
 © 2015, IJCSE All Rights Reserved 58

 International Journal of Computer ScienceInternational Journal of Computer ScienceInternational Journal of Computer ScienceInternational Journal of Computer Sciencessss and Engineeringand Engineeringand Engineeringand Engineering Open Access
 Research Paper Volume-3, Issue-1 E-ISSN: 2347-2693

A Deterministic Parallel Computing Approach Optimised for

Multicore Architecture

Shahid Iqbal

www.ijcaonline.org

Received: 26/Dec/2014 Revised: Jan/8/2015 Accepted: Jan/20/2015 Published: Jan/31/2015

Abstract --- In software computing, computation is done either deterministic or non-deterministic approach. Deterministic

approach includes the constraint like dependency of data in which no random computation is involved. This paper talks

about how to achieve more parallelism in context of a deterministic computation approach for the dual-core architecture. In

this paper a new Scheduling algorithm which termed as “LA Scheduling” algorithm and its associated component has been

presented which is mainly optimised for dual core architecture. Simulation result shows that it helps in reducing the

response time of a program and average speedup has been increased.

 Keywords --- Parallel Computing, Multicore Architecture, Scheduling Algorithm

1. INTRODUCTION

In computing science, a lot of computation is involved in

order to generate some useful result. Based on the degree

of dependency or independency of data, computation is

majorly divided into two types, i.e. deterministic and non-

deterministic computation/algorithm. A deterministic

algorithm is an algorithm which, given a particular input,

will always produce the same output, with the underlying

machine always passing through the same sequence of

states . So in deterministic approach, no random

computation is involved. In this, the overall computation is

depending on the particular sequence of execution of data.

This paper talks about how to achieve more parallelism in

context of a deterministic computation approach for the

dual-core architecture.

2. ABOUT MULTICORE

The past few years have witnessed a persistent increase in

the number of cores per CPU. At its simplest, multicore is

a design in which a single physical processor contains the

core logic of more than one processor. The multicore

design puts several such processor “cores” and packages

them as a single physical processor. The goal of this design

is to enable a system to run more tasks simultaneously and

thereby achieve greater overall system performance.

Programs are made up of execution threads. These threads

are sequences of related instructions these cores are

responsible for executing the threads which are the

smallest unit of CPU utilisation. Multicore processors, as

the name implies, contain two or more distinct cores in the

same physical package. Figure 2 shows how this appears.

Fig. 1 showing the multicore example

In this design, each core has its own execution pipeline.

And each core has the resources required to run without

blocking resources needed by the other software threads.

The example in figure 1 shows a two-core design which is

in general called as dual-core architecture, there is no

inherent limitation in the number of cores that can be

placed on a single chip. The multicore design enables two

or more cores to run at somewhat slower speeds and at

much lower temperatures. The combined throughput of

these cores delivers processing power greater than the

maximum available today on single-core processors and at

a much lower level of power consumption.

3. DESIGN COMPONENTS

In order to utilise these cores maximum amount of time,

we need better scheduling algorithms for the deterministic

systems. In this paper we tried to evaluate one of the

deterministic computations. In computing science the

deterministic approach can be shown by Directed Acyclic

Graph (DAG) in which the nodes of a DAG are

computational tasks and the edges are the dependency

among tasks. In figure 2, which shows the very basic

DAG, in which total three tasks(1,2,3) are described and

task 3 cannot be executed or scheduled before the task 1

and task 2 completes their execution and execution

basically depends on the scheduling criteria.

 International Journal of Computer Sciences and Engineering Vol.-3(1), PP(58-60) Jan 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 59

Fig. 2 A very basic DAG of three tasks

From software perspective, each task can be visualised as

a software module or a function. And each module cannot

be schedule for execution until or unless it has scheduled

all its predecessor dependent function or module.

3.1 Thread as Computation

In general-purpose software engineering practice, we have

reached a point where one approach to concurrent

programming dominates all others, namely, threads. From

computation point of view, we considered threads, as a

model of computation. Threads are sequential processes

that share memory. They represent a key concurrency

model supported by modern computers. In our problem,

we considered the thread as computational model because

parallel architecture is responsible for thread level

parallelism. For each task, corresponding one thread can

be generated so that it could make use of the parallel

computer architecture efficiently. So from now onward

task and thread are interchangeable. We have restricted the

number of core is 2, which in general termed as dual-core

architecture as well.

The effective scheduling of the deterministic approach is

always a NP hard problem for multicore architecture. One

of the simplest scheduling mechanisms for any number of

cores is that resolve the dependency and sequentially

schedule that tasks/thread of that program but the response

time of a program would be larger and in this mechanism

it won't effectively utilise the other cores as well. For

multicore architecture we need to busy both of the cores

(in case of dual-core architecture) as much as possible in

order to reduce the response time of the program without

violating the constraint associated with it. We termed our

new scheduling algorithm as LA algorithm but before

going to scheduling algorithm we need some pre-

processing steps and some extra hardware components

before actual scheduling being done.

3.2 Pre-processing

1. In this first pre-processing step, it takes the raw problem

as an input. In this step, it executes the Kahn Topological

sorting algorithm which takes the DAG as an input and

returns the List L of sorted task. So L is set of task to be

computed. The Kahn Topological sorting algorithm is

explained in [3].

2. The second pre-processing step is to calculate the

number of out degree edges in a DAG for each task. This

can be done by any simple traversal algorithm. So the

OUTDEG is a set of natural numbers which represents the

number of outwards edges for each task.

3.3 Queue Component

We need two hardware queue which maintains the L and

OUTDEG which we have termed as Q_L[] and

Q_OUTDEG[] respectively and it should be in such a way

that

Q_L[i] = Vi

Q_OUTDEG[i] = Di

Where Vi belongs to L and Di belongs to OUTDEG

3.4 Scheduling Algorithm

The pseudocode of the scheduling algorithm which we

termed as LA scheduling is mentioned below, which takes

the L and OUTDEG and schedules the tasks/thread on

two different cores M where M= {0,1}. The prior

assumption of this algorithm is that worst case execution

time unit is constant for each thread and they all are

available at particular instant of time.

LA (L , OUTDEG)
1. Initialise i � 0

2. Schedule the tasks/vertex while L is not empty

3. For node Vi in L

 Initialise j � 0

 Initialise n

 n � Di , where Di belongs to OUTDEG and

Vi belongs to L

4. If n ≥ 2 then do this

 Mj � Vi

 Delete Vi from L

 While (n!=0)

 {

 i++

 if(Di < 2)

 {

 Mj � Vi

 update j, where j={0,1}

 Delete Vi from L

 }

 else

 {

 n � Di + 1

 Mj � Vi

 Delete Vi from L

 }

 n--

 }

 i++

 Else do this

 Mj � Vi

 Delete Vi from L

 i++

 International Journal of Computer Sciences and Engineering Vol.-3(1), PP(58-60) Jan 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 60

4. EXAMPLE CONSIDERATION

The problem is shown in figure 3, which shows the DAG

with nine nodes or task and each task has been assigned a

unique integer. As explained earlier, if each task is

computed by one thread, then total nine threads will be

scheduled on two cores in order to execute. After two pre-

processing steps mentioned in section 3.2 and applying the

LA scheduling mentioned in section 3.4, the scheduling

diagram is shown in figure 4.

Fig. 3 DAG with nine nodes/tasks

1 2 4 7 6 8

 3 5 9

0 10 20 30 40 50 60

Fig. 4 Scheduling of threads on two cores M

4.1 Simulation

In our simulation as shown in figure 5 and 6, we restricted

the maximum execution time for each thread is 10 time

unit. We took different simulation samples for different set

of DAG structure having fixed number of tasks which is

nine in our case. As can be seen that the response time of a

program can be reduced using the LA scheduling and after

applying the Amdahl's law of parallel computation, the

average speedup found to be 1.29.

Fig. 5 Comparison of response time (Sequential Vs

Parallel (LA))

Fig. 6 Speedup diagram

5. CONCLUSION

With persistent increase in the number of cores for last few

years, we need better core utilisation algorithms. In this

paper we presented one of the efficient scheduling

algorithm and some of its associated parameter which

works efficiently in deterministic computation approach

where no random computation is involved for the dual-

core architecture. Our simulation result shows that

response time of a program can be reduced effectively and

average speedup has also been increased.

REFERENCES

[1] Cormen, Thomas H., et al. Introduction to algorithms.

Vol. 2. Cambridge: MIT press, 2001.

[2] Karpinski, Marek, and Rutger Verbeek. "On

randomized versus deterministic computation."

Automata, Languages and Programming. Springer

Berlin Heidelberg, 1993. 227-240.

[3] Kahn, Arthur B. "Topological sorting of large

networks." Communications of the ACM 5.11 (1962):

558-562.

[4] Lee, Edward A. "The problem with threads."

Computer 39.5 (2006): 33-42.

[5] Silberschatz, Abraham, et al. Operating system

concepts. Vol. 4. Reading: Addison-Wesley, 1998.

[6] Bosilca, George, et al. "DAGuE: A generic distributed

DAG engine for high performance computing."

Parallel Computing 38.1 (2012): 37-51.

[7] Intel Corporation https://software.intel.com/en-

us/articles/multi-core-processor-architecture-

explained October 2008

