
 © 2015, IJCSE All Rights Reserved 37

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-3, Issue-7 E-ISSN: 2347-2693

Square of an Enormously Large Number

Harsh Bhardwaj

Maharaja Agrasen Institute of Technology

GGSIPU, New Delhi - India

www.ijcseonline.org

Received: Jun/23/2015 Revised: July/06/2015 Accepted: July/21/2015 Published: July/30/ 2015

Abstract- In this world of innovative and effective manipulations and calculations, the requirements for developing a way to

carry out the computation in a more algorithmic form arises. The requirement to understand the logic behind a computation

doesn't come up as an issue unless you type in a really huge number, like a number including 100-digits or so. When this kind of

number is required to be processed upon, a more algorithmic way of carrying out the computation is more presentable. A

process for innovative and easily manipulated computations is required to be produced, in order to increase the productivity,

convenience, ease of use and fairly deal with budgetary concerns. This document provides general practices, procedures and

tools for creating an innovative computation of square of extremely large numbers. It is aimed for engineers, Mathematical

gurus, algorithm geeks, who are assumed to possess basic knowledge regarding what is meant by square of a number. It

addresses basic knowledge about how to calculate the square using conventional means and how the improvement can be made

to produce an algorithmic way of doing the same.

Keywords— Square of a number, Time-Complexity, Algorithm Design

I. INTRODUCTION

Let's start with basics of exponentiation. Exponentiation can

be referred to as the procedure of multiplying a given

number 'n' by itself for 'm'-number of times. The number to

be multiplied by itself can be called as 'base', i.e. 'n' here is

'base', while the number how many times it is to be

multiplied, can be called as 'exponent', i.e. 'm' here is

'exponent'. The symbol required to represent the

exponentiation can be given as '^', called as “carat”. Thus,

exponentiation can now be shown in mathematical terms as

'n ^ m', also called as 'n to the power m'.

This simple concept of multiplication of a number by itself

has played a very significant role in the world of

mathematics. Polynomials are all based upon the base-

exponent relationship of variables. These polynomials build

up the infrastructure of Algebra.

When the exponent is made to be nothing but 2 (two), the

exponentiation starts to be termed as calculating the square

of a number. Now, the base 'n' becomes a k-digit number and

'm' becomes 2. This is represented as n ^ 2 and termed as 'n

to the power two' or in more familiar words 'square of n'.

From calculating the area of a circle, to equating popular

Energy-mass equation of Albert Einstein, the exponentiation

has developed its way through into being one of the very

crucial parts of the whole mathematics.

In Computer Technology, the requirements for developing

an algorithmic way of computing the square of a given

number have evolved from various methods to various

others. There exist many of them that are effective enough to

compute the square of very large numbers, but they are not

as efficient as the method we are about to discuss.

After having gone through this paper, you will be able to

calculate the square of a given number with an ease never

mentioned before and the algorithm discussed here would

provide a way of computing the square of an extremely large

number, i.e. consisting of several hundred digits.

II. CONVENTIONAL METHOD

A. N to the power two

A very convenient method, as the name suggests is to

multiply the number with itself. For example, if we have a

number 'n' equals to 45 and it is supposed to be calculated

square of, then we need to multiply 45 with itself, i.e. 45, in

order to get the result 2025, as the square of this number. In

this approach, it is to be understood what it actually means to

multiply a number.

B. Multiplying a number

What it actually means to have a number multiplied is

adding the number as many times as the number it is

required to be multiplied with. Considering the previous

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(37-44) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 38

example, 45 ^ 2 depicts that 45 is to be multiplied with 45

and in order to multiply 45 with another 45, it would have to

be added with itself 45 times, i.e. 45 + 45 + 45 + … + 45

(45 times).

The square of a number can thus be calculated in this

manner. But, it can be easily seen how hectic this procedure

becomes when a number of sufficiently large number of

digits is encountered. This conventional approach is the

basic and the most absolute approach but computer

technology requires an algorithmic way.

III. DEVELOPING A MEANS

It has to be seen how the advancement in computer

technology has brought the computational system to

algorithmic system. All the calculations and logics are now

carried out in an algorithmic way. The programming

language used here is Python and the module to keep track

of the time element is 'time'. Recursive calling of function

has been used in order to keep the complexity of the

algorithm as low as possible.

A. Time module of Python

This module can be used in order to keep track of the time

taken by a particular instruction or a set of instructions in

order to build up an exact scenario of how long does an

instruction or a set of instructions take to execute. This can

be shown to be done as:

time1 = time.time()

Your instructions go here

time2 = time.time()

time2 = time2 – time1

It is clear that a variable called 'time1' holds the time

instance that occurred just before instructions had started

executing and 'time2' holds the time instance that occurred

right after the execution of instructions was done.

Subtracting the first variable from second gives the time

required by the set of instructions to execute. In order to use

this module, programmer has to import the module

exclusively.

B. Recursion

Recursion can be defined as the way in which one method

keeps passing a lower set of parameters to itself until a base

case is encountered in which function returns primitive

values that are predefined in the function or are too obvious

to guess. Recursion in this manner can be thought of as a

way in programming languages by which one method makes

a call to itself with a lower set of values. This can be

represented as:

 def meth(param1, param2, … , paramk):

 # here goes the base case

 meth(param_smaller1, param_smaller2, … ,

param_smallerk)

It is clear from the example above that 'meth' method is

calling itself with lower set of values.

IV. GIVING THE ALGORITHM

A. Algorithm

Algorithm defines a set of sequential rules required to be

followed in order to solve a particular problem. The

algorithm for calculating the square of a given number can

be given as:

1. if the number is 1-digit, then

2. return the square of number

3. if modulo-10 of the number is 0, then

4. recursively call the algorithm over 1/10th of the

 number

5. return the result obtained after multiplying it with

100 or appending two zeroes at the end of the

result

6. else

7. compute the nearest but smaller number that is

 exactly divisible by 10, save it in variable 'num'

8. recurse over the obtained number and store the

 result in a variable, say 'sq'

9. i = 1

10. while units digit of the number is greater than 0

11. sq = sq + num * 2 + i

12. increase i by 2

13. decrease units digit of the number by 1

14. return sq

Above algorithm can be explained in the following manner:

Line 1 is the base case for the recursive algorithm, i.e.

whenever the length of the number is 1, it should simply

return the square of the number. This can be done as simple

multiplication of the number by itself or by listing every

single case from 0 to 9 and returning the corresponding

value.

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(37-44) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 39

Now, there may occur two cases, i.e. when the number is

exactly divisible by 10 and when the number is not exactly

divisible by 10. When the number is exactly divisible by 10,

then it is known by practice that the square of this number

will be divisible by 100. Thus, we now only need to find the

square of the 1/10th of the number, and when the result

comes, we will multiply it with 100 for the correct answer.

In programming language that support string operations,

that most of the programming languages do, two zeroes can

be appended at the end of the result obtained. This

implementation can be pointed out in the algorithm on line

3, 4 and 5.

In line 3, modulo-10 of the number is checked. If it is found

to be zero, a recursive call on 1/10th of the number is made

and the result is simply returned back.

When the number is found to be not divisible by 10 and

leaves a remainder, this remainder can be stored back for

further utilization. Compute the nearest but smaller 10's

multiple of the number as done in line 7. Recursive call can

be made over this number and the result is to be stored in a

variable, say 'sq'. This is done in line8.

In line 9, a variable called 'i' is assigned a value of 1. The

loop on line 10 sustains until the remainder that we had

previously stored is greater than zero.

The main part of this whole algorithm resides in the next

three lines from line 11 to line 13. The explanation for this

can be stated by an example.

Let’s consider a number, 34. The nearest but smaller 10’s

multiple to this number is 30. Square of 30 can be

calculated using recursive calls as described above. In order

to calculate the square of 34, four iterations are carried out

inside the while loop. In first iteration, square of 30, i.e.

900, is added up with ‘twice of 30’ and 1, to yield the

square of 31 as 961. In second iteration, 961 is added up

with ‘twice of 30’ and 3, to yield 1024, i.e. the square of 32.

In the next iteration, 1024 is added up with ‘twice of 30’

and 5, to yield the square of 33 as 1089. In the fourth

iteration, 1089 is added up with ‘twice of 30’ and 7 to give

the final answer of square of 34, i.e. 1156.

Thus, it can be shown that the algorithm applies to all sort

of inputs and returns the square of number in recursive

manner.

The square calculated can be returned as in line 14.

B. Flowchart

Input:

Number

Return the

Square of

number

Is

len(Number)

== 1?

Check for

modulo-10 of

number

Is modulo-10

== 0?

Put 1/10
th

 of

number in

recursion

i = 1

Append two

zeroes at the

end of the

result

Find the

nearest but

smaller 10’s

multiple,

‘num’

Put this

number in

recursion

Begin

Store the

result in ‘sq’

L

YES NO

Return the

result

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(37-44) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 40

C. Corectness of the Algorithm

Correctness of the algorithm can be proved by having

proved the applicability of the algorithm over all sort of

inputs that the algorithm claims to be working upon. This is

where the working of the inner of the ‘while’ loop is

explained.

This method of computing the square of a number can also

be implemented in thought process for human beings for

faster calculation of squares of small numbers.

Let’s consider a number, 57. The requirement is to find the

square of this number. The unit’s digit being 7 is required to

be stored in a variable, say ‘udigit’. The nearest but smaller

10’s multiple is found to be 50. Calculate the square of 50.

The square of 50 can be easily calculated as two zeroes are

required to be placed after the square of 5. This is done in

the first recursion in the algorithm given above. This

ensures that the square of a number ending with a zero is

calculated by eliminating the zero in the end and calculating

the square of the remaining number by recursion and

multiplying the result by 100 (or placing two zeroes in the

end of the result in thought process).

Once the square of 50 is calculated as 2500, the while loop

gets activated and the processing is done as follows:

In the first iteration, add 50 * 2 = 100 and 1 to 2500, to

make it 2601, this is the square of 51. In the second

iteration, add 50 * 2 and 3 to 2601, to make it 2704, this is

the square of 52. By proof of induction it can be shown that

proceeding in this manner, the square of a number can be

calculated in an algorithmic way.

D. Implementation

Every algorithm is required to have a working model in

order to test the applicability and complexity of it. The

following program is written in Programming language and

gives a working model of the algorithm given here.

import time

num = 99999

def func(num):

 if num == 0:

return 0

 if num == 1:

 return 1

 if num == 2:

 return 4

 if num == 3:

return 9

 if num == 4:

 return 16

 if num == 5:

 return 25

 if num == 6:

 return 36

 if num == 7:

 return 49

 if num == 8:

 return 64

 if num == 9:

 return 81

 num1 = num % 10

 if num1 == 0:

Is units-digit

> 0?

sq = sq + num *2 + i

Increase i by 2;

Decrease units-digit

by 1 Return ‘sq’

End

L

NO YES

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(37-44) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 41

 num2 = num / 10

 num3 = func(num2) * 100

 return num3

 else:

 num2 = num - num1

 num3 = func(num2)

 sq = num3

 i = 1

 while num1 > 0:

 sq = sq + num2 * 2 + i

 i += 2

 num1 -= 1

 return sq

time1 = time.time()

result = func(num)

time2 = time.time()

time2 = time2 – time1

print “***ALGORITHM USED***”

print “The square of ”, num, “ is: ”, result

print “Time taken: ”, time2, “ Size of input: ”,

len(str(num))

result = num ** 2

print “***CONVENTIONAL METHOD***”

print “The square of ”, num, “ is: ”, result

print “Size of input: ”, len(str(num))

It should be clear from the program given above that time

module of Python language has been used in order to keep

track of the time taken by the algorithm.

E. Observation

Following screenshots show the time taken by the algorithm

to calculate the square of a sufficiently large number. We

start with a number consisting of 10 digits and proceed by

increasing the number by 10 digits every time.

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(37-44) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 42

The algorithm also works for very large number, say

numbers consisting of 100 digits and more.

It is clearly seen in the above pictures that the square

calculated through the algorithm mentioned in this paper is

applicable on any length of number and works perfectly fine

for enormously large numbers. A clear vision of the same

can be deciphered by presenting a graph holding the amount

of time taken on Y-axis with respect to the number of digits

of the number on X-axis.

In the graph shown below, the comparison of number of

digits with respect to the time taken for calculating the

square of a number by using the algorithm is shown. It can

be seen how the time taken increases with the increase in

number of digits. It should be noted here that input numbers

are reasonably large, i.e. consisting of 100, 200, 300, 400

and 500 digits.

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(37-44) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 43

F. Advancement in the Algorithm

The algorithm can also be modified for the computation of

higher exponential powers. This can be achieved by

strategically repeating the algorithm until the required result

is obtained. A more elaborative explanation for this fact can

be given by an example.

Let a base number be ‘46’ and the exponent be ‘9’. The

operation ’46 ^ 9’ is required to be carried out. This can be

done by calculating the square of 46 using the algorithm.

This gives ’46 ^ 2’. Calculating the square of the result

obtained will give ’46 ^ 4’. Applying the same algorithm

again for calculating the square will give ’46 ^ 8’. Now, this

result is simply required to be multiplied by another 46 in

order to yield the result for ’46 ^ 9’. In this manner, higher

exponential operations on a number can be dealt with.

G. Future Scope

1. The algorithm being used here functions on a pre-

determined set of hardware that keeps it working in

a conventional way of execution of operations that

limits the effectiveness of the algorithm. The speed

of calculation can be improved by providing the

algorithm with proper hardware. With proper

hardware capable of holding the variables and

function and heaps used, the algorithm can be

proved to be even faster.

2. It can be seen from the fact of execution of the

algorithm, that for all the numbers, the nearest but

smaller 10’s multiple is calculated. For numbers

that are more than 5 units more to the 10’s

multiple, i.e. 57 is 50 (10’s multiple) + 7 (unit’s

digit), the inner loop executes for seven times. This

can be reduced by having considered the nearest

but larger 10’s multiple, i.e. 60 for 57. Now, square

of 60 can be calculated as 3600 and twice of 60

can be subtracted from 3600 and 1 is added to get

the square of 59, i.e. 3481. In order to find the

square of 58, from 3481, twice of 60 has to be

subtracted again and 3 has to be added up to the

result, to get 3364. In the next iteration, subtracting

twice of 60 from 3364 and adding 5 will give the

square of 57, as 3249. This reduces the number of

iterations from 7 to 3 and thus leads to a better and

efficient method of calculating the squares.

V. CONCLUSION

The requirements for computing the square of a given

number in an algorithmic manner using recursion have been

fulfilled. It can now be concluded that a square of a number

can be subjected to be considered as a problem that can be

solved by dividing the problem into sub-problem of

calculating the square of the nearest but smaller 10’s

multiple of the given number. This implementation is done

in programming by using the concept of recursion.

VI. ACKNOWLEDGMENT

I would like to thank my parents for providing me all sorts of

means to have a considerable environment for proper

studies. I would also thank the Almighty God, for all the

protection and care he has been giving to me. A special

thanks to my father, who could not see his son’s first

authored paper. I would also thank my dearest friend,

Yogender Bhardwaj, for introducing me to IJCSE and

promoting me to develop this paper. A special thanks to my

dearest friends Moksh Gaur, Akash Raman, Aakrisht Aman,

for encouraging me to publish my work.

VII. REFERENCES

I would mention here that this discovery is individual to the

author only and contribution of no other person or any

source is involved. The following references contribute to

the development of the program and not the algorithm:

[1] Dive Into Python, Mark Pilgrim, Published 20th May 2004

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(37-44) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 44

AUTHORS PROFILE
Name: Harsh Bhardwaj

Education: Pursuing B. Tech. in Computer Science

And Engineering from Guru Gobind Singh
Indraprastha University, New Delhi

Certifications : Certificate of Accomplishment in

Usable Security, Data Mining, Internet Security
Interests : Python Programming, Ruby Programming,

Ruby on Rails, Algorithm Design and Analysis,

System Secutiry, Cyber Security

