
 © 2015, IJCSE All Rights Reserved 65

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
 Research Paper Volume-3, Issue-7 E-ISSN: 2347-2693

Class Label Prediction using Back Propagation Algorithm: A

comparative study with and without Thresholds (Bias)

N.V. Saiteja Reddy
1*

 and T. Srikanth
2

1*,2
Department of CSE, GITAM University, Visakhapatnam, Andhra Pradesh, India

www.ijcseonline.org

Received: Jun/09/2015 Revised: Jun/28/2015 Accepted: July/18/2015 Published: July/30/ 2015

ABSTRACT: The Back propagation Algorithm is a multilayered, feed forward neural network and is one of the most popular

and efficient techniques used. This can be used for dataset classification with suitable combination of training, learning and

transfer functions. However, there are some problems associated with this Algorithm like Step-size Problem and Local

Minima. In this paper we will discuss about the working of the algorithm and efficient ways to perform learning by

overcoming the problems in it. We use three common classification problems to illustrate the ways of efficient learning. All the

methods and algorithms were implemented using the features of Java.

Keywords: Back Propagation Algorithm, Neural Network, Programming Neural Networks

1. INTRODUCTION

The Back propagation algorithm [6] performs learning on a

multilayer feed-forward neural network [7]. This has two

phases, training and testing (in some cases validation). In the

former phase, we make it learn by providing set of training

examples along with their respective class label or outputs.

In the latter phase, we will try to test its performance based

on its correctness in classification.

The Feedforward Neural Network is made up of set of

neurons arranged in numerous layers. They are of three

types viz, an input layer, hidden layer and an output layer.

Learning in Back propagation works by approximating the

non-linear relationship between the input and output neurons

by adjusting the weights. We can perform the training phase

with or without the Thresholds (bias) [4]. We will see the

difference in the learning in both the cases i.e. with and

without Thresholds. We will also see the efficient ways of

selecting the number of Hidden Neurons, Learning rate and

Momentum [6]. We will also determine how efficiently the

algorithm performs on changing the ratio of the Training Set

and the Test Set.

The Feedforward Neural Network is a type of Neural

Network architecture where the connections are ‘Fed-

Forward’ i.e. do not form cycles. The term Feedforward is

also used when you input something at the input layer and it

travels from input to hidden and from hidden to output layer.

The Values are fed-forward.

Figure 1: FeedForward Network and BackPropagation

Back propagation performs two steps:

1. Feed forward the values

2. Calculate the error and propagate it back to the

earlier layers.

So, forward propagation is a part of the Back

propagation Algorithm.

And the process of training has two different ways:

1. Update weights after all errors for one input vector

are calculated.

2. Update weights after all errors for all the input

vectors are calculated.

We perform the training by using the second way, as our

process of learning is a steepest descent method [6]. The

first way is acceptable when your weights update do not

interfere with your error computation. The same applies to

the bias or Thresholds.

2. Back Propagation Learning Algorithm

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(65-70) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 66

Different datasets can be used for performing the back

propagation algorithm. In this paper, we use Iris Dataset [2],

Wine Dataset [8] and Breast Cancer Dataset [1] for

understanding the algorithm and analyzing different ways to

improve its efficiency in Learning. We also make use of

some of the previous works done on this Algorithm and try

to analyze the performance.

We use Sigmoid Function [4] as the transfer function.

Sigmoid activation allows for a smooth curve of real

numbers from 0 to 1. We normalize the dataset before we

input the Training Set to the algorithm. There are many

Normalization Techniques, here we do column

normalization. If the output is an integer value, we convert it

into binary form so that it can be represented in 0’s and 1’s.

The number of input neurons depends on the number of

Attributes present in the dataset. Similarly the number of

output neurons depends on the size of the binary number of

the output. (For Example, for class labels 1, 2, and 3, they

can be represented as 0, 0, 1 and 0, 1, 0 and 0, 1, 1. So, we

have 3 Output Neurons). We will determine the Number of

Hidden Neurons to be taken for a particular Dataset by using

some previous works.

We use a parameter called Learning Rate which is Training

Parameter that controls the size of weights and bias changes

in Learning.

The Back propagation Algorithm technique is based on the

gradient descent method that tries to minimize the error by

moving down the gradient of the error curve. The Weights

of the networks are updated by the algorithm, thus reducing

the error. But in Back propagation there are some limitations

like slow learning or getting trapped at Local Minima. These

problems are completely depended on the type of network

architecture we construct.

In Gradient Descent we start at some point on the error

function and attempt to move to the global minimum of the

function. In case of simple functions (fig-2), this works.

But if we consider real problems (fig-3), error surfaces are

typically complex as shown in the above figure. Here we

will find many Local Minima, and thus we can’t make the

progress. Thus, in order to escape this Local Minima we will

make use of Momentum [0, 1].

We will also determine how to construct a Network

Architecture which is more efficient by changing the values

of the parameters. The Steps we perform in Back

Propagation Algorithms are as follows;

a. Initialization

The number of input neurons depends on the number of

attributes.The number of hidden neurons can be determined

by some rule-of-thumb methods based on the previous

works [5].The number of output neurons can be determined

by the size of the binary number of the Class Label.

The weights and thresholds (bias) values are assigned

randomly between

(-1, 1) or (-0.5, +0.5). Here, we use Random function [4]

and use seed to have same weights and thresholds every

time we run the algorithm.

Random rand = new Random (int seed);seed is any integer

value

Learning rate is taken in the range from 0.01 to 1.0. But too

low a learning rate makes the network learn very slowly.

Too high a learning rate makes the weights and objective

function diverge, so there is no learning at all. We will

determine which value to be taken depending on the

observations.

Momentum is taken in the range from 0.1 to 0.9. We will

also study the observations for various momentum values.

b. Feed-Forward

The input values from the training set are sent to the Input

Layer Neurons, and the values are fed- forward for obtaining

the output.

Oi (P) = sigmoid[]

Where,P is the P
th

 training record in the training set, j is the

j
th

 Neuron, Xj is an input into a neuron, and Oi is the

resulting output. Wij is the weight and ����I is the bias

(Threshold) value.

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(65-70) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 67

Osigmoid =

The sigmoid represents the Sigmoid Transfer Function.

c. Finding Errors and Updating Weights

In this step, the error is calculated depending on the Original

Output and the Target Output.

Global error +=

Where, jis the error gradient for the i
th

 Output Neuron, T

is the target output for record Pwhere, P is the P
th

 Training

record. Global Error is the error for the particular training

Record.

We calculate the error by taking average error across all the

training set elements. This is also known as Root Mean

Square error (RMS) [4]. After the RMS error has been

calculated, Global error is again made Zero, in order to

calculate the new global error for the next iteration.

Now we need to update the weights for the Output Neurons.

Where α is the Learning Rate, µ is the Momentum,

 is the accumulated weight of the

previous iteration.

Now, we calculate errors for the hidden layer neurons.

Now we need to update the weights for the Hidden Neurons.

Similarly, bias (Thresholds) for every neuron are updated

same as the weights.

d. Iteration

The steps b, c repeats until certain condition is met.

Our termination condition [3] is met when the error isless

than0.1.

The Results obtained in our paper are, Total Number of

Errors, Epochs (Number of Iterations), Execution Time.

3. Analyzing the Results and Identifying the

Network Architecture and Learning Parameters

We train the algorithm in two different ways, one is with

Thresholds (bias) and the other without Thresholds (bias).

We will analyze the difference in both the cases. We also

try to analyze what values of parameters are required, so

that the Network Architecture is fast and efficient in

Learning.

a. IRIS DATASET

We divide the records such that there are 120 (80%)

Training Records and 30 (20%) Test Records.

Determining the Momentum:

With values ranging from 0.01 to 0.9 making others

constant, we will determine the value for the momentum

for which the Learning is efficient and simple. The number

of Input Neurons are 4, number of Hidden neurons are 4,

number of Output Neurons are 3, and Learning Rate is 0.1.

By observing the results, we can easily say that, learning the

algorithm with Thresholds (bias) is much faster than the

algorithm without Thresholds (bias) depending on the

Epochs both have taken to Learn.

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(65-70) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 68

In both cases, Learning is fast and efficient when the

Momentum is 0.9.

Determining the Learning Rate:

With values ranging from 0.1 to 0.9 making others constant,

we will determine the value for the learning rate for which

the Learning is efficient and simple. The number of Input

Neurons are 4, number of Hidden neurons are 4, number of

Output Neurons are 3, and Momentum is 0.9.

By observing the results, the performance of the algorithm is

efficient when the Learning rate is 0.01 or 0.1, but learning

rate with 0.1 is more efficient as it takes less time for

Learning. The value of the Learning rate also depends on the

number of records in the dataset. As said before, too much

learning rate is also not advised. By observing results, the

algorithm without bias is unable to perform learning when

learning rate is greater than 0.5.

Determining the Hidden Neurons:

By using the rule-of-thumb methods [5] we can estimate

valid values for the number of Hidden Neurons and then

perform analysis.

The number of Input Neurons are 4, number of Output

Neurons are 3, Momentum is 0.9, and Learning rate is 0.1.

We will use the Rule for estimating,

By using Rule,

To = 4 to 7 Hidden Neurons

Now, the obtained results are,

From the above results, we can see that the algorithm can

perform efficiently when the Number of Hidden Neurons in

the Network Architecture is 4, 5, 6, and 7. If we consider

only 1 Hidden Neuron, then there is no learning at all.

Thus a Network Architecture with Learning Rate 0.1,

Momentum 0.9 and Number of Hidden Neurons as [4, 5, 6,

and 7] can perform efficiently.

b. WINE DATASET

We divide the records such that 80% of the records are in

Training Set and 20% are in Test Set, such that there are 142

Training Records and 36 Test Records.

Now we perform learning by calculating the number of

Hidden Neurons required to classify this dataset efficiently.

 Determining the Hidden Neurons:

Again by using the rule-of-thumb methods, we estimate

valid values for the number of Hidden Neurons and then

perform analysis.

The number of Input Neurons are 13, number of Output

Neurons are 3, Momentum is 0.9, and Learning rate is 0.1.

We will use the First Rule for estimating,

 To = 12 to 15 Hidden

Neurons

But, by performing learning with these values the observed

results are not satisfying. The learning process is slow and

the number of errors are not changing for any number of

Hidden Neurons. So in order to speed up the process of

learning we need to update the value of Learning Rate.

Determining the Learning Rate:

The number of Input Neurons are 13, number of Hidden

neurons are 13, number of Output Neurons are 3, and

Momentum is 0.9.

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(65-70) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 69

By observing the above results, with Learning Rate as 0.4

the performance of the Algorithm and Learning is increased.

Now, we will analyze how the algorithm performs when

learning rate is 0.4.

Analyzing the performance (Hidden Neurons):

From the above results, we can see that the performance and

Learning is increased if we vary the value of learning rate to

some extent.

c. BREAST CANCER DATASET

We divide the records such that 80% of the records are in

Training Set and 20% are in Test Set. Such that there are

547 Training Records and 136 Test Records.

Determining the Learning Rate:

The number of Input Neurons are 9, number of Hidden

neurons are 9, number of Output Neurons are 3, and

Momentum is 0.9.

Being a large Dataset, very low learning rate can’t perform

well. As seen in the previous datasets learning rate values

with 0.01 and 0.1 performs well but in this case it varies.

Learning rate values with greater than 0.3 and less than 0.7

can be used for better performance. Learning rate with

greater than 0.8 causes over-fitting and it doesn’t learn at all.

Now we will vary the sizes of Testing and Training Sets and

analyze the changes that take place in the Learning.

Analyzing the Results:

The number of Input Neurons are 9, number of Hidden

neurons are 9, number of Output Neurons are 3, Learning

rate is 0.3 and Momentum is 0.9.

From the above results we can conclude that with the

decrease in the number of Training Sets and increase in the

Testing Sets, there will result in more errors i.e. the

algorithm requires more training examples to classify the

given set of records.

4. CONCLUSION

In this study, we have seen how the Back Propagation

Algorithm performs with and without Thresholds (bias). In

every case we came across, the algorithm with Thresholds

performed more efficiently when compared to algorithm

with no Thresholds. We also analyzed in many cases how to

improve the network architecture by changing the values of

the parameters. We observed how the algorithm performs

when we vary sizes of Training and Testing Sets.

Thus, it is practically very difficult to determine a good

network topology just from the number of inputs and

outputs. It also depends on the number of training examples.

The requirement of the hidden neurons also depends on the

type of the dataset samples. Unnecessary increase in the

number of hidden neurons causes over-fitting problem. So,

performing some observations on the training data is

essential for the design of an efficient Neural Architecture.

REFERENCES

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(65-70) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 70

[1]. Breast Cancer Wisconsin (Original) Dataset -

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+

Wisconsin+%28Original%29

[2]. Iris Data Set:https://archive.ics.uci.edu/ml/datasets/Iris

[3]. T. Lalis, B. D. Gerardo and Y. Byun (2014). “An

Adaptive Stopping Criterion for Backpropagation

Learning in Feedforward Neural Network”.

International Journal of Multimedia and Ubiquitous

Engineering Vol.9, No. 8, pp. 149-156

[4]. JeffHeaton (2005). “Programming Neural Networks in

Java”. Heaton Research

[5]. Saurabh Karsoliya (2012). “Approximating Number of

Hidden layer neurons in MultipleHidden Layer BPNN

Architecture”. International Journal of Engineering

Trends and Technology-Volume3 Issue6

[6]. Tom M. Mitchell (1997). “Machine Learning”.

McGraw Hill

[7]. Wouter F. Schmidt, Martin A. Kraaijveld and Robert

P.W. Duin (1992). “Feed Forward Neural Networks

With Random Weights”- Proceedings. 11th IAPR

International Conference on Pattern Recognition.

Vol.II. Conference B: Pattern Recognition

Methodology and Systems

[8]. Wine Data Set -

https://archive.ics.uci.edu/ml/datasets/Wine

AUTHORS

N.V.Saiteja Reddy is currently pursuing his B.Tech in the

department of Computer Science and Engineering, Institute

of Technology, GITAM University, Visakhapatnam, Andhra

Pradesh. His area of interest includes Data Structures,

Design and Analysis of Algorithms and has passion to work

with Machine Learning Techniques and Neural Networks.

T.Srikanth is presently working as Associate Professor in

the department of Computer Science and Engineering,

Institute of Technology, GITAM University,

Visakhapatnam, Andhra Pradesh, India. His areas of interest

include Machine learning, Artificial Intelligence, Data

Mining, and Softcomputing.

