
 © 2015, IJCSE All Rights Reserved 70

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Survey Paper Volume-3, Issue-11 E-ISSN: 2347-2693

A Survey on Content Injection Attacks

 Sandeep D Sukhdeve
1*

 and Hemlata Channe
2

1*
Post Graduate Department of Computer Science and Engineering (PICT), Pune University, India

2
Assistant Professor , Pune Institute of Computer Technology(PICT),Pune University, India

www.ijcseonline.org

Received: Nov /05/2015 Revised: Nov/14/2015 Accepted: Nov/20/2015 Published: Nov/30/2015

Abstract— We are increasingly relying on web, and performing important transactions online through it. At the same time,

quantity and impact of security vulnerabilities in such applications has grown as well. This work presents a survey of web

security research which is the emerging domain that implements various detection prevention techniques for hinder content

injection attacks on web applications. This paper provides a classification of the research areas on the content injection attacks.

In this paper, we analyze important aspects in content injection attacks. In addition, this paper presents a survey of various

security mechanisms adopted by web browsers to defend content injection attacks. The goals of this survey paper are two-fold:

i) Serve as a guideline for researchers, who are new to web security and want to contribute to this research area, and

ii) Provides further research directions required into content injection attack prevention.

Keywords— XSS(Cross-site scripting), SQLI(Structural Query Language Injection),Content Injection,SQL queries.

I. INTRODUCTION

Nowadays many activities are performed by dynamic

web applications. For example users pay their utility bills,

book the hotels or air tickets by dynamic websites to save

time and money. It is crucial that user data must be kept

secret. That is, confidentiality and integrity of user data

must be provided by developers of the web application but

unfortunately there is no such guarantee for preserving the

underlying web application from various content injection

attacks. Content injection attacks can compromise

confidentiality and integrity of information in the vulnerable

web application.

According to the Symantec security threat report of 2015

[29], cross-site scripting is listed on number two out of top

ten web application vulnerabilities. Web sites vulnerable to

content injection attacks are from various categories such as

blogging, hosting, entertainment, shopping, sports, etc.

According to the Open Web Application Security Project

(OWASP) 2013 top ten web application vulnerability report

[23], injection attack is a number one web application

vulnerability and cross-site scripting listed at number three

among the top ten web application vulnerabilities.

In 2011, the National Institute of Standards and

Technology National Vulnerability Database [18] reported

289 SQL injection vulnerabilities (7 percent of all

vulnerabilities) in websites, including those of IBM,

Hewlett-Packard, Cisco, WordPress, and Joomla. In

December 2011, SANS Institute security experts reported a

major SQL injection attack (SQLIA) that affected

approximately 160,000 websites using Microsoft’s Internet

Information Services (IIS), ASP.NET, and SQL Server

frameworks [10].

Inadequate validation and sanitization of user inputs

make websites vulnerable to content injection, and re-

searchers have proposed various ways to address this

problem, ranging from simple static analysis to complex

dynamic analysis.

A. Content injection and its types

Content injection attack refers to inserting malicious

content into a legitimate site. There are two types of con-

tent injection attacks namely SQL injection and cross-site

scripting.

SQL Injection: SQL Injection (SQLI) attack is a

prevalent attack technique that allows attackers to gain

direct access to the web application database and

extract sensitive information from the victim web

application’s database [33].

Cross-site Scripting (XSS): Cross-site scripting (XSS)

is a type of web application vulnerability that enables

attackers to inject client-side script into web pages

viewed by other users. Attackers can use cross-site

scripting vulnerability to bypass access controls such

as the same-origin policy (SOP) [2], [32]. Some

examples of real-world cross-site scripting attacks can

be found at [6], [16], [25], [35], [36].

B. Observations

We observed that the aim of content injection attack to

gain illegal access to user data. The Structural Query
Corresponding Author: Sandeep Sukhdeve, sukhdevesandeep@gmail.com

 Post Graduate Department of Computer Science and

Engineering(PICT), University of Pune, India.

 International Journal of Computer Sciences and Engineering Vol.-3(11), PP(70-74) Nov 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 71

Language Injection (SQLI) attack occurs when an attacker

changes the logic, semantics or syntax of a SQL query by

inserting new SQL keywords or operators. SQL Injection

attack is a class of content injection attacks that occurs

when there is no input validation mechanism deployed by

web developers in the web application.

In cross-site scripting attack, the attackers fold malicious

content into the content being delivered from the

compromised site. When the resulting combined content

arrives at the client-side web browser, it has all been

delivered from the trusted source, and thus operates under

the permissions granted to that system. By finding ways of

injecting malicious scripts into web pages, an attacker can

gain elevated access-privileges to sensitive page content,

session cookies, and a variety of other information

maintained by the browser on behalf of the user [32]. The

successful XSS attack is a result of lack to provide input

validation in the web application by the developers.

Too many existing techniques are either not publicly

available or are difficult to adopt. Readily available tools

would motivate more developers to combat content

injection attacks. Developer’s unawareness of security

mechanisms and content injection sanitization can result in

data loss or corruption, lack of accountability, or denial of

access. Injection can sometimes lead to complete host

takeover. Therefore, it is important to provide a solution

that protects web applications from SQLI and XSS attacks.

This paper performs the survey of various techniques

proposed to protect web applications from these attacks.

C. Contributions

In summary, this paper makes the following

contributions:

1) Classifies state-of-the-art research performed on

detection and prevention of content injection at-

tacks.

2) Provides analysis of important aspects in content

injection attacks.

3) Provides guidelines and further research directions

required in the content injection attacks prevention.

The rest of this paper is organized as follows: Section II

explains content injection attack vectors (SQL injection and

Cross-site Scripting attack) with the help of example.

Section III describes our motivation. Section IV discusses

the literature survey. Section V suggests open research

question in content injection, and we conclude the paper in

Section VI.

II. BACKGROUND

A. An Example of SQL Injection Attack

Typically users are requested to provide some input data on

web pages (for example, username and passwords) and web

applications make a SQL query to the database based on the

information received from the user. Malicious user can send

crafted input to change the SQL statement structure and

execute arbitrary SQL commands on the vulnerable system.

Let’s consider an example of web application that

accepts username and password for users in order to allow

authenticate users to login to the web site. When user input

is received at server side by the web application, following

SQL query is created and executed by the web application

to verify credentials provided by the user:

SELECT * FROM usertable WHERE userID =

’Sandeep’ and password = ’abc123’

Assume malicious users provided following crafted input

in the password input box:

’ or 1=1 --

The SQL query in the web application will become:

SELECT * FROM usertable WHERE userID = Sandeep

and password = ’’ or 1=1 --’

The ”or 1=1” will make the query TRUE and results in

returning all the records in the ”usertable” to the malicious

user. The ”-” comments out the last ’ character appended

by the web application.

B. An Example of Cross-site Scripting Attack

Attacker can inject scripts in a web page by reflection.

For example, when asked for a non-existent page on the

web server, many websites try to produce a helpful not

found response that includes the URL of the non-existent

page that was requested. Therefore, if the developers of

website are not carefully sanitizing the user inputs, an

occurrence of the text < script > …. < /script > in the URL

can be executed in the visitor’s browser when it renders the

not found page. To exploit this, an attacker can try to entice

victims to follow URLs with targets that include scripts,

e.g.,

http://trusted.site/<script>document.location=’http://malicio

ussite.com/?’+document.cookie</script>

The attacker could place the URL in a spam e-mail, in a

blog comment on trusted.site, or even on another website. If

a victim follows the link, the script will run in the not found

page served by trusted.site, retrieve the user’s trusted.site

cookie, and send it to malicioussite.com.

 International Journal of Computer Sciences and Engineering Vol.-3(11), PP(70-74) Nov 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 72

III. MOTIVATION

Traditionally, content injection was limited to personal

computing environments. However, the increasing use of

smart phones, tablets, and other portable devices has

extended this problem to mobile and cloud computing

environments, where vulnerabilities could spread much

faster and become much easier to exploit. We were

motivated to perform this survey in order to enumerate and

compare state-of-the-art research that proposed techniques

to prevent content injection attacks. This study paper

provides analysis and summarizes various proposed

solution for prevention of SQL injection and cross-site

scripting attacks. This survey can become the starting point

for anyone trying to understand, evaluate and develop

techniques for web security.

IV. LITERATURE SURVEY

A. SQL Injection Detection and Prevention Solutions

Several solutions that mitigate the risk posed by SQL

Injection attacks have already been proposed [1], [7]–[9].

All of these solutions have been successful in mitigating

SQL Injection attacks. However, none of these solutions

address the actual SQL injection attack that exists in the

source code. A common way to remove SQL injection

vulnerability is to separate the SQL structure from the SQL

input by using prepared statements. Stephen et.al. [30]

proposed a prepared statement replacement algorithm and a

corresponding tool for automated fix generation.

Cristian [22] et.al. presented a hybrid approach based on

the Adaptive Intelligent Intrusion Detector Agent (AIIDA-

SQL) for the detection of SQL injection attacks. The

AIIDA-SQL agent incorporates a Case-Based Reasoning

(CBR) engine which is equipped with learning and

adaptation capabilities for the classification of SQL queries

and detection of malicious user requests. To carry out the

tasks of attack classification and detection, the agent

incorporates advanced algorithms in the reason-ing cycle

stages. Concretely, an innovative classification model based

on a mixture of an Artificial Neuronal Network together

with a Support Vector Machine is applied in the reuse stage

of the CBR cycle. This allowed classification of SQL

queries.

Michelle [27] et. al. proposed a technique that is based on

automatically developing a model for a SQL query such that

the model captures the dependencies between various

components (sub-queries) of the query.
 The authors analyzed the model using CREST test-case

generator and identify the conditions under which the query

corresponding to the model is deemed vulnerable. The

authors further analyzed the obtained condition set to

identify its subset; this subset being referred to as the causal

set of the vulnerability. The technique proposed by the

authors considers the semantics of the query conditions, i.e.,

the relationship between the conditions, and as such

complements the existing techniques which only rely on

syntactic structure of the SQL query. In short, the technique

proposed by the authors can detect vulnerabilities in nested

SQL queries.

B. Cross-site Scripting Detection and Prevention

Solutions

Mozilla has a feature called signed scripts [26]. Scripts

are signed when they require additional privileges, such as

writing to local files, and the absence of a signature does

not constrain scripts. Server-side techniques to protect

against script injection attacks have been reported

extensively in the literature. A systematic approach to

filtering injected attacks involves partitioning trusted and

untrusted content into separate channels and subjecting all

untrusted content to application defined sanitization checks

[21]. Su and Wassermann [28] develop a formal model for

command injection attacks and apply a syntactic criterion to

filter out malicious dynamic content. Applications of taint

checking to server programs that generate content to ensure

that untrustworthy input does not flow to vulnerable

application components have also been explored [17], [34].

UserCSP [20] is a Mozilla tool that allows security savvy

users to specify and en-force content security policy to

protect themselves from cross-site scripting attacks. The

tool automatically infers content security policies for the

websites user visits and enforces them to protect users from

XSS attacks. Other solutions [4], [5] need browser

modifications to identify untrusted or malicious scripts from

trusted scripts.

MashupOS [31] makes the browser a multi-principal

operating system for Web applications. BEEP [13] lets Web

sites restrict the scripts that run in each of their pages.

ConScript [14] enforces application-specified security

policies. OMash [3] restricts communication to public

interfaces declared by each page. Kailas [12], [19] proposed

a solution to isolate untrusted scripts included in web

applications from the trusted scripts. It allows isolation of

Javascript context for scripts from different origins. In

addition, it also provides different privileges of read and

write to scripts running in isolated Javascript contexts.

BrowserShield [24] propose to defeat JavaScript-based

attacks by rewriting scripts according to a security policy

prior to executing them in the browser. In BrowserShield,

the rewriting process inserts trusted JavaScript functions to

mediate access to the document tree by untrusted scripts.

Jackson et al. [11] describe several unexpected repos-

itories of private information in the browsers cache that

could be stolen by XSS attacks. They advocate applying a

refinement of the same-origin policy [15] to cover aspects

of browser state that extend beyond cookies. By allowing

the server to explicitly specify the scripts that it

 International Journal of Computer Sciences and Engineering Vol.-3(11), PP(70-74) Nov 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 73

intentionally includes in the document, our approach can

also be thought of as an extension of the same-origin policy.

Other research efforts [37], [38] proposed various security

solutions.

V. RESEARCH QUESTIONS

 To solve research problems in web security needs to

address the research challenges in prevention of cross-site

scripting, and SQL injection attacks. The need to web

security solutions generates a number of important research

questions:

• To provide rich user interface and web 2.0

features, how can user tasks be modeled and

analyzed automatically by the system?

• How user intent is determined correctly? Does it

implicitly determine by the system or system needs

explicit user interactions.

• How to isolate trusted inputs from untrusted

inputs? Where to implement protection solution

(application level, network level, client-side or

database)?

• How to include third-party content or untrusted

content safely in web applications.

• How to identify user input and web application

data.

Research in web application security is crucial because

it is a fusion of a research in many disjoint areas.

VI. CONCLUSION
Traditionally, content injection was limited to personal

computing environments. However, the increasing use of

smart phones, tablets, and other portable devices has

extended this problem to mobile and cloud computing

environments, where vulnerabilities could spread much

faster and become much easier to exploit.

In this paper, we presented a survey of SQL injection and

Cross-site scripting prevention research. This paper

analyzed important aspects in content security systems. This

survey paper serves as a guideline for researchers who are

new to web security and want to contribute to this research

area.

REFERENCES
[1] G. Buehrer, B.W. Weide, and P.A.G. Sivilotti. “Using

parse tree validation to prevent sql injection attacks”. In

Proceedings of the 5th International Workshop on

Software Engineering and Middleware, 2005.

[2] CGIsecurity. The cross-site scripting (xss) faq.

http://www.cgisecurity.com/xss-faq.html.

[3] S. Crites, F. Hsu, and H. Chen. Omash: “Enabling secure

web mashups via object abstractions”. In Proceedings of

the International Conference on Computer and

Communications Security (CCS), 2008.

[4] Xinshu Dong, Kailas Patil, Xuhui Liu, Jian Mao, and

Zhenkai Liang. “An entensible security framework in web

browsers”. Technical Report TR-SEC-2012-01, Systems

Security Group, School of Computing, National

University of Singapore, 2012.

[5] Xinshu Dong,Kailas Patil, Jian Mao, and Zenkai Liang.

“A comprehensive client-side behavior model for

diagnosing attacks in ajax applications”. In proceedings of

the 18th International Conference on Engineering of

Complex Computer systems (ICECSS), 2013.

[6] Dennis Fisher. Persistent XSS bug on twitter exploited by

worm http://threatpost.com/en us/blogs/persistent-xss-

bug-twitter-being-exploited-092110

[7] W.G.J.Halfond and A. Orso. “Amnesia: analysis and

monitoring for neutralizing sql-injection attacks”. In

Proceedings of the 20th IEEE/ACM International

Conference on Automated Software Engineering, 2005.

[8] W.G.J. Halfond and A. Orso. “Combining static analysis

and runtime monitoring to counter sql-injection attacks”.

In Proceed-ings of the Third International Workshop on

Dynamic Analysis, 2005.

[9] W.G.J. Halfond, A. Orso, and P. Manolios. “Using

positive tainting and syntax-aware evaluation to counter

sql-injection at-tacks”. In Proceedings of the 14th ACM

SIGSOFT International Symposium on Foundations of

Software Engineering, 2006.

[10] Mark Hofman. Sql injection attack happening atm.

isc.sans.org/diary/SQL+Injection+Attack+happening+ATM/

12127.

[11] Collin Jackson, Andrew Bortz, Dan Boneh, and John C.

Mitchell. “Protecting browser state from web privacy

attacks”. In Proceedings of the International Conference

on World Wide Web (WWW), 2006.

[12] Patil Kailas, Dong Xinshu, Li Xiaolei, Liang Zhenkai, and

Jiang Xuxian. “Towards fine-grained access control in

javascript contexts”. In Proceedings of the International

Conference on Distributed Computing Systems, 2011.

[13] Ziqing Mao, Ninghui Li, and Ian Molloy. “Defeating

cross-site request forgery attacks with browser-enforced

authenticity protection”. In Financial Cryptography and

Data Security, 13th International Conference, 2009.

[14] Leo A. Meyerovich and Benjamin Livshits. “ConScript:

Specify-ing and enforcing fine-grained security policies

for javascript in the browser”. In Proceedings of the IEEE

Symposium on Security and Privacy (IEEE S & P), 2010.

[15] Mozilla Same origin policy for javascript.

https://developer.mozilla.org/En/Same_origin_policy_for

_javascript.

[16] The clickjacking meets xss: a state of art.

http://www.milw0rm.com/papers/265, 2008.

[17] Anh Nguyen-tuong, Salvatore Guarnieri, Doug Greene,

Jeff Shirley, and David Evans. “Automatically hardening

web appli-cations using precise tainting”. In Proceeding

of the 20th IFIP International Information Security

Conference, 2005.

[18] National Institute of standards and technology. National

vulnerability database (nvd)

http://web.nvd.nist.gov/view/vuln/search

[19] Kailas Patil Ensuring session integrity in the browser

environment http://scholarbank.nus.edu.sg/bitstream/

handle/10635/49161/ThesisHT080141L.pdf?sequence=1,

2013.
[20] Kailas Patil, Tanvi Vyas, Fredrik Braun, and Mark

Goodwin. “Usercsp- user specified content security

policies”. SOUPS’13 POSTER, 2013.

[21] Tadeusz Pietraszek, Chris V, and En Berghe. “Defending

 International Journal of Computer Sciences and Engineering Vol.-3(11), PP(70-74) Nov 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 74

against injection attacks through context-sensitive string

evaluation”. In Proceeding of the Recent Advances in

Intrusion Detection, 2005.

[22] Cristian Pinzn, Javier Bajo Juan F. De Paz, lvaro Herrero,

and Emilio Corchado. “Aiida-sql: An adaptive intelligent

intrusion detector agent for detecting sql injection attacks”.

In Proceedings of the 10th International Conference on

Hybrid Intelligent systems 2010.

[23] OWASP-The open web application security project.

OWASP top ten project.
https://www.owasp.org/index.php/Top_10_2013-Top_10

[24] Charles Reis, John Dunagan, Helen J. Wang, Opher

Dubrovsky, and Saher Esmeir. “Browsershield:

Vulnerability-driven filtering of dynamic html”. In

Proceedings of the Symposium on Oper-ating Systems

Design and Implementation (OSDI), 2006.

[25] RSnake. Xss(cross site scripting) cheat sheet esp: for filter

evasion. http://ha.ckers.org/xss.html.

[26] Jesse Ruderman. Signed scripts in mozilla.

http://www.mozilla.org/projects/security/components/sign

ed-scripts.html.

[27] Michelle Ruse, Tanmoy Sarkar, and Samik Basu.

“Analysis & detection of sql injection vulnerabilities via

automatic test case generation of programs”. In

Proceedings of the Annual International Symposium on

Applications and the Internet, 2010.

[28] Zhendong Su and Gary Wassermann. “The essence of

command injection attacks in web applications”. In

Proceedings of the ACM Symposium on Principles of

Programming Languages (POPL), 2006.

[29] Symantec. Internet security threat report volume 20.

https://www4.symantec.com/mktginfo/whitepaper/ISTR/2

1347932 GA-internet-security-threat-report-volume-20-

2015-social v2.pdfg, April 2015.

[30] Stephen Thomas, Laurie Williams, and Tao Xie. “On

auto-mated prepared statement generation to remove sql

injection vulnerabilities”. In Proceedings of the Elsevier

Journal on the Information and Software Technology,

2009.

[31] H. J. Wang, X. Fan, J. Howell, and C. Jackson.

“Protection and communication abstractions for web

browsers in mashupos”. In Proceeding of the SOSP, 2007.

[32] Wikipedia Cross site scripting.
https://en.wikipedia.org/wiki/Cross-site_scripting

[33] Wikipedia SQL injection

https://en.wikipedia.org/wiki/SQL_injection

[34] Yichen Xie and Alex Aiken. “Static detection of security

vulnerabilities in scripting languages”. In Proceedings of

the USENIX Security Symposium, 2006.

[35] xssed.com. Myspace.com hit by a permanent xss.

http://www. xssed.com/news/83/Myspace.com hit by a

Permanent XSS/.

[36] xssed.com. New orkut xss worm by brazilian web secu-

rity group. http://www.xssed.com/news/77/New Orkut

XSS worm by Brazilian web security group/.

[37] K.S.Wagh, Vishal Jotshi, Harshal Dalvi, Manish Kamble.

“Reversed proxy based XSS filtering”. In Proceeding of

the International Journal on Computer Science and

Engineering (IJCSE). Vol -3, Issue-5,Page No(175-180)

May 2015.

[38] Jyotsnamayee Upadhyaya, Namita Panda, Arup Abhinna

Acharya. “Attack Generation and Vulnerability Discovery

in Penetration Testing using Sql Injection”. In Proceeding

of the International Journal on Computer Science and

Engineering (IJCSE). Vol -2, Issue-3,Page No(167-173)

March 2014.

AUTHORS PROFILE

Sandeep Sukhdeve, is

currently pursuing final year

M.E. in Computer Science

and Engineering from Pune

Institute of Computer

Technology (PICT), Pune.

Mrs.Hemlata Channe,

 Assistant Professor,M.E.(CE),

Pune Institute of Computer

Technology(PICT),Pune.

