
 © 2014, IJCSE All Rights Reserved 69

 International Journal of Computer ScienceInternational Journal of Computer ScienceInternational Journal of Computer ScienceInternational Journal of Computer Sciencessss and Engineeringand Engineeringand Engineeringand Engineering Open Access
 Research Paper Volume-2, Issue-11 E-ISSN: 2347-2693

Self-Learning and Configurable IDS for Dynamic Environment

Manish Kumar
1*

 and M. Hanumanthappa
2

1*
 Dept. of Master of Computer Applications,

M. S. Ramaiah Institute of Technology, Bangalore, Bangalore University, Bangalore, INDIA
2
 Dept. of Computer Science and Applications,Jnana Bharathi Campus, Bangalore University,Bangalore -INDIA

www.ijcaonline.org

Received: Oct/22/2014 Revised: Nov/04/2014 Accepted: Nov/18/2014 Published: Nov/30/2014

Abstract— A major difficulty of any anomaly-based intrusion detection system is that patterns of normal behavior change over

time and the system must be retrained. One of the principal problems of the intrusion detection systems based on the anomaly

detection principles is their error rate, both in terms of false negatives (undetected attacks) and false positives, i.e. legitimate

traffic labeled as malicious. This problem is amplified by the fact that the sensitivity (and consequently the error rate) varies

dynamically as a function of the network traffic. An IDS must be able to adapt to these changes, and be able to distinguish these

changes in normal behavior from intrusive behavior. In this paper, we address some of the key issues of detecting intrusion

when a potential change occurs in operational environment and learn from the changed environment.

Keywords— Network Intrusion Detection System (NIDS), Stream Data Mining, Drift Detection, Early Drift Detection Method

(EDDM)

I. INTRODUCTION

A major shortcoming of current IDSs that employ data

mining methods is that they can give a series of false alarms

in cases of a noticeable systems environment modification.

There can be two types of false alarms in classifying system

activities in case of any deviation from normal patterns: false

positives and false negatives. False positive alarms are issued

when normal behaviors are incorrectly identified as abnormal

and false negative alarms are issued when abnormal

behaviors are incorrectly identified as normal. Though it’s

important to keep both types of false alarm rates as low as

possible, the false negative alarms should be the minimum to

ensure the security of the system. To overcome this

limitation, an IDS must be capable of adapting to the

changing conditions typical of an intrusion detection

environment. Specifically the Network Intrusion Detection

System (NIDS) which detect the anomaly based on the

network profile which is a streaming data and very much

dynamic in nature.

One of the challenges of network streaming data

classification is that the underlying data generation process of

a stream tends to change over time, which is called as concept

drift. A model learned from an earlier part of stream loses its

classification accuracy upon the arrival of new instances that

exhibit concept drift. As a result, any classification algorithm

that is to be applied to data streams must be adjusted to

effectively detect the concept drift when it occurs, and

efficiently update the classification model to reflect the new

concept.

II. PROBLEMS RELATED TO IDS’S SELF LEARNING

AND CONFIGURABILITY

System security administrators can tune the IDS by

adjusting the profile, but it may require frequent human

intervention. Since normal system activities may change

because of modifications to work practices, it is important

that an IDS should have automatic adaptability to new

conditions. Otherwise, an IDS may start to lose its edge. Such

adaptability can be achieved by employing incremental

mining techniques. Such an adaptive system should use real

time data to constantly update the profile. One

straightforward approach can be to regenerate the profile with

the new audit data. But this would not be a computationally

feasible approach. When the current usage profile is

compared with the initial profile, there can be different types

of deviation. Each of these deviations can represent an

intrusion or a change in behavior. In case of a change in

system behaviors, the base profile must be updated with the

corresponding change so that it does not give any false

positives alarms in future. This means that the system needs a

mechanism for deciding whether to make a change or reject

it. If the system tries to make a change to the base profile

every time it sees a deviation, there is a potential danger of

incorporating intrusive activities into the profile. The IDS

must be able to adapt to these changes while still recognizing

abnormal activities. If both intrusive behavior and change in

normal behavior occur during a particular time interval, the

problem becomes more complicated. Again, determining

which rules to add and which to remove is critical. There are

also additional issues that need to be addressed in case of

updating. The system should adapt to rapid changes as well as

gradual changes in system behavior. Selecting the time

interval at which the update should take place is also an

important issue. If the interval is too long, the system may

Corresponding Author: Manish Kumar
1*Dept. of Master of Computer Applications, M. S. Ramaiah Institute

of Technology, Bangalore, Bangalore University, Bangalore, INDIA

 International Journal of Computer Sciences and Engineering Vol.-2(11), PP(69-75) Nov 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 70

miss some rapid changes or short-term attacks. If the interval

is too small, the system may miss some long-term changes.

Since the traffic pattern is dynamic in nature and evolve

with time, the IDS needs to be retrained in order to reduce the

sudden rise in false positives or false negative. Hence, new

training data needs to be acquired and it should contain

sufficient samples of the new data pattern. Ideally the new

training data samples should be attack-free to reduce any risk

of a malicious user using a retraining opportunity to poison

the training data set. During the retraining, the IDS also has to

determine how to incorporate the new traffic pattern.

Completely eliminating the previous pattern can result in

having to constantly retrain the system in a case where

cyclical traffic pattern changes occur. On the other hand,

incorporating every observed traffic pattern can lead to a

bloated database that suffers from a higher false positives or

false negative rate since its pattern database is too general.

Self-learning, adaptability and tuning must account for both

micro and macro environment changes[15].

III. A FRAMEWORK FOR SELF-LEARNING AND

CONFIGURABLE IDS

In this section we propose a framework for the adaptive

maintenance of the profile rule set that can overcome the need

for re-computation of the rules without sacrificing the

detection capabilities.

The process begins with an initial set of audit data. Then

stream rule mining will be applied to mine streaming network

data. During each time window, the audit data in the

incremental part will be mined and compared with the profile

rule set. There can be three possibilities. If the similarity stays

above threshold, no update is needed and the system

continues with the current profile. If similarity goes below

threshold with a sharp negative change, intrusion will be

signaled and the profile will not be updated. If similarity goes

below threshold with gradual change, the profile will be

updated with the audit data in the current time window.

A. Stream Data Mining

The data stream paradigm has recently emerged in

response to the continuous data problem. Algorithms written

for data streams can naturally cope with data sizes many

times greater than memory, and can extend to challenging

real-time applications not previously tackled by machine

learning or data mining. The core assumption of data stream

processing is that training examples can be briefly inspected a

single time only, that is, they arrive in a high speed stream,

then must be discarded to make room for subsequent

examples. The algorithm processing the stream has no control

over the order of the examples seen, and must update its

model incrementally as each example is inspected. An

additional desirable property, the so-called anytime property,

requires that the model is ready to be applied at any point

between training examples.

I. Mining Strategies

Analogous to approaches used in data mining, there are

two general strategies for taking machine learning concepts

and applying them to data streams. The wrapper approach

aims at maximum reuse of existing schemes, whereas

adaptation looks for new methods tailored to the data stream

setting.

Purposefully adapted algorithms designed specifically

for data stream problems offer several advantages over

wrapper schemes. They can exert greater control over

processing times per example, and can conduct memory

management at a finer-grained level. Common varieties of

machine learning approaches to classification fall into

several general classes. These classes of method are

discussed below, along with their potential for adaptation to

data streams: The following different modes of change have

been identified in the literature:

•••• Concept change

– Concept drift

– Concept shift

Concept refers to the target variable, which the model is

trying to predict. Concept change is the change of the

underlying concept over time. Concept drift describes a

gradual change of the concept and concept shift happens

when a change between two concepts is more abrupt.

II. Concept Change Detection in IDS

Concept drift is defined as a change in the underlying

data generation process. In the context of classification,

concept drift is the change in statistical properties of the

target variable, which the model is trying to predict, over

time [2][6][7]. In this context, the term concept refers to the

quantity we aim to predict. Three steps are required to

handle a concept drift:

•••• Monitoring Step

•••• Updating Step

•••• Diagnostic Step

This kind of methods monitors the indicators of

performance of the model such as accuracy, precision and

recall (Klinkenberg, 2001). These indicators are monitored

constantly and compared to a confidence level or an adjusted

threshold. Two well-known performance-based methods can

be cited: Drift Detection Method (DDM) proposed by Gama

et al. (2004); and Early Drift Detection Method (EDDM)

proposed by Baena-García et al. (2006). Next section

describes both the Drift Detection Method (DDM) and Early

Drift Detection Method (EDDM) in detail.

 International Journal of Computer Sciences and Engineering Vol.-2(11), PP(69-75) Nov 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 71

III. Drift Detection Method

Gama et al.[8][13] based their Drift Detection Method

(DDM) on the fact, that in each iteration an live classifier

predicts the decision class of an example. That prediction

can be either true or false, thus for a set of examples the error

is a random variable from Bernoulli trials. Let us denote

ip as the probability of a false prediction and is as its

standard deviation calculated as given by Equation 1.

i

pp
s

ii

i

)1(−
= Equation 1

For a sufficiently large number of examples (n > 30),

the Binomial distribution is closely approximated by a

Normal distribution with the same mean and variance. For

each example in the data stream the error rate is tracked

updating two values: minp and
mins . These values are used

to calculate a warning level condition presented in Equation

2 and an alarm level condition presented in Equation 3. Each

time a warning level is reached, examples are remembered in

a separate window. If afterwards the error rate falls below

the warning threshold, the warning is treated as a false alarm

and the separate window is dropped. However, if the alarm

level is reached, the previously taught base learner is

dropped and a new one is created, but only from the

examples stored in the separate “warning” window.

minmin spsp ii ⋅+≥+ α Equation 2

minmin spsp ii ⋅+≥+ β Equation 3

The values α and β in the above conditions decide

about the confidence levels at which the warning and alarm

signals are triggered. The value of 2=α and 3=β , gives

approximately 95% confidence of warning and 99%

confidence of drift.

DDM has good ability to detect abrupt and global drifts

which affect the whole dataset. However, it presents low

adaptability to gradual and local drifts which slowly affect

some parts of the dataset. To overcome this problem we

explored the Early Drift Detection Method (EDDM). The

detail descriptions of EDDM is given in the next section.

IV. Early Drift Detection Method

The idea behind the Early Drift Detection Method

(EDDM) is to consider the distance between two consecutive

errors of classification. Notice that the error distance is

represented by the numbers of instances between two

consecutive classification errors. This approach assumes that

if the distribution of the instances is stationary, the learning

model will improve its prediction and the error distance will

increase as the number of instances increases. Thus, a

significant decrease in the error distance implies a drift. It

will calculate the average distance between two errors (
'

ip)

and its standard deviation (
'

is). What it store are the values of

'

ip and
'

is when
'; 2 ii sp ⋅+ reaches its maximum value

(obtaining
'

maxp and
'

maxs). Thus, the value of

'

max

'

max 2 sp ⋅+ corresponds with the point where the

distribution of distances between errors is maximum. This

point is reached when the model that it is being induced best

approximates the current concepts in the dataset.

The method defines two thresholds:

•••• () () α'
max

'
max

'' 22 spsp ii ⋅+⋅+ for the warning

level. Beyond this level, the examples are stored in

advance of a possible change of context.

•••• () () β'
max

'
max

'' 22 spsp ii ⋅+⋅+ for the drift level.

Beyond this level the concept drift is supposed to be

true, the model induced by the learning method is

reset and a new model is learnt using the examples

stored since the warning level triggered. The values

for
'
maxp and

'
maxs are reset too.

The values of α and β has to be determined after some

experimentation which is approx. 0.95 and 0.9 respectively.

If the similarity between the actual value of
'; 2 ii sp ⋅+

and the maximum value
'
max

'
max 2 sp ⋅+ increase over the

warning threshold, the stored examples are removed and the

method returns to normality.

The EDDM method achieves an early detection in

presence of gradual changes, even when that change is very

slow. This method shows a way to deal with noisy datasets

even when the base algorithm is not designed with that aim.

Though the EDDM is better than DDM but most of these

concept drift detection methods detect drifts by measuring the

changes in the whole instance space. Such drift detection

methods are called as global drift detection methods. A

limitation of global drift detection is that if the data undergo a

partial drift in a small region, a global method may not be

sensitive enough to detect it. To detect such partial drift

detection methods has been discussed in [6] which we are

implementing along with Early Drift Detection Method

(EDDM). The next section briefly describe about the Partial

Drift Detection Method.

V. Partial Drift Detection Method

A limitation of global drift detection is that if the data

undergo a partial drift in a small region, a global method

 International Journal of Computer Sciences and Engineering Vol.-2(11), PP(69-75) Nov 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 72

may not be sensitive enough to detect it. Also, a global

method may not be able to identify the regions where the

change takes place and thus unable to update the model

accordingly[1][3][5].

To detect partial drifts, we need to look into local

regions of the instance space. One way to do so is to

partition the instance space into subspaces and apply an

existing global method to each of the subspaces. Such a

strategy requires prior knowledge of how the instance space

should be partitioned. A coarse partition may not offer much

of the benefits of partial detection, while a fine partition may

be too sensitive to noise and data variation. To overcome

these problems, a partial drift detection method based on a

rule induction framework is described below.

1 Apply a rule induction method to the current

available data (e.g., the first chunk of data) to learn

a set of classification rules.

2 When a new data chunk is available, detect partial

drifts as follows:

a) For each rule whose coverage is over a user-

specified threshold, apply a drift detection

measure to detect changes in the local instance

space covered by the rule.

b) If no rule has coverage over the user-specified

threshold, apply the same measure to each rule

whose coverage is over the 90th percentile of

the rule coverage in the model to detect drifts

in the local region covered by the rule.

In this procedure, only rules with good coverage are

used to identify regions for local drift detection. The reason

for such a choice is that changes in a small region may be

well due to noise or data variation and thus are not reliable

indicators of concept drifts. In addition, rules with good

coverage usually describe the concept in the data better than

the rules that cover few examples. A significant change of

class distribution in the region covered by such a rule is a

better indicator that the concept is changing. The coverage

threshold can be user-specified (such as 10%), or a high

percentile of the rule coverage values. We use a user-

specified threshold first. If none of the rules has coverage

over the threshold (meaning all the rules have small

coverage), we choose all the rules whose coverage is over

the 90th percentile. The reason for this second threshold is to

choose rules with relatively high coverage from low-

coverage rules; otherwise, no rules can be used for drift

detection. The choice of the 90th percentile is based on

experimental results [6].

VI. Heuristics for Forgetting

When using a learner with partial instance memory to

acquire concepts that change, there must be a mechanism to

remove irrelevant examples of the old concept. Widmer and

Kubat [9] investigated a heuristic approach to size such a

window dynamically. Their window adjustment heuristic

algorithm (Figure 1) takes into account current performance,

whether accuracy is decreasing, and the coverage of the

current concept descriptions. The user must set three

parameters that determine thresholds for acceptable coverage

and accuracy, but provided that concepts do not change too

frequently, this heuristic will, in principle, size a forgetting

window irrespective of the periodicity of change.

The heuristic takes four actions: reduce the window’s

size by 20%, reduce it by one time unit, make no change,

and increase it by one. When concepts change, signaled by

low coverage or by poor and decreasing accuracy, the

heuristic quickly decreases the size of the window by 20%.

As the learner acquires new concepts, the heuristic makes no

change to the window’s size or increases it gradually [14].

When concepts are stable, signaled by high coverage and

acceptable accuracy, the heuristic gradually decreases the

window’s size. We use this window’s size to control the

AVSpace in Rule Induction Algorithm (Figure 2).

Input:

lc: threshold for low coverage, user-defined

hc: threshold for high coverage, user-defined

p: threshold for acceptable accuracy, user-

defined

N: examples covered by the positive concept

description

S: number of conditions in the positive

description

Acc: accuracy of current concept descriptions

Output: w: window size

if)))(sin(/(AccgdecreapAcclcSN ∧<∨<

 ;2.0 ww −=∆

else if)0.2/(pAcchcSN >∧×>

 ;0.1−=∆w

else if)/(pAcchcSN >∧>

 ;0.0=∆w

else

 ;0.1=∆w

;www ∆+=

end

Figure 1:- Heuristic for Dynamically Adjusting the Window

Size

IV. BUILDING AND UPDATING IDS RULESET USING

EARLY DRIFT DETECTION AND PARTIAL DRIFT

DETECTION

The approach is a general framework for rule learners, and

any rule learning algorithm can be utilized for this approach.

The learning, pruning and classification routine of a rule

 International Journal of Computer Sciences and Engineering Vol.-2(11), PP(69-75) Nov 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 73

learner does not need to be changed but the rule learner

needs to be augmented to support rule quality, which is a

trivial task.

We have used slightly modified version of SRLF

Algorithm [6][15] for our work. The modified algorithm is

based on Early Drift Detection (EDDM) which we have

named as Rule Induction Algorithm (Figure 2). In this

algorithm, we first learn a set of rules from the first chunk of

data, and calculate rule qualities on that chunk using one of

the rule quality measures [10][11][12]. When a new chunk of

data is available, the Early Drift Detection method is used on

rules with relatively high coverage. If a drift is detected on

the region covered by a rule, we compute the qualities of this

rule and the rules that were not used in drift detection (i.e.,

the rules with low coverage) on the new data. If the quality

of a rule drops on the new data, which suggests the negative

impact of the drift on the rule performance, the rule is

removed from the model. Unaffected rules remain part of the

classification model. Finally, if a drift is detected, a new

model is learned from the new and past relevant data and

added to the current classification model.

The strategy of keeping previously-learned consistent

rules ensures that some of the past history is emphasized

within the new model. If future concepts overlap with the

current concept, which is the case in partial drifts, inclusion

of these rules can improve the classification accuracy of the

new model [7] [11][13].

A. Evaluation

We compared the performance of our drift detection

approach in classification with other concept drift detection

methods. In classification problems, we compare Partial

Drift Detection (PDD) to two known methods for concept

Drift Detection: DDM (Gama et al., 2004), Early Drift

Detection (EDDM) (Baena-Garcıaet al., 2006).

B. Experimental Datasets (KDD Cup 99 Dataset)

We have used the 10% version of the KDD Cup 99

Dataset, which is more concentrated. This data set was used

in KDD Cup 1999 Competition. The full dataset has about

five million connection records, this is a set with only 10 %

of the size. Here different classes appear and disappear

frequently, making the new class detection challenging. This

dataset contains TCP connection records extracted from

LAN network traffic at MIT Lincoln Labs over a period of

two weeks. Each record refers to either to a normal

connection or an attack. There are 22 types of attacks, such

as buffer-overflow, portsweep, guess-passwd, neptune,

rootkit, smurf, spy, etc. So, there are 23 different classes of

data. Most of the data points belong to the normal class.

Each record consists of 42 attributes, such as connection

duration, the number of bytes transmitted, number of root

accesses, etc.

Input:

Network data chunk D

AVSpace (maintaining relevant instances) Λ

Rule-based classifier C

Early Drift Detection Method M

Rule coverage threshold θ

Output: Updated Classifier C

Updated AVSpace Λ

1: if C == NULL then

2: insert instance of D into Λ

3: classifier learned from Λ

4: else

5: For each rule R in C do

6: if coverage(R) > θ then

7: detect drift over the region covered by R using M

8: end if

9: end for

10: if no rule has coverage > θ then

11: for each rule R in C do

12: if coverage(R) > the 90th percentile then

13: detect drift over the region covered by R using

M

14: end if

15: end for

16: end if

17: if drift is detected then

18: for each rule R in C do

19: if drift is detected over R or coverage(R) is below

the

 threshold then

20: ←oldQ rule quality from Λ

21: ←newQ rule quality from D

22: if newold QQ > then

23: remove R from C

24: if drift is detected over R then

25: remove positive instances

 covered by R from Λ

26: end if

27: end if

28: end if

29: end for

30: end if

31: Insert instances of D into Λ

32: if drift was detected then

33: ∪← CC classifier learned from Λ

34: end if

35: end if

36: return C and Λ

Figure 2:- Rule Induction Algorithm

 International Journal of Computer Sciences and Engineering Vol.-2(11), PP(69-75) Nov 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 74

C. Performance Analysis

Performance comparisons are done by evaluating

detection quality and error rate. A True Positive (TP)

detection is defined as a detection within a fixed delay range

after the precise concept change time. A False Negative (FN)

is defined as missing a detection within the delay range, and

a False Positive (FP), as a detection outside this range or an

extra detection in the range. The detection quality (DQ) is

measured by TP/(TP+FN) and Precision(P)=TP/(TP+FP) of

the detector.

Algorithm FN FP TP DQ P

DDM 2.75 1.99 96.9 0.97240341 0.97987663

EDDM 1.75 1.43 97.1 0.98229641 0.98548665

PDD 0.82 0.98 98.1 0.99171047 0.990109

Table 1:- Comparative Analysis of Drift Detection Methods

The results are presented in the Table 1, which shows

that the performance of partial drift detection is better than

the DDM and EDDM. The False Positive and False Negative

both the values are less for partial drift detection (Figure 3)

and precision is comparatively high.

Figure 3:- Comparative Analysis of False Negative and

False Positive Detection

V. CONCLUSION

In this paper, we have addressed the issues of detecting

intrusion with high precision when a potential changes

occurs in operational environment. Since the traffic pattern is

dynamic in nature and evolve with time, the IDS needs to be

retrained in order to reduce the sudden rise in false positives

or false negative. Our experiments shows that the proposed

scheme is more robust to the changing environment and has

better precision. Experimental results show that the method

has high precision, and performs well to reduce the False

Negative and False Positive rate. The primary goal of

devising a solution to decrease human effort for

reconfiguring and tuning the IDS for a changed environment

was accomplished.

REFERENCES

[1] A. Asuncion and D. J. Newman. UCI Machine Learning

Repository

[http://www.ics.uci.edu/_mlearn/mlrepository.html].

University of California, Irvine, School of Information

and Computer Sciences, 2007.

[2] Albert Bifet and Richard Kirkby Data Stream Mining A

Practical Approach :August 2009.

[3] Andrei Bara, Prof. Wayne Luk, “DeADA Self-adaptive

anomaly detection dataflow architecture, Master’s thesis,

Master of Engineering in Computing of Imperial College

London,2013.

[4] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and

Philip S. Yu. On demand classification of data streams. In

Knowledge Discovery and Data Mining, pages 503–508,

2004.

[5] Concept drift -

http://en.wikipedia.org/wiki/Concept_drift.

[6] Damon Sotoudeh, Aijun An, “Partial Drift Detection

Using a Rule Induction Framework”, CIKM’10

Proceedings of the 19th ACM International Conference

on Information and Knowledge Management, Pages 769-

778, 2010

[7] Dariusz Brzezinski, “Mining Data Streams with Concept

Drift” , Poznan University of Technology, Faculty of

Computing Science and Management, Institute of

Computing Science,2010.

[8] Fredrik Gustafsson. Adaptive Filtering and Change

Detection. Wiley, 2000.

[9] G.Widmerand M.Kubat. Learning in the presence of

concept drift and hidden contexts. Machine learning,

23(1):69–101,1996.

[10] Ian F. Akyildiz, Weilian Su, Yogesh

Sankarasubramaniam, and Erdal Cayirci. Asurvey on

sensor networks. IEEE Communications Magazine,

40(8):102–116, 2002.

[11] Leo Breiman. Rejoinder to discussion of the paper

“arcing classifiers”. The Annals of Statistics, 26(3):841–

849, 1998.

[12] Maayan Harel, Koby Crammer, Ran El-Yaniv, Shie

Mannor, “Concept Drift Detection Through Resampling”,

Proceedings of the 31st International Conference on

Machine Learning, Beijing, China, 2014. JMLR: W&CP

volume 32.

[13] Manuel Baena-Garc´ıa, Jose´ del Campo-A´ vila, Rau´ l

Fidalgo, Albert Bifet, Ricard Gavald´a, and Rafael

Morales-Bueno. Early drift detection method. In Fourth

International Workshop on Knowledge Discovery from

Data Streams, 2006.

[14] Marcus A. Maloof, “Incremental Rule Learning with

Partial Instance Memory for Changing Concepts”,

Proceedings of the 2003 International Joint Conference

on Neural Networks, 2764–2769. Los Alamitos, CA:

IEEE Press

[15] Thomas G. Dietterich. Machine learning research: Four

current directions. The AI Magazine, 18(4):97–136, 1998.

 International Journal of Computer Sciences and Engineering Vol.-2(11), PP(69-75) Nov 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 75

AUTHORS PROFILE

Manish Kumar is working as Assistant

Professor in the Department of Computer

Applications, M. S. Ramaiah Institute of

Technology, Bangalore, India. He is

pursuing his PhD from Bangalore

University, Bangalore. His specialization

is in Network and Information Security.

He has worked on the R&D projects

related on theoretical and practical issues about a conceptual

framework for E-Mail, Web site and Cell Phone tracking,

which could assist in curbing misuse of Information

Technology and Cyber Crime. He has published many

research papers in National, International Conferences and

Journals. He is also the active member of various

professional societies.

Dr. M Hanumanthappa is currently

working as Professor in the Department

of Computer Science and Applications,

Bangalore University, Bangalore, India.

He has over 15 years of teaching (Post

Graduate) as well as Industry experience.

He is member of Board of Studies /Board

of Examiners for various Universities in Karnataka, India.

He is actively involved in the funded research project and

guiding research scholars in the field of Data Mining and

Network Security. He has published many research papers in

National, International Conferences and Journals. He is also

the active member of various professional societies.

