
 © 2015, IJCSE All Rights Reserved 61

 International Journal of Computer ScienceInternational Journal of Computer ScienceInternational Journal of Computer ScienceInternational Journal of Computer Sciencessss and Engineeringand Engineeringand Engineeringand Engineering Open Access
 Research Paper Volume-3, Issue-1 E-ISSN: 2347-2693

Testing Event Driven Systems By Using Observe-Model-

Exercise Paradigm With Unknown Input Spaces

Deepan R* and M.S.Geetha Devasena

Department Of CSE , Sri Ramakrishna Engineering College, Coimbatore-22,India

www.ijcaonline.org

Received: Dec/26/2014 Revised: Jan/8/2015 Accepted: Jan/20/2015 Published: Jan/31/2015

 Abstract— In software engineering, graphical user interface testing is the process of testing a product's graphical user
interface to ensure that it meets the written specifications. This is normally done through the use of a variety of test cases.
To generate a set of test cases, test designers attempt to cover all the functionality of the system and fully exercise the GUI
itself. The difficulty in accomplishing this task is twofold: to deal with domain size and with sequences. In addition, the
test faces are more difficult in case of regression testing. In this work, we develop a new paradigm for GUI testing, one that
we call Observe-Model-Exercise (OME) to tackle the challenges of testing context-sensitive GUIs with undetermined input
spaces. Starting with an incomplete model of the GUI’s input space, a set of coverage elements to test, and test cases, OME
iteratively observes the existence of new events during execution of the test cases, expands the model of the GUI’s input
space, computes new coverage elements, and obtains new test cases to exercise the new elements. The experimental results
proves that the proposed work is better than the previously existing works.

Keywords- OME;User Interface;Context-sensitive GUIs;Test Case Generation;Quality Concepts

I. INTRODUCTION

Event-driven architecture (EDA) is a software architecture
pattern promoting the production, detection, consumption
of, and reaction to events. An event can be defined as "a
significant change in state".A graphical user interface
(GUI) is a human-computer interface (i.e., a way for
humans to interact with computers) that uses windows,
icons and menus and which can be manipulated by a
mouse (and often to a limited extent by a keyboard as
well). GUIs stand in sharp contrast to command line
interfaces (CLIs), which use only text and are accessed
solely by a keyboard. The most familiar example of a CLI
to many people is MS-DOS. Another example is Linux
when it is used in console mode.
 System testing of software applications with a
graphical-user interface (GUI) front-end requires that
sequences of GUI events that sample the application’s
input space, be generated and executed as test cases on the
GUI. However, the context-sensitive behaviour of the GUI
of most of today’s non-trivial software applications makes
it practically impossible to fully determine the software’s
input space. The tester does not have a complete picture of
the GUI’s input space, i.e., the set of all possible
sequences of user interface events. The tester is never
supplied a blueprint of the GUI or its set of allowable
workflows. But there is no way for a tester to determine
which sequences are missed and which should not be
allowed.

II. LITERATURE SURVEY

A GUI Based Visualization Tool for Sequence Networks -
David C. Yu, Member Haijun Liu, Student Member
Fengjun Wu – 1998.[4]

The fault analysis is an important part of the power system
undergraduate curriculum. There are two main fault
analysis are present. Those are symmetrical fault and
asymmetrical faults. A symmetric or balanced fault affects
each of the three phases equally. In transmission line
faults, roughly 5% are symmetric. This is in contrast to an
asymmetrical fault, where the three phases are not affected
equally. An asymmetric or unbalanced fault does not affect
each of the three phases equally. In this work a Windows
based Graphical User Interface (GUI) software tool is
evaluated to facilitate the teaching and learning of
sequence networks. This software is written in Microsoft
Visual Basic. The software provides a friendly and easy to
use tool to aid the students in better visualizing the effects
of the sequence diagram and sequence current in the fault
study.

Hierarchical GUI Test Case generation using automated
planning - Atif M. Memon, Martha E. Pollack, and Mary
Lou Soffa – 2001.[5]

Graphical user interfaces (guis) have become an important
and accepted way of interacting with today's software.
Although they make software easy to use from a user's
perspective, they complicate the software development
process. The widespread use of GUIs for interacting with
software is leading to the construction of more and more
complex GUIs. Testing GUIs is more complex than testing
conventional software, for not only does the underlying
software have to be tested but the GUI itself must be
exercised and tested to check whether it confirms to the
GUI's specifications. Even when tools are used to generate
GUIs automatically, these tools themselves may contain
errors that may manifest themselves in the generated GUI
leading to software failures. Hence, testing of GUIs

 International Journal of Computer Sciences and Engineering Vol.-3(1), PP(61-65) Jan 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 62

continues to remain an important aspect of software
testing.

In this work a new technique to automatically generate test
cases for GUIs that exploits planning, a well-developed
and used technique in artificial intelligence is proposed.
Given a set of operators, an initial state, and a goal state, a
planner produces a sequence of the operators that will
transform the initial state to the goal state. Our test case
generation technique enables efficient application of
planning by first creating a hierarchical model of a GUI
based on its structure. In developing a planning system for
testing GUIs, the first step is to construct an operator set
for the planning problem. And then the test designer
begins the generation of particular test cases by identifying
a task, consisting of initial and goal states.

Studying the Fault-Detection effectiveness of GUI test
cases for rapidly evolving software - Atif M. Memon and
Qing Xie – 2005.[7]

Many of the software applications are developed and
maintained by multiple programmers, often geographically
distributed, who work on parts of the overall application
code. While leading to improved code churn rates, this
practice also leads to problems. For example, developers
may not realize that they have inadvertently broken parts
of the code. Consequently, rapid-feedback-based quality
assurance mechanisms are integrated into the development
and maintenance cycle. In this work a major weakness of
current smoke regression testing techniques, i.e., their
inability to automatically (re)test graphical user interfaces
(GUIs) are analysed. This work builds upon several
aspects of automated GUI testing. Those are Size of a
smoke test suite, complexity of test suits, Characteristics
of test suits. Several contributions are made to the area of
GUI smoke testing. First, the requirements for GUI smoke
testing are identified and a GUI smoke test is formally
defined as a specialized sequence of events. Second, a GUI
smoke regression testing process called Daily Automated
Regression Tester (DART) that automates GUI smoke
testing is presented. Third, the interplay between several
characteristics of GUI smoke test suites including their
size, fault detection ability, and test oracles is empirically
studied.

The main design goal of DART is to automate GUI smoke
testing. A test designer uses a process called the “DART
process” to realize this automation. The six modules
developed in the DART operations are: The developer (or
test designer) identifies the AUT, DART analyzes the
(baseline) AUT’s GUI structure, DART computes the total
number of possible smoke test cases, DART’s automated
test case generator, A test oracle generator automatically
creates for each test case, The development team uses
change requests and bug reports to modify the AUT, the
operating system’s task scheduler launches DART, Test
cases are executed (using a test case executor) on the

instrumented modified AUT, the developers examine the
reports.

Test-Driven GUI Development with testing and abbot -
Alex Ruiz and Yvonne Wang Price – 2007[6]

A graphical user interface (GUI) is a human-computer
interface (i.e., a way for humans to interact with
computers) that uses windows, icons and menus and which
can be manipulated by a mouse (and often to a limited
extent by a keyboard as well). Testing GUIs can make the
entire system safer and more robust. Any GUI, even one
providing only the simplest capabilities, likely encloses
some level of complexity. The more user-friendly a GUI
is, the more complexity it might be hiding from the user.
Any complexity in software must be tested because code
without tests is a potential source of bugs. A well-tested
application has a greater chance of success.

GUIs are complex pieces of software. Testing their
correctness is challenging for several reasons: Those are
Tests must be automated, Conventional unit testing,
involving tests of isolated classes, is unsuitable for GUI
components, GUIs respond to user-generated events, The
room for potential interactions with a GUI is huge.

Abbot (http://abbot.sourceforge.net) is a Java library for
testing Swing GUIs that supports both the record/playback
and programmatic GUI testing styles. JUnit introduced
automated unit tests to Java developers. Although it does
this successfully, JUnit aims to test classes in isolation,
leaving developers without the extra features and
flexibility necessary for higher levels of testing.

Developing a single model and test prioritization strategies
for event-driven software - Rene´e C. Bryce, Sreedevi
Sampath and Atif M. Memon – 2011.[8]

Event-Driven software (EDS) is a class of software that is
quickly becoming ubiquitous. All EDSs take sequences of
events (e.g., messages and mouse-clicks) as input, change
their state, and produce an output (e.g., events, system
calls, and text messages). Examples include Web
applications, graphical user interfaces, network protocols,
device drivers, and embedded software. These EDSs pose
a challenge to testing because there are a large number of
possible event sequences that users can invoke through a
user interface.

A GUI is the front-end to a software’s underlying back-
end code. An end user interacts with the software via
events; the software responds by changing its state, which
is usually reflected by changes to the GUI’s widgets. The
complexity of back-end code dictates the complexity of the
front-end. Due to their user-centric nature, GUI and Web
systems routinely undergo changes as part of their
maintenance process. New versions of the applications are
often created as a result of bug fixes or requirements
modification.

 International Journal of Computer Sciences and Engineering Vol.-3(1), PP(61-65) Jan 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 63

In this work the model to define generic prioritization
criteria that are applicable to both GUI and Web
applications is proposed. The ultimate goal is to evolve the
model and use it to develop a unified theory of how all
EDS should be tested.

III. PROPOSED SYSTEM

This project proposes a new paradigm for GUI testing, one
that we call Observe-Model-Exercise* (OME*) to tackle
the challenges of testing context-sensitive GUIs with
undetermined input spaces. Starting with an incomplete
model of the GUI’s input space, a set of coverage elements
to test, and test cases, OME* iteratively observes the
existence of new events during execution of the test cases,
expands the model of the GUI’s input space, computes
new coverage elements, and obtains new test cases to
exercise the new elements.

To provide focus, It only consider the behaviors directly
caused by the order of GUI events. Other potential causes
of “context-sensitivity” such as timing and multiple-user
profiles are left for future work. Specifically, we develop a
new paradigm for GUI testing, one that we call Observe-
Model-Exercise (OME). The key feature of OME_ is its
opportunistic use of test execution for model enhancement.
More specifically, we now observe the existence of new
events either during Ripping or test execution, create or
enhance our EFG+ model an extension of our EFG model,
and exercise the newly observed GUI events in test cases
using test adequacy criteria. As new test cases are
generated and executed.

A. Creating Event Flow Graph

Event flow graph is created with the help of Ripper. The
functionality of ripper is to traverses towards the GUI
events and returns the behaviour of those events. Ripper is
not used to testing the functionality behaviours of GUI.
Instead of that, GUI is used to computes follows
relationship by opening and closing the as many windows
as possible. The follows relationship is created as like
follows event ex follows event ey which means that event
x may be executed immediately after the event y. This
follows relationship is represented as edge between two
events. That edge is used to denote the follows relationship
among the nodes. Ripper is based on depth first search
(DFS) traversal. That is it will start from the main window
and will extract all widgets required to prove the events.
Based on the follows relationship that is extracted while
traversing towardsthe nodes, event flow graph will be
created. The EFG will define the relationship among the
every possible events present in GUI by using the follows
relation. EFG is nothing but the GUI blueprint to the users
which will enable the users to flexible and efficient access
on the systems with GUI.

Algorithm: Construct Mapping

Input: <(e1, α (S1)), …., (en, α (Sn))>: Executed Sequence

Input: CM: Context- Aware Mapping
Input: α (I): Events enabled in initial state
1. T = Ø
2. For i = 1  n do
a. For all ej ϵ α (Si) do
i. T.addEdge (ei, ej)
b. End For
3. End For
4. ME  getModelElements (T)
5. For all me ϵ ME do
a. If firstEvent (me) ϵ α (I) then
i. contextSeq = NONE
b. else
i. contextSeq = searchPath (me, T)
c. end if
d. truncate (contextSeq)
e. if me ϵ/ CM then
i. CM.addEntry(me, contextSeq)
f. Else
i. contextSeqold  lookup (CM, me)
ii. if |contextSeqold| > |contextSeq| then
1. CM.updateEntry (me, contextSeq)
iii. End If
g. End if
6. End for
7. Return CM: Updated Context-aware mapping

B. Generating the test cases

In this module, the test case generation is done for
evaluating the possible faults that can be occur in the
system. The test case generation is used to exercise the
new events possible in the system.
The number of faults can be identified while transferring
among the events by using the test cases generated.The
possible test cases which are executable will be generated
from the available EFG diagram. While creating EFG
through ripper, some of the hidden events may be missed.
For example the events which are in disabled mode cannot
be considered by the ripper mechanism.
 Ripper mechanism will only evaluate the events which are
all enabled. In this module, the possible test cases that can
be executed are generated. The test cases are generated by
finding out all the possible edges that are available from
the initial nodes. In this module all the test cases are
generated from the all available EFG edges.

Algorithm: Collecting new widget states

Method [] methods = widget.getClass (). getMethods();
For (Method m : methods)
{
 String methodname = m.getName ();
 If (methodName.startsWith (“get”))
{
 Property = methodName. substring (3);
Value = m.invoke (widget, new Object [0]);
}
If (methodName.startsWith (“is”))
{

 International Journal of Computer Sciences and Engineering Vol.-3(1), PP(61-65) Jan 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 64

 Property = methodName.subString (2);
Value = m.invoke (widget, new object [0])
}

C. Executing the test cases

In this module, the newly generate test cases will be
executed simulataneously on the same application in order
to derieve an unlocalized test cases. To identify the already
evaluated test cases unique signature concept is
introduced. It is based on using a combination of certain
parts of the state of the widget and its container (e.g.,
window). It cannot use the entire state for identification
because it will contain some property values that change
during the GUI’s execution but do not play any role in
identifying that widget. For example, the value of the text
property for a JTextField object will change when the text
changes; the enabled property changes when the object is
enabled/disabled. Such properties cannot be used for our
signature because any change to their values will indicate
a new widget, which would be incorrect. We are, in some
sense, defining equivalent states of widgets by using a
subset of properties to uniquely identify widgets. More
formally, we define the signature, Csig, for a container C
as follows:

Cstate  <(p1,v1), (p2,v2), …, (pn,vn)>,

<vi, … vk>  select (filterp, Cstate),

Csig  Φ (Øi (vi), …., Øk (vk))

Where the user defines, per GUI, filterp, a specification of
a subset of the container’s properties and transformations
Øi . . . Øk on the values of the properties. The function
select returns the values of the properties specified by filter
p and function F is a hash function on the transformed
values. Along similar lines, we define the signature, wsig,
for a widget w in a container with signature Csig, as
follows:
Wstate  <(p1,v1), (p2,v2), …, (pn,vn)>,

<vi, … vk>  select (filterp, wstate),

wsig  г (Csig, γi (vi), …., γk (vk))

where filterp and γi, … γk are user defined; and function г
is a hash function on the transformed values and the
container’s signature.

D. Enhance EFG with context aware mapping

In this module techniques to incrementally enhance the
EFG is introduced. To explain these steps, we revisit two
important terms in GUIs: modal and modeless windows.
At any time during GUI interaction, a user is allowed to
execute events within a modal window and any modeless
window that was opened from the modal window. At no
time can the user jump between modal windows without
explicitly terminating them. Moreover, the user cannot
interleave events that belong to modeless windows

associated with different modal windows. Again, the user
must explicitly terminate the modal window that is
associated with the modeless window, explicitly invoke
the other modal window, open the modeless window, and
invoke any of its constituent events. A part of MS Word’s
window hierarchy is shown in below Fig.

Edit Picture and Edit Chart are modal windows whereas
Format Picture, Help Picture, Manage Template, and Help
Chart are modeless. Consider events x, y, z, a, b, and c. A
user may execute x, y, and z together because they are all
contained in Edit Picture’s window group; similarly,
events a, b, and c may be executed together. However,
these two sets of events cannot interleave without their
modal windows being explicitly invoked and terminated.
The above behavior of GUI windows to restrict sets of
events leads to the definition of a new term that we call the
scope of an event. We define the scope of an event e as the
set of events contained in the group of modal and
modeless windows to which e belongs. We use scope in an
algorithm to incrementally and efficiently enhance the
EFG model.

Algorithm: Enhance EFG Model

Input: (N, E): EFG

Input: e: event executed
1. AE  getAllEventsAfter (e)

2. For all ei ϵ AE do

a. If ei ϵ/ N then

i. N.addNode (ei)

b. End if

c. If (e, ei) ϵ/ E then

i. E.addEdge (e, ei)

d. End if

e. Scopei  getScope (ei)

f. For all eij ϵscopei do

i. If not (structural (ei,j)) then

1. If (eij, ei) ϵ/ E then

a. E.addEdge (eij, ei)

2. End if

ii. End if

g. End for

h. End for

i. Return (N, E): updated EFG

 International Journal of Computer Sciences and Engineering Vol.-3(1), PP(61-65) Jan 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 65

E. Performance Evaluation

The performance is done to compare our proposed
methodology with the existing techniques. The
improvement and efficiency of our proposed methodology
is proved to be better than the already existing
methodologies. The accuracy and time complexity of our
methodology is improved by comparing with the already
proposed methodologies.

IV. RESULTS AND DISCUSSION

The performance evaluation of our proposed work is done
by comparing the proposed work with the existing
approaches based on the time taken and performance of
the test cases for finding out the more number of faults.

A. Time Complexity

The amount of time taken by test cases to finding faults for
both existing work and proposed work are compared as
follows. The graph shows that our proposed work
consumes less time than the existing work for finding out
the faults.

B. Test case performance

The performance of test cases is evaluated by finding the
faults it can be detect. The test case performance increases
when it can find out the more number of faults. The test
case performance for both existing and proposed work is
compared in the following graph which shows that
proposed work is better than the existing work.

V. CONCLUSION

System testing of software applications with a graphical-
user interface (GUI) front-end requires that sequences of
GUI events, that sample the application’s input space, be
generated and executed as test cases on the GUI. GUI
testers routinely miss allowable event sequences, any of
which may cause failures once the software is fielded. And
the tester may fail to discover that the softwares
implementation allows the execution of some disallowed
sequences.

In our work Observe model exercise mechanism is
proposed. Our approach used the GUI information to
extract key identifiers for the parameterized widgets (i.e.,
widgets that accept input values such as textboxes) in the
GUI and found appropriate valid and invalid test data
using an online search. Our preliminary experiments with
five GUI-based applications showed that the proposed
technique is feasible and applicable.

REFERENCES

[1] C. Bartolini, A. Bertolino, S. Elbaum, and E.
Marchetti, “Bringing White-Box Testing to Service

Oriented Architectures through a Service Oriented
Approach,” J. Systems and Software, vol. 84,pp.
655-668, Apr. 2011.

[2] N.R. Krishnaswami and N. Benton, “A Semantic
Model for Graphical User Interfaces,” Proc. 16th
ACM SIGPLAN Int’l Conf.Functional Programming
(ICFP ’11), pp. 45-57, 2011.

[3] T. Pajunen, T. Takala, and M. Katara, “Model-Based
Testing with a General Purpose Keyword-Driven
Test Automation Framework,”Proc. IEEE Fourth
Int’l Conf. Software Testing, Verification and
Validation Workshops (ICSTW), pp. 242-251, Mar.
2011.

[4] David C. Yu, Member Haijun Liu, Student Member
Fengjun Wu, “A GUI Based Visualization Tool for
Sequence Networks”, IEEE Transactions on Power
Systems, Vol-13, No-1,pp.247-263,February 1998.

[5] Atif M. Memon, Martha E. Pollack, and Mary Lou
Soffa, “Hierarchical GUI Test Case generation using
automated planning”, IEEE transactions on software
engineering, vol-27, no-2,pp.453-464, Feb 2001.

[6] Alex Ruiz and Yvonne Wang Price, “Test-Driven
GUI Development with testing and abbot”, IEEE
transactions on software engineering, vol-28, Issue-
4,pp.117-134, Jun 2003.

[7] Atif M. Memon and Qing Xie, “Studying the Fault-
Detection effectiveness of GUI test cases for rapidly
evolving software”, IEEE transactions on software
engineering, vol-31,Issue-10,pp.944-952,October
2005.

[8] Rene´e C. Bryce, Sreedevi Sampath and Atif M.
Memon, “Developing a single model and test
prioritization strategies for event-driven software”,
IEEE transactions on software engineering, vol-37,
no-1,pp.812-830,Jan 2011.

[9] Izzat Mahmoud Alsmadi, “Using mutation to
enhance GUI testing coverage”, IEEE transaction on
Software engineering,vol-1,Issue-2,pp.567-581,Feb
2013.

[10] Xiaoyin Wang, Lu Zhang, Tao Xie, Hong Mei and
Jiasu Sun, “Locating need to externalize constant
strings for software internalization with generalized
string taint analysis”, IEEE transactions on software
engineering, vol-39, no-4,pp.245-267,april 2013.

