified Network Security and Fine-

Grained Database Access Control Model,” Second

International Symposium on Electronic Commerce

and Security, 2009.

[12] Mansaf Alam “Access specifiers Model for Data

Security in Object Oriented Databases,”Eighth

International Conference on Information

Technology: New Generations, IEEE 2011.

[13] Hussain Al-Aqrabi; Lu Liu; Richard Hill; Zhijun

Ding; Nick Antonopoulos“Buisness Intelligence

Security on clouds:Challenges,Solutions and Future

Directions”,IEEE 2013

[14] Nitish Pathak; Girish Sharma; B. M. Singh

“Designing of SPF based secure web application

using forward engineering”,IEEE 2015.

[15] S. Nagaparameshwara Chary, B.Ram “Analysis of

Classification Technique Algorithms in Data

mining- A Review“,IJCSE 2016.

Author Profile

Amanpreet Kaur received the

License degree Information

Technology in 2013, then she

received the M.S degree in

Information Technology in

2014(Integrated), from Lovely

Professional University, Jalandhar,

Punjab, India. Her research interests are Object Oriented

Databases.

 .

