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Abstract— A major difficulty of any anomaly-based intrusion detection system is that patterns of normal behavior change over 

time and the system must be retrained. One of the principal problems of the intrusion detection systems based on the anomaly 

detection principles is their error rate, both in terms of false negatives (undetected attacks) and false positives, i.e. legitimate 

traffic labeled as malicious. This problem is amplified by the fact that the sensitivity (and consequently the error rate) varies 

dynamically as a function of the network traffic. An IDS must be able to adapt to these changes, and be able to distinguish these 

changes in normal behavior from intrusive behavior.  In this paper, we address some of the key issues of detecting intrusion 

when a potential change occurs in operational environment and learn from the changed environment.  

Keywords— Network Intrusion Detection System (NIDS), Stream Data Mining, Drift Detection, Early Drift Detection Method 

(EDDM) 

 

I.  INTRODUCTION 

A major shortcoming of current IDSs that employ data 

mining methods is that they can give a series of false alarms 

in cases of a noticeable systems environment modification. 

There can be two types of false alarms in classifying system 

activities in case of any deviation from normal patterns: false 

positives and false negatives. False positive alarms are issued 

when normal behaviors are incorrectly identified as abnormal 

and false negative alarms are issued when abnormal 

behaviors are incorrectly identified as normal. Though it’s 

important to keep both types of false alarm rates as low as 

possible, the false negative alarms should be the minimum to 

ensure the security of the system. To overcome this 

limitation, an IDS must be capable of adapting to the 

changing conditions typical of an intrusion detection 

environment. Specifically the Network Intrusion Detection 

System (NIDS) which detect the anomaly based on the 

network profile which is a streaming data and very much 

dynamic in nature. 

One of the challenges of network streaming data 

classification is that the underlying data generation process of 

a stream tends to change over time, which is called as concept 

drift. A model learned from an earlier part of stream loses its 

classification accuracy upon the arrival of new instances that 

exhibit concept drift. As a result, any classification algorithm 

that is to be applied to data streams must be adjusted to 

effectively detect the concept drift when it occurs, and 

efficiently update the classification model to reflect the new 

concept.  

 

II. PROBLEMS RELATED TO IDS’S SELF LEARNING 

AND CONFIGURABILITY 

System security administrators can tune the IDS by 

adjusting the profile, but it may require frequent human 

intervention. Since normal system activities may change 

because of modifications to work practices, it is important 

that an IDS should have automatic adaptability to new 

conditions. Otherwise, an IDS may start to lose its edge. Such 

adaptability can be achieved by employing incremental 

mining techniques. Such an adaptive system should use real 

time data to constantly update the profile. One 

straightforward approach can be to regenerate the profile with 

the new audit data. But this would not be a computationally 

feasible approach. When the current usage profile is 

compared with the initial profile, there can be different types 

of deviation. Each of these deviations can represent an 

intrusion or a change in behavior. In case of a change in 

system behaviors, the base profile must be updated with the 

corresponding change so that it does not give any false 

positives alarms in future. This means that the system needs a 

mechanism for deciding whether to make a change or reject 

it. If the system tries to make a change to the base profile 

every time it sees a deviation, there is a potential danger of 

incorporating intrusive activities into the profile. The IDS 

must be able to adapt to these changes while still recognizing 

abnormal activities. If both intrusive behavior and change in 

normal behavior occur during a particular time interval, the 

problem becomes more complicated. Again, determining 

which rules to add and which to remove is critical. There are 

also additional issues that need to be addressed in case of 

updating. The system should adapt to rapid changes as well as 

gradual changes in system behavior. Selecting the time 

interval at which the update should take place is also an 

important issue. If the interval is too long, the system may 

Corresponding Author: Manish Kumar 
1*Dept. of Master of Computer Applications, M. S. Ramaiah Institute 

of Technology, Bangalore, Bangalore University, Bangalore, INDIA 

  



   International Journal of Computer Sciences and Engineering            Vol.-2(11), PP(69-75) Nov 2014, E-ISSN: 2347-2693 

                             © 2014, IJCSE All Rights Reserved                                                                                                                70 

miss some rapid changes or short-term attacks. If the interval 

is too small, the system may miss some long-term changes. 

 

Since the traffic pattern is dynamic in nature and evolve 

with time, the IDS needs to be retrained in order to reduce the 

sudden rise in false positives or false negative. Hence, new 

training data needs to be acquired and it should contain 

sufficient samples of the new data pattern. Ideally the new 

training data samples should be attack-free to reduce any risk 

of a malicious user using a retraining opportunity to poison 

the training data set. During the retraining, the IDS also has to 

determine how to incorporate the new traffic pattern. 

Completely eliminating the previous pattern can result in 

having to constantly retrain the system in a case where 

cyclical traffic pattern changes occur. On the other hand, 

incorporating every observed traffic pattern can lead to a 

bloated database that suffers from a higher false positives or 

false negative rate since its pattern database is too general. 

Self-learning, adaptability and tuning must account for both 

micro and macro environment changes[15]. 

 

III. A FRAMEWORK FOR SELF-LEARNING AND 

CONFIGURABLE IDS 

In this section we propose a framework for the adaptive 

maintenance of the profile rule set that can overcome the need 

for re-computation of the rules without sacrificing the 

detection capabilities.  

 

The process begins with an initial set of audit data. Then 

stream rule mining will be applied to mine streaming network 

data. During each time window, the audit data in the 

incremental part will be mined and compared with the profile 

rule set. There can be three possibilities. If the similarity stays 

above threshold, no update is needed and the system 

continues with the current profile. If similarity goes below 

threshold with a sharp negative change, intrusion will be 

signaled and the profile will not be updated. If similarity goes 

below threshold with gradual change, the profile will be 

updated with the audit data in the current time window. 

 

A. Stream Data Mining 

The data stream paradigm has recently emerged in 

response to the continuous data problem. Algorithms written 

for data streams can naturally cope with data sizes many 

times greater than memory, and can extend to challenging 

real-time applications not previously tackled by machine 

learning or data mining. The core assumption of data stream 

processing is that training examples can be briefly inspected a 

single time only, that is, they arrive in a high speed stream, 

then must be discarded to make room for subsequent 

examples. The algorithm processing the stream has no control 

over the order of the examples seen, and must update its 

model incrementally as each example is inspected. An 

additional desirable property, the so-called anytime property, 

requires that the model is ready to be applied at any point 

between training examples. 

I. Mining Strategies 

Analogous to approaches used in data mining, there are 

two general strategies for taking machine learning concepts 

and applying them to data streams. The wrapper approach 

aims at maximum reuse of existing schemes, whereas 

adaptation looks for new methods tailored to the data stream 

setting. 

 

Purposefully adapted algorithms designed specifically 

for data stream problems offer several advantages over 

wrapper schemes. They can exert greater control over 

processing times per example, and can conduct memory 

management at a finer-grained level. Common varieties of 

machine learning approaches to classification fall into 

several general classes. These classes of method are 

discussed below, along with their potential for adaptation to 

data streams: The following different modes of change have 

been identified in the literature:  
  

•••• Concept change 

– Concept drift 

– Concept shift 

 

Concept refers to the target variable, which the model is 

trying to predict. Concept change is the change of the 

underlying concept over time. Concept drift describes a 

gradual change of the concept and concept shift happens 

when a change between two concepts is more abrupt. 

II. Concept Change Detection in IDS  

Concept drift is defined as a change in the underlying 

data generation process. In the context of classification, 

concept drift is the change in statistical properties of the 

target variable, which the model is trying to predict, over 

time [2][6][7]. In this context, the term concept refers to the 

quantity we aim to predict.  Three steps are required to 

handle a concept drift:  

 

•••• Monitoring Step 

•••• Updating Step  

•••• Diagnostic Step  

 

This kind of methods monitors the indicators of 

performance of the model such as accuracy, precision and 

recall (Klinkenberg, 2001). These indicators are monitored 

constantly and compared to a confidence level or an adjusted 

threshold. Two well-known performance-based methods can 

be cited: Drift Detection Method (DDM) proposed by Gama 

et al. (2004); and Early Drift Detection Method (EDDM) 

proposed by Baena-García et al. (2006). Next section 

describes both the Drift Detection Method (DDM) and Early 

Drift Detection Method (EDDM) in detail. 
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III. Drift Detection Method 

Gama et al.[8][13] based their Drift Detection Method 

(DDM) on the fact, that in each iteration an live classifier 

predicts the decision class of an example. That prediction 

can be either true or false, thus for a set of examples the error 

is a random variable from Bernoulli trials. Let us denote 

ip as the probability of a false prediction and is as its 

standard deviation calculated as given by Equation 1. 

i

pp
s

ii

i

)1( −
=                                   ........... Equation 1 

For a sufficiently large number of examples (n > 30), 

the Binomial distribution is closely approximated by a 

Normal distribution with the same mean and variance. For 

each example in the data stream the error rate is tracked 

updating two values: minp and
mins . These values are used 

to calculate a warning level condition presented in Equation 

2 and an alarm level condition presented in Equation 3. Each 

time a warning level is reached, examples are remembered in 

a separate window. If afterwards the error rate falls below 

the warning threshold, the warning is treated as a false alarm 

and the separate window is dropped. However, if the alarm 

level is reached, the previously taught base learner is 

dropped and a new one is created, but only from the 

examples stored in the separate “warning” window. 

  

minmin spsp ii ⋅+≥+ α                    ........... Equation 2 

 

minmin spsp ii ⋅+≥+ β                    ........... Equation 3 

 

The values α and β  in the above conditions decide 

about the confidence levels at which the warning and alarm 

signals are triggered. The value of 2=α  and 3=β  , gives 

approximately 95% confidence of warning and 99% 

confidence of drift.  

DDM has good ability to detect abrupt and global drifts 

which affect the whole dataset. However, it presents low 

adaptability to gradual and local drifts which slowly affect 

some parts of the dataset. To overcome this problem we 

explored the Early Drift Detection Method (EDDM). The 

detail descriptions of EDDM is given in the next section.  

IV. Early Drift Detection Method 

The idea behind the Early Drift Detection Method 

(EDDM) is to consider the distance between two consecutive 

errors of classification. Notice that the error distance is 

represented by the numbers of instances between two 

consecutive classification errors. This approach assumes that 

if the distribution of the instances is stationary, the learning 

model will improve its prediction and the error distance will 

increase as the number of instances increases. Thus, a 

significant decrease in the error distance implies a drift. It 

will calculate the average distance between two errors (
'

ip ) 

and its standard deviation (
'

is ). What it store are the values of 

'

ip  and 
'

is  when 
'; 2 ii sp ⋅+  reaches its maximum value 

(obtaining 
'

maxp and
'

maxs ). Thus, the value of 

'

max

'

max 2 sp ⋅+ corresponds with the point where the 

distribution of distances between errors is maximum. This 

point is reached when the model that it is being induced best 

approximates the current concepts in the dataset. 

 

The method defines two thresholds: 

 

•••• ( ) ( ) α'
max

'
max

'' 22 spsp ii ⋅+⋅+  for the warning 

level. Beyond this level, the examples are stored in 

advance of a possible change of context.  

 

•••• ( ) ( ) β'
max

'
max

'' 22 spsp ii ⋅+⋅+  for the drift level. 

Beyond this level the concept drift is supposed to be 

true, the model induced by the learning method is 

reset and a new model is learnt using the examples 

stored since the warning level triggered. The values 

for 
'
maxp  and 

'
maxs  are reset too. 

 

The values of α  and β  has to be determined after some 

experimentation which is approx. 0.95 and 0.9 respectively. 

If the similarity between the actual value of  
'; 2 ii sp ⋅+  

and the maximum value 
'
max

'
max 2 sp ⋅+ increase over the 

warning threshold, the stored examples are removed and the 

method returns to normality. 

The EDDM method achieves an early detection in 

presence of gradual changes, even when that change is very 

slow. This method shows a way to deal with noisy datasets 

even when the base algorithm is not designed with that aim.  

 

Though the EDDM is better than DDM but most of these 

concept drift detection methods detect drifts by measuring the 

changes in the whole instance space. Such drift detection 

methods are called as global drift detection methods. A 

limitation of global drift detection is that if the data undergo a 

partial drift in a small region, a global method may not be 

sensitive enough to detect it.  To detect such partial drift 

detection methods has been discussed in [6] which we are 

implementing along with Early Drift Detection Method 

(EDDM). The next section briefly describe about the Partial 

Drift Detection Method.  

V. Partial Drift Detection Method  

A limitation of global drift detection is that if the data 

undergo a partial drift in a small region, a global method 
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may not be sensitive enough to detect it. Also, a global 

method may not be able to identify the regions where the 

change takes place and thus unable to update the model 

accordingly[1][3][5]. 

To detect partial drifts, we need to look into local 

regions of the instance space. One way to do so is to 

partition the instance space into subspaces and apply an 

existing global method to each of the subspaces. Such a 

strategy requires prior knowledge of how the instance space 

should be partitioned. A coarse partition may not offer much 

of the benefits of partial detection, while a fine partition may 

be too sensitive to noise and data variation. To overcome 

these problems, a partial drift detection method based on a 

rule induction framework is described below.  

 

1 Apply a rule induction method to the current 

available data (e.g., the first chunk of data) to learn 

a set of classification rules. 

2 When a new data chunk is available, detect partial 

drifts as follows:  

 
a) For each rule whose coverage is over a user-

specified threshold, apply a drift detection 

measure to detect changes in the local instance 

space covered by the rule. 

b) If no rule has coverage over the user-specified 

threshold, apply the same measure to each rule 

whose coverage is over the 90th percentile of 

the rule coverage in the model to detect drifts 

in the local region covered by the rule.  

 

In this procedure, only rules with good coverage are 

used to identify regions for local drift detection. The reason 

for such a choice is that changes in a small region may be 

well due to noise or data variation and thus are not reliable 

indicators of concept drifts. In addition, rules with good 

coverage usually describe the concept in the data better than 

the rules that cover few examples. A significant change of 

class distribution in the region covered by such a rule is a 

better indicator that the concept is changing. The coverage 

threshold can be user-specified (such as 10%), or a high 

percentile of the rule coverage values. We use a user-

specified threshold first. If none of the rules has coverage 

over the threshold (meaning all the rules have small 

coverage), we choose all the rules whose coverage is over 

the 90th percentile. The reason for this second threshold is to 

choose rules with relatively high coverage from low-

coverage rules; otherwise, no rules can be used for drift 

detection. The choice of the 90th percentile is based on 

experimental results [6].  

 

VI. Heuristics for Forgetting 

When using a learner with partial instance memory to 

acquire concepts that change, there must be a mechanism to 

remove irrelevant examples of the old concept.  Widmer and 

Kubat [9] investigated a heuristic approach to size such a 

window dynamically. Their window adjustment heuristic 

algorithm (Figure 1) takes into account current performance, 

whether accuracy is decreasing, and the coverage of the 

current concept descriptions. The user must set three 

parameters that determine thresholds for acceptable coverage 

and accuracy, but provided that concepts do not change too 

frequently, this heuristic will, in principle, size a forgetting 

window irrespective of the periodicity of change.  

The heuristic takes four actions: reduce the window’s 

size by 20%, reduce it by one time unit, make no change, 

and increase it by one. When concepts change, signaled by 

low coverage or by poor and decreasing accuracy, the 

heuristic quickly decreases the size of the window by 20%. 

As the learner acquires new concepts, the heuristic makes no 

change to the window’s size or increases it gradually [14]. 

When concepts are stable, signaled by high coverage and 

acceptable accuracy, the heuristic gradually decreases the 

window’s size. We use this window’s size to control the 

AVSpace in Rule Induction Algorithm (Figure 2). 

 

Input: 

 

lc: threshold for low coverage, user-defined 

hc: threshold for high coverage, user-defined 

p: threshold for acceptable accuracy, user-

defined 

N: examples covered by the positive concept 

description 

S: number of conditions in the positive 

description 

Acc: accuracy of current concept descriptions 

 

Output: w: window size 

 

if )))(sin(/( AccgdecreapAcclcSN ∧<∨<  

    ;2.0 ww −=∆  

else if )0.2/( pAcchcSN >∧×>  

    ;0.1−=∆w  

else if )/( pAcchcSN >∧>  

    ;0.0=∆w   

else 

    ;0.1=∆w  

;www ∆+=  

end 

 

Figure 1:- Heuristic for Dynamically Adjusting the Window 

Size 

IV. BUILDING AND UPDATING IDS RULESET USING 

EARLY DRIFT DETECTION AND PARTIAL DRIFT 

DETECTION 

The approach is a general framework for rule learners, and 

any rule learning algorithm can be utilized for this approach. 

The learning, pruning and classification routine of a rule 
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learner does not need to be changed but the rule learner 

needs to be augmented to support rule quality, which is a 

trivial task. 

We have used slightly modified version of SRLF 

Algorithm [6][15] for our work. The modified algorithm is 

based on Early Drift Detection (EDDM) which we have 

named as Rule Induction Algorithm (Figure 2).  In this 

algorithm, we first learn a set of rules from the first chunk of 

data, and calculate rule qualities on that chunk using one of 

the rule quality measures [10][11][12]. When a new chunk of 

data is available, the Early Drift Detection method is used on 

rules with relatively high coverage. If a drift is detected on 

the region covered by a rule, we compute the qualities of this 

rule and the rules that were not used in drift detection (i.e., 

the rules with low coverage) on the new data. If the quality 

of a rule drops on the new data, which suggests the negative 

impact of the drift on the rule performance, the rule is 

removed from the model. Unaffected rules remain part of the 

classification model. Finally, if a drift is detected, a new 

model is learned from the new and past relevant data and 

added to the current classification model.  

The strategy of keeping previously-learned consistent 

rules ensures that some of the past history is emphasized 

within the new model. If future concepts overlap with the 

current concept, which is the case in partial drifts, inclusion 

of these rules can improve the classification accuracy of the 

new model [7] [11][13]. 

 
A. Evaluation 

 

We compared the performance of our drift detection 

approach in classification with other concept drift detection 

methods. In classification problems, we compare Partial 

Drift Detection (PDD) to two known methods for concept 

Drift Detection: DDM (Gama et al., 2004), Early Drift 

Detection (EDDM) (Baena-Garcıaet al., 2006). 

 

B. Experimental Datasets (KDD Cup 99 Dataset) 

 

We have used the 10% version of the KDD Cup 99 

Dataset, which is more concentrated. This data set was used 

in KDD Cup 1999 Competition. The full dataset has about 

five million connection records, this is a set with only 10 % 

of the size. Here different classes appear and disappear 

frequently, making the new class detection challenging. This 

dataset contains TCP connection records extracted from 

LAN network traffic at MIT Lincoln Labs over a period of 

two weeks. Each record refers to either to a normal 

connection or an attack. There are 22 types of attacks, such 

as buffer-overflow, portsweep, guess-passwd, neptune, 

rootkit, smurf, spy, etc. So, there are 23 different classes of 

data. Most of the data points belong to the normal class. 

Each record consists of 42 attributes, such as connection 

duration, the number of bytes transmitted, number of root 

accesses, etc.  

 

Input: 

 

Network data chunk               D 

AVSpace (maintaining relevant instances)    Λ  

Rule-based classifier               C 

Early Drift Detection Method             M 

Rule coverage threshold              θ  

 

Output: Updated Classifier               C 

Updated AVSpace               Λ  

 

1:   if   C == NULL then   

2:         insert instance of D into Λ  

3:           classifier learned from Λ  

4:    else 

5:    For each rule R in C do 

6:          if coverage(R) > θ then 

7:  detect drift over the region covered by R using M 

8:          end if 

9:     end for 

10:   if no rule has coverage > θ  then 

11:       for each rule R in C do 

12:             if coverage(R) > the 90th percentile then 

13:                 detect drift over the region covered by R using 

M 

14:             end if 

15:        end for 

16:    end if 

17: if drift is detected then 

18:     for each rule R in C do 

19:          if drift is detected over R or coverage(R) is below 

the 

                 threshold then 

20:      ←oldQ    rule quality from  Λ  

21:      ←newQ   rule quality from D 

22:        if newold QQ >   then 

23:            remove R from C 

24:         if drift is detected over R then 

25:                               remove positive instances 

                               covered by R from Λ  

26:         end if 

27:       end if 

28:  end if 

29:      end for 

30: end if 

31: Insert instances of D into Λ  

32: if drift was detected then 

33:  ∪← CC classifier learned from Λ  

34: end if 

35: end if 

36: return C and Λ  

Figure 2:- Rule Induction Algorithm 
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C. Performance Analysis 

Performance comparisons are done by evaluating 

detection quality and error rate. A True Positive (TP) 

detection is defined as a detection within a fixed delay range 

after the precise concept change time. A False Negative (FN) 

is defined as missing a detection within the delay range, and 

a False Positive (FP), as a detection outside this range or an 

extra detection in the range. The detection quality (DQ) is 

measured by TP/(TP+FN) and Precision(P)=TP/(TP+FP) of 

the detector.  

 
Algorithm FN FP TP DQ P 

DDM 2.75 1.99 96.9 0.97240341 0.97987663 

EDDM 1.75 1.43 97.1 0.98229641 0.98548665 

PDD 0.82 0.98 98.1 0.99171047 0.990109 

Table 1:- Comparative Analysis of Drift Detection Methods 

The results are presented in the Table 1, which shows 

that the performance of partial drift detection is better than 

the DDM and EDDM. The False Positive and False Negative 

both the values are less for partial drift detection (Figure 3) 

and precision is comparatively high. 

 

 

Figure 3:- Comparative Analysis of False Negative and 

False Positive Detection 

V. CONCLUSION  

 

In this paper, we have addressed the issues of detecting 

intrusion with high precision when a potential changes 

occurs in operational environment. Since the traffic pattern is 

dynamic in nature and evolve with time, the IDS needs to be 

retrained in order to reduce the sudden rise in false positives 

or false negative. Our experiments shows that the proposed 

scheme is more robust to the changing environment and has 

better precision. Experimental results show that the method 

has high precision, and performs well to reduce the False 

Negative and False Positive rate. The primary goal of 

devising a solution to decrease human effort for 

reconfiguring and tuning the IDS for a changed environment 

was accomplished. 
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