€
/] CSE International Journal of Computer Sciences and Engineering [pen Access

Research Paper Volume-3, Issue-7 E-ISSN: 2347-2693

Square of an Enormously Large Number

Harsh Bhardwaj

Maharaja Agrasen Institute of Technology
GGSIPU, New Delhi - India

www.ijcseonline.org

Received: Jun/23/2015 Revised: July/06/2015 Accepted: July/21/2015 Published: July/30/ 2015
Abstract- In this world of innovative and effective manipulations and calculations, the requirements for developing a way to
carry out the computation in a more algorithmic form arises. The requirement to understand the logic behind a computation
doesn't come up as an issue unless you type in a really huge number, like a number including 100-digits or so. When this kind of
number is required to be processed upon, a more algorithmic way of carrying out the computation is more presentable. A
process for innovative and easily manipulated computations is required to be produced, in order to increase the productivity,
convenience, ease of use and fairly deal with budgetary concerns. This document provides general practices, procedures and
tools for creating an innovative computation of square of extremely large numbers. It is aimed for engineers, Mathematical
gurus, algorithm geeks, who are assumed to possess basic knowledge regarding what is meant by square of a number. It
addresses basic knowledge about how to calculate the square using conventional means and how the improvement can be made

to produce an algorithmic way of doing the same.

Keywords— Square of a number, Time-Complexity, Algorithm Design

l. INTRODUCTION

Let's start with basics of exponentiation. Exponentiation can
be referred to as the procedure of multiplying a given
number 'n' by itself for 'm'-number of times. The number to
be multiplied by itself can be called as 'base’, i.e. 'n' here is
'base’, while the number how many times it is to be
multiplied, can be called as 'exponent', i.e. 'm' here is
‘'exponent'. The symbol required to represent the
exponentiation can be given as "V, called as “carat”. Thus,
exponentiation can now be shown in mathematical terms as
'n~m', also called as 'n to the power m'.

This simple concept of multiplication of a number by itself
has played a very significant role in the world of
mathematics. Polynomials are all based upon the base-
exponent relationship of variables. These polynomials build
up the infrastructure of Algebra.

When the exponent is made to be nothing but 2 (two), the
exponentiation starts to be termed as calculating the square
of a number. Now, the base 'n' becomes a k-digit number and
'm' becomes 2. This is represented as n * 2 and termed as 'n
to the power two' or in more familiar words 'square of n'.
From calculating the area of a circle, to equating popular
Energy-mass equation of Albert Einstein, the exponentiation
has developed its way through into being one of the very
crucial parts of the whole mathematics.

In Computer Technology, the requirements for developing
an algorithmic way of computing the square of a given

© 2015, IJCSE All Rights Reserved

number have evolved from various methods to various
others. There exist many of them that are effective enough to
compute the square of very large numbers, but they are not
as efficient as the method we are about to discuss.

After having gone through this paper, you will be able to
calculate the square of a given number with an ease never
mentioned before and the algorithm discussed here would
provide a way of computing the square of an extremely large
number, i.e. consisting of several hundred digits.

I1. CONVENTIONAL METHOD

A. N to the power two

A very convenient method, as the name suggests is to
multiply the number with itself. For example, if we have a
number 'n' equals to 45 and it is supposed to be calculated
square of, then we need to multiply 45 with itself, i.e. 45, in
order to get the result 2025, as the square of this number. In
this approach, it is to be understood what it actually means to
multiply a number.

B. Multiplying a number

What it actually means to have a number multiplied is
adding the number as many times as the number it is
required to be multiplied with. Considering the previous

37

International Journal of Computer Sciences and Engineering

example, 45 ” 2 depicts that 45 is to be multiplied with 45
and in order to multiply 45 with another 45, it would have to
be added with itself 45 times, i.c. 45 + 45 +45 + ... +45
(45 times).

The square of a number can thus be calculated in this
manner. But, it can be easily seen how hectic this procedure
becomes when a number of sufficiently large number of
digits is encountered. This conventional approach is the
basic and the most absolute approach but computer
technology requires an algorithmic way.

I11. DEVELOPING A MEANS

It has to be seen how the advancement in computer
technology has brought the computational system to
algorithmic system. All the calculations and logics are now
carried out in an algorithmic way. The programming
language used here is Python and the module to keep track
of the time element is 'time'. Recursive calling of function
has been used in order to keep the complexity of the
algorithm as low as possible.

A. Time module of Python

This module can be used in order to keep track of the time
taken by a particular instruction or a set of instructions in
order to build up an exact scenario of how long does an
instruction or a set of instructions take to execute. This can
be shown to be done as:

timel = time.time()

Your instructions go here
time2 = time.time()

time2 = time2 — timel

It is clear that a variable called 'timel' holds the time
instance that occurred just before instructions had started
executing and 'time2' holds the time instance that occurred
right after the execution of instructions was done.
Subtracting the first variable from second gives the time
required by the set of instructions to execute. In order to use
this module, programmer has to import the module
exclusively.

B. Recursion
Recursion can be defined as the way in which one method

keeps passing a lower set of parameters to itself until a base
case is encountered in which function returns primitive

4
/&]CSE © 2015, IJCSE All Rights Reserved

\Vol.-3(7), PP(37-44) July 2015, E-ISSN: 2347-2693

values that are predefined in the function or are too obvious
to guess. Recursion in this manner can be thought of as a
way in programming languages by which one method makes
a call to itself with a lower set of values. This can be
represented as:

def meth(param1, param2, ..., paramk):
here goes the base case
meth(param smallerl, param smaller2, ... |,
param_smallerk)
It is clear from the example above that 'meth' method is

calling itself with lower set of values.

IV. GIVING THE ALGORITHM

A. Algorithm

Algorithm defines a set of sequential rules required to be
followed in order to solve a particular problem. The
algorithm for calculating the square of a given number can
be given as:

1. if the number is 1-digit, then

2. return the square of number

3. if modulo-10 of the number is 0, then

4. recursively call the algorithm over 1/10th of the
number

5. return the result obtained after multiplying it with
100 or appending two zeroes at the end of the
result

6. else

7. compute the nearest but smaller number that is
exactly divisible by 10, save it in variable 'num'

8. recurse over the obtained number and store the
result in a variable, say 'sq'

9. i=1

10. while units digit of the number is greater than 0

11. sg=sq+num=*2+i

12. increase i by 2

13. decrease units digit of the number by 1

14, return sq

Above algorithm can be explained in the following manner:

Line 1 is the base case for the recursive algorithm, i.e.
whenever the length of the number is 1, it should simply
return the square of the number. This can be done as simple
multiplication of the number by itself or by listing every
single case from 0 to 9 and returning the corresponding
value.

38

International Journal of Computer Sciences and Engineering

Now, there may occur two cases, i.e. when the number is
exactly divisible by 10 and when the number is not exactly
divisible by 10. When the number is exactly divisible by 10,
then it is known by practice that the square of this number
will be divisible by 100. Thus, we now only need to find the
square of the 1/10th of the number, and when the result
comes, we will multiply it with 100 for the correct answer.
In programming language that support string operations,
that most of the programming languages do, two zeroes can
be appended at the end of the result obtained. This
implementation can be pointed out in the algorithm on line
3,4 and 5.

In line 3, modulo-10 of the number is checked. If it is found
to be zero, a recursive call on 1/10th of the number is made
and the result is simply returned back.

When the number is found to be not divisible by 10 and
leaves a remainder, this remainder can be stored back for
further utilization. Compute the nearest but smaller 10's
multiple of the number as done in line 7. Recursive call can
be made over this number and the result is to be stored in a
variable, say 'sq'. This is done in line8.

In line 9, a variable called 'i' is assigned a value of 1. The
loop on line 10 sustains until the remainder that we had
previously stored is greater than zero.

The main part of this whole algorithm resides in the next
three lines from line 11 to line 13. The explanation for this
can be stated by an example.

Let’s consider a number, 34. The nearest but smaller 10’s
multiple to this number is 30. Square of 30 can be
calculated using recursive calls as described above. In order
to calculate the square of 34, four iterations are carried out
inside the while loop. In first iteration, square of 30, i.e.
900, is added up with ‘twice of 30’ and 1, to yield the
square of 31 as 961. In second iteration, 961 is added up
with ‘twice of 30° and 3, to yield 1024, i.e. the square of 32.
In the next iteration, 1024 is added up with ‘twice of 30’
and 5, to yield the square of 33 as 1089. In the fourth
iteration, 1089 is added up with ‘twice of 30 and 7 to give
the final answer of square of 34, i.e. 1156.

Thus, it can be shown that the algorithm applies to all sort
of inputs and returns the square of number in recursive
manner.

The square calculated can be returned as in line 14.

B. Flowchart

4
/&]CSE © 2015, IJCSE All Rights Reserved

\Vol.-3(7), PP(37-44) July 2015, E-ISSN: 2347-2693

YES

Is

==1?

Return the
Square of
number

len(Number)

Y

NO

Check for
modulo-10 of
number

Is modulo-10
==0°?

Put 1/10" of
number in
recursion

\ 4

Append two
zeroes at the
end of the
result

Find the
nearest but
smaller 10’s

multiple,

A 4

Return the
result

Put this
number in
recursion

A 4

Store the
result in ‘sq’

39

International Journal of Computer Sciences and Engineering

Is units-digit

>0?
YES NO
\ 4
sq =sq+ num *2 + i
\ 4
Increase i by 2; v
Decrease units-digit
by 1 Return ‘sq’
A\ 4

C. Corectness of the Algorithm

Correctness of the algorithm can be proved by having
proved the applicability of the algorithm over all sort of
inputs that the algorithm claims to be working upon. This is
where the working of the inner of the ‘while’ loop is
explained.

This method of computing the square of a number can also
be implemented in thought process for human beings for
faster calculation of squares of small numbers.

Let’s consider a number, 57. The requirement is to find the
square of this number. The unit’s digit being 7 is required to
be stored in a variable, say ‘udigit’. The nearest but smaller
10’s multiple is found to be 50. Calculate the square of 50.
The square of 50 can be easily calculated as two zeroes are
required to be placed after the square of 5. This is done in
the first recursion in the algorithm given above. This
ensures that the square of a number ending with a zero is
calculated by eliminating the zero in the end and calculating
the square of the remaining number by recursion and
multiplying the result by 100 (or placing two zeroes in the
end of the result in thought process).

Once the square of 50 is calculated as 2500, the while loop
gets activated and the processing is done as follows:

4
/&]CSE © 2015, IJCSE All Rights Reserved

\Vol.-3(7), PP(37-44) July 2015, E-ISSN: 2347-2693

In the first iteration, add 50 * 2 = 100 and 1 to 2500, to
make it 2601, this is the square of 51. In the second
iteration, add 50 * 2 and 3 to 2601, to make it 2704, this is
the square of 52. By proof of induction it can be shown that
proceeding in this manner, the square of a number can be
calculated in an algorithmic way.

D. Implementation

Every algorithm is required to have a working model in
order to test the applicability and complexity of it. The
following program is written in Programming language and
gives a working model of the algorithm given here.

import time
num = 99999
def func(num):
if num == 0:
return 0
if num == 1:
return 1
if num == 2:
return 4
if num == 3:
return 9
if num == 4:
return 16
if num ==5:
return 25
if num == 6:
return 36
if num==7:
return 49
if num == 8:
return 64
if num==9:
return 81

numl = num % 10
if numl ==0:

40

International Journal of Computer Sciences and Engineering

num2 =num/ 10
num3 = func(hum2) * 100

return num3
else:

numz2 = num - numl
num3 = func(numz2)

sq = num3
i=1

while numl1 > 0:
sq=sg+num2*2+i
i+=2
numl-=1

return sq
timel = time.time()

result = func(num)
time2 = time.time()

time2 = time2 — timel

print “***ALGORITHM USED***”

print “The square of ”, num, “is: ”, result
print “Time taken: ”, time2, *“ Size of input: ”,
len(str(num))

result = num ** 2

print “***CONVENTIONAL METHOD ***”
print “The square of ”, num, “is: 7, result
print “Size of input: 7, len(str(num))

It should be clear from the program given above that time
module of Python language has been used in order to keep
track of the time taken by the algorithm.

E. Observation

Following screenshots show the time taken by the algorithm
to calculate the square of a sufficiently large number. We
start with a number consisting of 10 digits and proceed by
increasing the number by 10 digits every time.

4
/&]CSE © 2015, IJCSE All Rights Reserved

\Vol.-3(7), PP(37-44) July 2015, E-ISSN: 2347-2693

>python square.py

ALGORITHM USED

The square of 7909373826 1is: 62558194319413878276
Time taken: 7.29560852051e-05 Size of the input: 10
CONVENTIONAL METHOD

The square of 7909373826 1is: 62558194319413878276

.Size of the input: 10

>python square.py

ALGORITHM USED

The square of 79093738267453627812 1is: 6255819433120458402155125541799819907344
Time taken: 0.000134944915771 Size of the input:

%*CONVENTIONAL METHOD*

The square of 79093738267453627812 1is: 6255819433120458402155125541799819907344
Size of the input: 20

>python square.py

ALGORITHM USED

The square of 790937382674536278129090909878 1is: 6255819433120458402298932351100528
06554143571181129917974884

Time taken: 0.000210046768188 Size of the input: 30

CONVENTIONAL METHOD

The square of 790937382674536278129090909878 1is: 6255819433120458402298932351100528
06554143571181129917974884

Size of the input: 30

>python square.py
ALGORITHM USED

The square of 7909373826745362781290909098788567456734 1is: 625581943312045840229893
23511140807091521702933440679334231122565683928961946756

Time taken: 0.000298023223877 Size of the input: 46

CONVENTIONAL METHOD

L.The square of 7909373826745362781290909098788567456734 1is: 625581943312045840229893

23511140807091521702933440679334231122565683928961946756

Size of the input: 40

>python square.py

%ALGORITHM USED*

The square of 79093738267453627812909090987885674567347589009800 1is: 62558194331204
58402298932351114080709153370779653728614628147695884425208325817965632933744496040000
Time taken: 0.00036883354187 Size of the input: 50

*%%*CONVENTIONAL METHOD***

The square of 79093738267453627812909090987885674567347589009800 1is: 62558194331204
58402298932351114080709153370779653728614628147695884425208325817965632933744496040000
iize of the input: 50

>pytnon square.py
ALGORITHM USED

The square of 790937382674536278129090909878856745673475890098008564009089 1is: 6255
81943312045840229893235111408070915337077965386408652682878788072036365516816181411127
667502043347543695676474609921

Time taken: 0.000462055206299 Size of the input: 66

CONVENTIONAL METHOD

The square of 790937382674536278129090909878856745673475890098008564009089 1is: 6255
81943312045840229893235111408070915337077965386408652682878788072036365516816181411127
667502043347543695676474609921

Size of the input: 60

>python square.py

ALGORITHM USED

The square of 7909373826745362781290909098788567456734758900980085640090897456349810
is: 62558194331204584022989323511140807091533707796538640865268405828923264180069066
937224339725562576727559873004988213543027665614289087036100

Time taken: 0.000572919845581 Size of the input: 76

CONVENTIONAL METHOD

The square of 7909373826745362781290909098788567456734758900980085640090897456349810
is: 62558194331204584022989323511140807091533707796538640865268405828923264180069066
937224339725562576727559873004988213543027665614289087036100

Size of the input: 70

python square.py
ALGORITHM USED

The square of 79893738267453627812989090987885674567347589009800856400908974563498106454980234 {s: 625581
943312045840229893235111408070915337077965386408652684058289232743910394099288758006039792240417511286846919
9085943087249768529584788068459880621330694756

Time taken: 0.000679016113281 Size of the input: 80

++CONVENTIONAL METHOD***

The square of 79893738267453627812969090987885674567347589009800856400908974563498106454980234 is: 625581
943312045840229893235111408076915337077965386408652684658289232743910394099288758006039792240417511286846919
9085943087249768529584788068459880621330694756

Size of the input: 80

>python square.py

#**ALGORITHM USED***

The square of 790937382674536278129096909878856745673475890098008564009089745634981064576489037854986234 1
: 62558194331204584022989323511140807091533707796538640865268405828923274395260911319604646161651493824489
2456874303836762784242891791615034933528229523524135538785236380516530694756

Time taken: ©.00081205368642 Size of the input: 90

#*+*CONVENTIONAL METHOD***

The square of 790937382674536278129096909878856745673475890098008564009089745634981064576489037854986234 1
s: 62558194331204584022989323511140807691533707796538640865268405828923274395260911319604646161651493824489
2456874303836762784242891791615034933528229523524135538785236380516530694756

Size of the input: 90

41

International Journal of Computer Sciences and Engineering

>python square.py

ALGORITHM USED

The square of 79093738267453627812909090987885674567347589009800856400908974563498106
47568097654576489037854980234 1is: 62558194331204584022989323511140807091533707796538
64086526840582892327442378539218600919943369110629943676791290606028125837148549396387
2022481307096193548177993519912105333070502905236380516530694756

[Time taken: 0.000952959060669 Size of the input: 100

CONVENTIONAL METHOD

The square of 79093738267453627812909090987885674567347589009800856400908974563498106
47568097654576489037854980234 1is: 62558194331204584022989323511140807091533707796538
64086526840582892327442378539218600919943369110629943676791290606028125837148549396387
2022481307096193548177993519912105333070502905236380516530694756

Size of the input: 100

-

The algorithm also works for very large number, say
numbers consisting of 100 digits and more.

>python square.py

ALGORITHM USED

The square of 79093738267453627812909090987885674567347589009800856400908974563498106
47568097654576489037854980234790937382674536278129090909878856745673475890098008564009
0897456349810647568097654576489037854980234 1is: 625581943312045840229893235111408070
91533707796538640865268405828923274423785392186009199433691106311948406779146977085856
23618772212529032922286640392172123167468569676021782758134243822040326891601651293552
58932578964815675322102008453198333393846251182882827622716538108519545029073680976430
50014194367679129060602812583714854939638720224813070961935481779935199121053330705029
05236380516530694756

Time taken: 0.00305986404419 Size of the input: 200

CONVENTIONAL METHOD

The square of 79093738267453627812909090987885674567347589009800856400908974563498106
47568097654576489037854980234790937382674536278129090909878856745673475850098008564009
0897456349810647568097654576489037854980234 1is: 625581943312045840229893235111408070
91533707796538640865268405828923274423785392186009199433691106311948406779146977085856
23618772212529032922286640392172123167468569676021782758134243822040326891601651293552
58932578964815675322102008453198333393846251182882827622716538108519545029073680976430
50014194367679129060602812583714854939638720224813070961935481779935199121053330705029
05236380516530694756

Size of the input: 200

e |

>python square.py

ALGORITHM USED

The square of 798937382674536278129690909878856745673475890098008564009689745634981064756809765457648903785
49802347909373826745362781290909098788567456734758900980085646090897456 349810647 5680976545764890378549862347
909373826745362781290909098788567456734758906980085640090897456349810647568097654576489937854980234 is: 62
558194331204584622989323511140807091533707796538640865268405828923274423785392186009199433691106311948406779
146977085856236187722125290329222866403921721231674685696760217827581342438226403268916017764099412517349576
| 941354802433016987150507495315397935593650878850119299327662346627552086316872140308219426049590976483729791
587100530343741854805963088175876617255209708839685871529109814363303055285129355258932578964815675322102008
453198333393846251182882827622716538108519545029073688976430500141943676791290606028125837148549396 387202248
1307096193548177993519912105333070502905236380516530694756

Time taken: 0.00838208198547 Size of the input: 360

CONVENTIONAL METHOD

The square of 798937382674536278129090909878856745673475890098008564009089745634981064756809765457648903785
498023479093738267453627812909090987885674567347589009800856400908974563498106475680976545764890378549802347
909373826745362781290909098788567456734758900980085640090897456349810647568097654576489037854980234 is: 62
558194331204584622989323511140807091533707796538640865268405828923274423785392186009199433691106311948406779
146977085856236187722125290329222866403921721231674685696760217827581342438226403268916017764099412517349576
941354602433016987150507495315397935593650878850119299327662346627552086316872140308219426649590976483729791
587100530343741854805963088175876617255209768839685871529109814363303055285129355258932578964815675322102008
453198333393846251182882827622716538108519545029673688976430500141943676791290606028125837148549396387202248
1307096193548177993519912105333070502905236380516530694756

Size of the input: 300

[4
/Q]CSE © 2015, IJCSE All Rights Reserved

\Vol.-3(7), PP(37-44) July 2015, E-ISSN: 2347-2693

ALGORITHM USED
The square of 790937382674536278129690999878856745673475898098608564009089745634981064756899765457648993785|
498023479093738267453627812909090987885674567347589009800856400908974563498106475680976545764890378549802347
969373826745362781296909698788567456734758980980885640099897456349810647568097654576489037854980234790937382
6745362781290909098788567456734758900980085640090897456349810647568097654576489037854980234 1is: 6255819433
120458402298932351114080709153370779653864086526840582892327442378539218600919943369110631194840677914697708
585623618772212529032922286640392172123167468569676021782758134243822040326891601776409941251734957694135400
,243301698715050749531539793559365087885011929932766234662755208631687214043333581471200014452970843860938214|
452680927639904036990641342891305625768725665590112821323068526789651452995098561633193028299531809761555003
756734636645229249582832540365941762927674828189623011091508219426049590976483729791587100530343741854805963
688175876617255269708839685871529109814363303055285129355258932578964815675322102008453198333393846251182882
827622716538108519545029073680976430500141943676791290606028125837148549396387202248130709619354817799351991
2105333070502905236380516530694756
Time taken: 0.0119071006775 Size of the input: 460
CONVENTIONAL METHOD
The square of 790937382674536278129090909878856745673475890098008564009089745634981064756809765457648903785|
498023479693738267453627812909090987885674567347589009800856400908974563498106475680976545764850378549802347
969373826745362781296909698788567456734758906980085640090897456 349810647568097654576489037854980234790937382
6745362781290909098788567456734758900980085640090897456349810647568097654576489037854980234 1is: 6255819433
120458402298932351114080709153370779653864086526840582892327442378539218600919943369110631194840677914697708
585623618772212529032922286640392172123167468569676021782758134243822040326891601776409941251734957694135400
243301698715050749531539793559365087885011929932766234662755208631687214043333581471260014452970843860938214|
452680927039904036990641342891305625768725665590112821323068526789651452995098561633193028299531809761555003
756734636645229249582832540365941762927674828189623611091568219426049596976483729791587100530343741854805963
088175876617255209708839685871529109814363303055285129355258932578964815675322102008453198333393846251182882
827622716538108519545029073680976430500141943676791290606028125837148549396387202248130709619354817799351991
2105333070502905236380516530694756
Size of the input: 460
>python square.py

ITHH USED**>

56
6278129090909 734 3498106475681
96 49 7909

386 6
5813424382
147120001

68587152910981436:
141943676791290606028
Size of the input: 5@

It is clearly seen in the above pictures that the square
calculated through the algorithm mentioned in this paper is
applicable on any length of number and works perfectly fine
for enormously large numbers. A clear vision of the same
can be deciphered by presenting a graph holding the amount
of time taken on Y-axis with respect to the number of digits
of the number on X-axis.

Algorithm

1.20E-03

1.00E-03

8.00E-04 /
6.00E-04 /
4.00E-04

2.00E-04 /

0.00E+00 T T T T T 1
0 20 40 60 80 100 120

—4— Algorithm

In the graph shown below, the comparison of number of
digits with respect to the time taken for calculating the
square of a number by using the algorithm is shown. It can
be seen how the time taken increases with the increase in
number of digits. It should be noted here that input numbers
are reasonably large, i.e. consisting of 100, 200, 300, 400
and 500 digits.

42

International Journal of Computer Sciences and Engineering

Algorithm

2.50E-02
2.00E-02 /
1.50E-02 /

A
?/.'/

T T T 1
0 100 200 300 400 500 600

1.00E-02

5.00E-03

0.00E+00

== Algorithm

F. Advancement in the Algorithm

The algorithm can also be modified for the computation of
higher exponential powers. This can be achieved by
strategically repeating the algorithm until the required result
is obtained. A more elaborative explanation for this fact can
be given by an example.

Let a base number be ‘46’ and the exponent be ‘9’. The
operation *46 ~ 9’ is required to be carried out. This can be
done by calculating the square of 46 using the algorithm.
This gives ’46 ~ 2. Calculating the square of the result
obtained will give 46 ~ 4°. Applying the same algorithm
again for calculating the square will give *46 ~ 8°. Now, this
result is simply required to be multiplied by another 46 in
order to yield the result for ’46 ~ 9°. In this manner, higher
exponential operations on a number can be dealt with.

G. Future Scope

1. The algorithm being used here functions on a pre-
determined set of hardware that keeps it working in
a conventional way of execution of operations that
limits the effectiveness of the algorithm. The speed
of calculation can be improved by providing the
algorithm with proper hardware. With proper
hardware capable of holding the variables and
function and heaps used, the algorithm can be
proved to be even faster.

It can be seen from the fact of execution of the
algorithm, that for all the numbers, the nearest but
smaller 10’s multiple is calculated. For numbers
that are more than 5 units more to the 10’s
multiple, i.e. 57 is 50 (10’s multiple) + 7 (unit’s
digit), the inner loop executes for seven times. This
can be reduced by having considered the nearest
but larger 10°s multiple, i.e. 60 for 57. Now, square
of 60 can be calculated as 3600 and twice of 60
can be subtracted from 3600 and 1 is added to get
the square of 59, i.e. 3481. In order to find the

N

4
/&]CSE © 2015, IJCSE All Rights Reserved

\Vol.-3(7), PP(37-44) July 2015, E-ISSN: 2347-2693

square of 58, from 3481, twice of 60 has to be
subtracted again and 3 has to be added up to the
result, to get 3364. In the next iteration, subtracting
twice of 60 from 3364 and adding 5 will give the
square of 57, as 3249. This reduces the number of
iterations from 7 to 3 and thus leads to a better and
efficient method of calculating the squares.

V. CONCLUSION

The requirements for computing the square of a given
number in an algorithmic manner using recursion have been
fulfilled. It can now be concluded that a square of a number
can be subjected to be considered as a problem that can be
solved by dividing the problem into sub-problem of
calculating the square of the nearest but smaller 10’s
multiple of the given number. This implementation is done
in programming by using the concept of recursion.

VI. ACKNOWLEDGMENT

I would like to thank my parents for providing me all sorts of
means to have a considerable environment for proper
studies. | would also thank the Almighty God, for all the
protection and care he has been giving to me. A special
thanks to my father, who could not see his son’s first
authored paper. | would also thank my dearest friend,
Yogender Bhardwaj, for introducing me to IJCSE and
promoting me to develop this paper. A special thanks to my
dearest friends Moksh Gaur, Akash Raman, Aakrisht Aman,
for encouraging me to publish my work.

VIl. REFERENCES

I would mention here that this discovery is individual to the
author only and contribution of no other person or any
source is involved. The following references contribute to
the development of the program and not the algorithm:

[1] Dive Into Python, Mark Pilgrim, Published 20" May 2004

43

International Journal of Computer Sciences and Engineering

AUTHORS PROFILE

Name: Harsh Bhardwaj
Education: Pursuing B. Tech. in Computer Science

And Engineering from Guru Gobind Singh

Indraprastha University, New Delhi
Certifications : Certificate of Accomplishment in

Usable Security, Data Mining, Internet Security
Interests : Python Programming, Ruby Programming,
Ruby on Rails, Algorithm Design and Analysis,
System Secutiry, Cyber Security

[4
/&]CSE © 2015, IJCSE All Rights Reserved

\Vol.-3(7), PP(37-44) July 2015, E-ISSN: 2347-2693

44

