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ABSTRACT: The Back propagation Algorithm is a multilayered, feed forward neural network and is one of the most popular 

and efficient techniques used. This can be used for dataset classification with suitable combination of training, learning and 

transfer functions. However, there are some problems associated with this Algorithm like Step-size Problem and Local 

Minima. In this paper we will discuss about the working of the algorithm and efficient ways to perform learning by 

overcoming the problems in it. We use three common classification problems to illustrate the ways of efficient learning. All the 

methods and algorithms were implemented using the features of Java. 
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1. INTRODUCTION 

The Back propagation algorithm [6] performs learning on a 

multilayer feed-forward neural network [7]. This has two 

phases, training and testing (in some cases validation). In the 

former phase, we make it learn by providing set of training 

examples along with their respective class label or outputs. 

In the latter phase, we will try to test its performance based 

on its correctness in classification.  

 

The Feedforward Neural Network is made up of set of 

neurons arranged in numerous layers. They are of three 

types viz, an input layer, hidden layer and an output layer. 

Learning in Back propagation works by approximating the 

non-linear relationship between the input and output neurons 

by adjusting the weights. We can perform the training phase 

with or without the Thresholds (bias) [4]. We will see the 

difference in the learning in both the cases i.e. with and 

without Thresholds. We will also see the efficient ways of 

selecting the number of Hidden Neurons, Learning rate and 

Momentum [6]. We will also determine how efficiently the 

algorithm performs on changing the ratio of the Training Set 

and the Test Set.  

 

The Feedforward Neural Network is a type of Neural 

Network architecture where the connections are ‘Fed-

Forward’ i.e. do not form cycles. The term Feedforward is 

also used when you input something at the input layer and it 

travels from input to hidden and from hidden to output layer. 

The Values are fed-forward. 

 

 
Figure 1: FeedForward Network and BackPropagation 
 

Back propagation performs two steps: 

1. Feed forward the values  

2. Calculate the error and propagate it back to the 

earlier layers.  

So, forward propagation is a part of the Back 

propagation Algorithm. 

And the process of training has two different ways: 

1. Update weights after all errors for one input vector 

are calculated. 

2. Update weights after all errors for all the input 

vectors are calculated. 
 

We perform the training by using the second way, as our 

process of learning is a steepest descent method [6]. The 

first way is acceptable when your weights update do not 

interfere with your error computation. The same applies to 

the bias or Thresholds. 
 

2. Back Propagation Learning Algorithm 
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Different datasets can be used for performing the back 

propagation algorithm. In this paper, we use Iris Dataset [2], 

Wine Dataset [8] and Breast Cancer Dataset [1] for 

understanding the algorithm and analyzing different ways to 

improve its efficiency in Learning. We also make use of 

some of the previous works done on this Algorithm and try 

to analyze the performance. 

We use Sigmoid Function [4] as the transfer function. 

Sigmoid activation allows for a smooth curve of real 

numbers from 0 to 1. We normalize the dataset before we 

input the Training Set to the algorithm. There are many 

Normalization Techniques, here we do column 

normalization. If the output is an integer value, we convert it 

into binary form so that it can be represented in 0’s and 1’s. 

The number of input neurons depends on the number of 

Attributes present in the dataset. Similarly the number of 

output neurons depends on the size of the binary number of 

the output. (For Example, for class labels 1, 2, and 3, they 

can be represented as 0, 0, 1 and 0, 1, 0 and 0, 1, 1.  So, we 

have 3 Output Neurons). We will determine the Number of 

Hidden Neurons to be taken for a particular Dataset by using 

some previous works. 

We use a parameter called Learning Rate which is Training 

Parameter that controls the size of weights and bias changes 

in Learning.  

The Back propagation Algorithm technique is based on the 

gradient descent method that tries to minimize the error by 

moving down the gradient of the error curve. The Weights 

of the networks are updated by the algorithm, thus reducing 

the error. But in Back propagation there are some limitations 

like slow learning or getting trapped at Local Minima. These 

problems are completely depended on the type of network 

architecture we construct.  

In Gradient Descent we start at some point on the error 

function and attempt to move to the global minimum of the 

function. In case of simple functions (fig-2), this works.  

 

 
 

But if we consider real problems (fig-3), error surfaces are 

typically complex as shown in the above figure. Here we 

will find many Local Minima, and thus we can’t make the 

progress. Thus, in order to escape this Local Minima we will 

make use of Momentum [0, 1].  

 
 

We will also determine how to construct a Network 

Architecture which is more efficient by changing the values 

of the parameters. The Steps we perform in Back 

Propagation Algorithms are as follows; 

 

a. Initialization 

The number of input neurons depends on the number of 

attributes.The number of hidden neurons can be determined 

by some rule-of-thumb methods based on the previous 

works [5].The number of output neurons can be determined 

by the size of the binary number of the Class Label.  

The weights and thresholds (bias) values are assigned 

randomly between  

(-1, 1) or (-0.5, +0.5). Here, we use Random function [4] 

and use seed to have same weights and thresholds every 

time we run the algorithm. 

 

Random rand = new Random (int seed);seed is any integer 

value 

 

Learning rate is taken in the range from 0.01 to 1.0. But too 

low a learning rate makes the network learn very slowly. 

Too high a learning rate makes the weights and objective 

function diverge, so there is no learning at all. We will 

determine which value to be taken depending on the 

observations. 

Momentum is taken in the range from 0.1 to 0.9. We will 

also study the observations for various momentum values. 

 

b. Feed-Forward 

The input values from the training set are sent to the Input 

Layer Neurons, and the values are fed- forward for obtaining 

the output. 

 

Oi (P) = sigmoid[ ] 

 

Where,P is the P
th

 training record in the training set, j is the 

j
th

 Neuron, Xj is an input into a neuron, and Oi is the 

resulting output. Wij is the weight and ����I is the bias 

(Threshold) value. 
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Osigmoid =  

 

The sigmoid represents the Sigmoid Transfer Function. 

 

c. Finding Errors and Updating Weights 

In this step, the error is calculated depending on the Original 

Output and the Target Output. 

 

 
 

 
 

Global error +=  

 

Where, jis the error gradient for the i
th

 Output Neuron, T 

is the target output for record Pwhere, P is the P
th

 Training 

record. Global Error is the error for the particular training 

Record. 

 

 
 

We calculate the error by taking average error across all the 

training set elements. This is also known as Root Mean 

Square error (RMS) [4]. After the RMS error has been 

calculated, Global error is again made Zero, in order to 

calculate the new global error for the next iteration.  

 

Now we need to update the weights for the Output Neurons. 

 

 
 

 
 

Where α is the Learning Rate, µ is the Momentum, 

 is the accumulated weight of the 

previous iteration. 

Now, we calculate errors for the hidden layer neurons. 

 

 
 

Now we need to update the weights for the Hidden Neurons. 

 

 
 

 
 

Similarly, bias (Thresholds) for every neuron are updated 

same as the weights. 

 

d. Iteration 

The steps b, c repeats until certain condition is met.  

Our termination condition [3] is met when the error isless 

than0.1. 

The Results obtained in our paper are, Total Number of 

Errors, Epochs (Number of Iterations), Execution Time. 

 

3. Analyzing the Results and Identifying the 

Network Architecture and Learning Parameters 

 

We train the algorithm in two different ways, one is with 

Thresholds (bias) and the other without Thresholds (bias). 

We will analyze the difference in both the cases. We also 

try to analyze what values of parameters are required, so 

that the Network Architecture is fast and efficient in 

Learning. 

 

a. IRIS DATASET 

We divide the records such that there are 120 (80%) 

Training Records and 30 (20%) Test Records. 

 

Determining the Momentum: 

With values ranging from 0.01 to 0.9 making others 

constant, we will determine the value for the momentum 

for which the Learning is efficient and simple. The number 

of Input Neurons are 4, number of Hidden neurons are 4, 

number of Output Neurons are 3, and Learning Rate is 0.1. 

 

 
 
By observing the results, we can easily say that, learning the 

algorithm with Thresholds (bias) is much faster than the 

algorithm without Thresholds (bias) depending on the 

Epochs both have taken to Learn. 
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In both cases, Learning is fast and efficient when the 

Momentum is 0.9. 

 

Determining the Learning Rate: 

With values ranging from 0.1 to 0.9 making others constant, 

we will determine the value for the learning rate for which 

the Learning is efficient and simple. The number of Input 

Neurons are 4, number of Hidden neurons are 4, number of 

Output Neurons are 3, and Momentum is 0.9. 

 

 
 

By observing the results, the performance of the algorithm is 

efficient when the Learning rate is 0.01 or 0.1, but learning 

rate with 0.1 is more efficient as it takes less time for 

Learning. The value of the Learning rate also depends on the 

number of records in the dataset. As said before, too much 

learning rate is also not advised. By observing results, the 

algorithm without bias is unable to perform learning when 

learning rate is greater than 0.5. 

 

Determining the Hidden Neurons: 

By using the rule-of-thumb methods [5] we can estimate 

valid values for the number of Hidden Neurons and then 

perform analysis.  

The number of Input Neurons are 4, number of Output 

Neurons are 3, Momentum is 0.9, and Learning rate is 0.1. 

We will use the Rule for estimating, 

By using Rule, 

To        = 4 to 7 Hidden Neurons 

Now, the obtained results are,  

 

 
 

From the above results, we can see that the algorithm can 

perform efficiently when the Number of Hidden Neurons in 

the Network Architecture is 4, 5, 6, and 7. If we consider 

only 1 Hidden Neuron, then there is no learning at all. 

Thus a Network Architecture with Learning Rate 0.1, 

Momentum 0.9 and Number of Hidden Neurons as [4, 5, 6, 

and 7] can perform efficiently. 

 

b. WINE DATASET 

 

We divide the records such that 80% of the records are in 

Training Set and 20% are in Test Set, such that there are 142 

Training Records and 36 Test Records. 

Now we perform learning by calculating the number of 

Hidden Neurons required to classify this dataset efficiently. 

 Determining the Hidden Neurons: 

Again by using the rule-of-thumb methods, we estimate 

valid values for the number of Hidden Neurons and then 

perform analysis.  

The number of Input Neurons are 13, number of Output 

Neurons are 3, Momentum is 0.9, and Learning rate is 0.1. 

We will use the First Rule for estimating, 

 

  To         = 12 to 15 Hidden 

Neurons 

 
But, by performing learning with these values the observed 

results are not satisfying. The learning process is slow and 

the number of errors are not changing for any number of 

Hidden Neurons. So in order to speed up the process of 

learning we need to update the value of Learning Rate.  

Determining the Learning Rate: 

The number of Input Neurons are 13, number of Hidden 

neurons are 13, number of Output Neurons are 3, and 

Momentum is 0.9. 
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By observing the above results, with Learning Rate as 0.4 

the performance of the Algorithm and Learning is increased. 

Now, we will analyze how the algorithm performs when 

learning rate is 0.4. 

 

Analyzing the performance (Hidden Neurons): 

 

From the above results, we can see that the performance and 

Learning is increased if we vary the value of learning rate to 

some extent. 

 

c. BREAST CANCER DATASET 

We divide the records such that 80% of the records are in 

Training Set and 20% are in Test Set. Such that there are 

547 Training Records and 136 Test Records. 

 

Determining the Learning Rate: 

The number of Input Neurons are 9, number of Hidden 

neurons are 9, number of Output Neurons are 3, and 

Momentum is 0.9. 

 

Being a large Dataset, very low learning rate can’t perform 

well. As seen in the previous datasets learning rate values 

with 0.01 and 0.1 performs well but in this case it varies. 

Learning rate values with greater than 0.3 and less than 0.7 

can be used for better performance. Learning rate with 

greater than 0.8 causes over-fitting and it doesn’t learn at all. 

Now we will vary the sizes of Testing and Training Sets and 

analyze the changes that take place in the Learning. 

 

Analyzing the Results: 

The number of Input Neurons are 9, number of Hidden 

neurons are 9, number of Output Neurons are 3, Learning 

rate is 0.3 and Momentum is 0.9. 

 

 
 

From the above results we can conclude that with the 

decrease in the number of Training Sets and increase in the 

Testing Sets, there will result in more errors i.e. the 

algorithm requires more training examples to classify the 

given set of records. 

 

4. CONCLUSION 

 

In this study, we have seen how the Back Propagation 

Algorithm performs with and without Thresholds (bias). In 

every case we came across, the algorithm with Thresholds 

performed more efficiently when compared to algorithm 

with no Thresholds. We also analyzed in many cases how to 

improve the network architecture by changing the values of 

the parameters. We observed how the algorithm performs 

when we vary sizes of Training and Testing Sets.  

 

Thus, it is practically very difficult to determine a good 

network topology just from the number of inputs and 

outputs. It also depends on the number of training examples. 

The requirement of the hidden neurons also depends on the 

type of the dataset samples. Unnecessary increase in the 

number of hidden neurons causes over-fitting problem. So, 

performing some observations on the training data is 

essential for the design of an efficient Neural Architecture. 
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