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Abstract— Security-typed programming languages aim to track insecure information flows in application program. This is achieved 

by extending data types with security labels in order to identify the confidentiality and integrity policies for each data element. Such 

policies specify which principals or entities are allowed to read from or write to the value of data respectively. In this paper, we 

evaluate the run-time overhead of dynamic information flow (DIF) analysis in security typed programming languages. Such analysis 

is performed by including the security labeling in the dynamic operational semantics.  Our evaluation mechanism relies on 

developing two different language implementations for a simple while programming language that has been considered as a case of 

study.  The first one is a traditional interpreter that implements the ordinary operational semantics of the language without security 

labeling of data types and hence performs no information flow analysis. The second one is an interpreter that performs a dynamic 

information flow analysis by implementing the security labeling semantics (where language data types are augmented with security 

labels). Next, two execution times of a program executed using both interpreters are measured (i.e., one execution time for each 

interpreter). The resulting difference in execution time represents the absolute run-time overhead of dynamic information flow 

analysis. We have calculated the difference in execution time for some benchmark programs that are executed using both 

implementations.  
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I.  INTRODUCTION  

Information flow control aims to protecting the 

confidentiality when dealing with sensitive information and 

dually the integrity when dealing with trustworthy 

information. Security typed programming languages have 

been a promising new approach for enforcing information 

flow policies [1]. Much of the prior work on those languages 

aims to track insecure information flows statically (i.e., 

before program execution) [2], [3]. Although such an 

approach offers no run-time cost, it lacks precision as it may 

reject safe programs [4]. On the other hand, there were few 

attempts that were presented to address the same issue by 

dynamically tracking insecure flows (i.e., during program 

execution). Such analysis is more convenient for enforcing 

information flow policies that varies dynamically. Also it 

offers precision (in comparison to static analysis) by 

rejecting only insecure executions. However such analysis 

has a run-time cost and is unable to detect implicit flows via 

branching on conditional or while-loop [5]. To this end, we 

explore in this paper how to evaluate the cost of dynamically 

tracking insecure information flow in the language runtime 

with the possibility to detect implicit flows. The particular 

language we consider is a simple while-language that 

incorporates a mechanism for providing dynamic analysis of 

information flow properties by adding security labeling to the 

language semantics. Our approach for measuring the run-

time cost of dynamic tracking of insecure flows relies on 

measuring the execution time of reducing programs written 

in the language syntax to the outputs they generates. The 

programs are reduced to their outputs using two prototype 

interpreters which implements two different operational 

semantics for the presented language. The first one is a 

normal interpreter that implements the normal operational 

semantics of the language, while the other implements an 

operational semantics which uses straight forward security 

labeling representation, where every variable has an 

associated information flow label during its declaration to 

express its security level. However, security labeling offers 

overhead to allocate and dynamic track the labels attached to 

each variable. Thus our approach aims to evaluate this 

overhead by measuring the difference in execution time 

when reducing several benchmark programs using both 

interpreters. 

The structure of this paper is organized as follows. The next 

section introduces the language that we use as the basis for 

our experiment. Section 3 presents the normal and secure 

labeling semantics. Section 4 describes the two language 

implementations, benchmarks, and experimental results. 

Section 5 discusses the related work, and Section 6 

concludes. 

II. A SECURITY TYPED WHILE LANGUAGE 

We formalize the dynamic information flow tracking in the 

variables of a simple security typed while language. We call 
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it secure-while language which is a variant of the standard 

while language with a mechanism for augmenting declared 

variables with information flow labels. The syntax of secure-

while is shown in Figure 1. Expression (e) includes constants 

(c), variables (v) and arithmetic and Boolean operations on 

expressions. A program (p) is a sequential piece of code, 

whose body consists of a number of variable declarations 

(vd) and statements (stmt). A statement (stmt) can be an 

assignment, a conditional or a loop statement. We assume 

that the information flow labels that augment variables are 

elements of a simple security lattice LLH with two elements L 

and H representing low and high confidentiality levels, 

respectively [6], with the ordering operation L  H, which 

reads “less restrictive than” 
1
. Hence, one can take the join  

and meet  of two labels to obtain respectively, more and 

less restrictive labels (the least upper bound and the greatest 

lower bound of the two labels, to be precise) than the 

composed labels. The join operation is useful for computing 

an upper bound on the security level of an expression that 

combines sub-expressions at different security levels. 

 

 

 

e ::= c | v| e op e 

p ::= (vd | stmt)* 

vd ::= type"{" label "}" ":" v ":="c";" 

type ::= "bool" | "integer"| "string" 

label ::= "L" | "H" 

stmt ::= v ":=" e ";" | "if" e "then" p1 "else" p2 | 

      "while" e "do" p 

Figure 1.  Syntax of secure-while language. 

 

Let's now consider some examples written in the secure-

While syntax. 

 

A. Example 1 

 

1 int {H} :x=5; 

2 int {H} :y=6; 

3 int {L}:z=0; 

3 z=x+y;   

B. Example 2 
 int {H} :a=1; 

2 int {L} :b=6; 

3 int {L} :c=4; 

4 int {L} :z=0; 

5 if(a==0) then 

6 z=b+c; 

7 else 

8 z=b-c; 

The first Example is illegal as it permits explicit flow by 

assigning high level security information to lower level one. 

The second example is also illegal as it permits an implicit 

flow by deciding which branch to be taken in if-then-else 

statement based on the high level security expression of if-

then-else (i.e., a in this case) and each branch make an 

assignment to a lower level security variable. 

III. NORMAL AND SECURITY LABELING 

SEMANTICS 

The normal semantics of while language is defined using the 

big-step operational semantics. This semantics does not 

perform dynamic information flow analysis, as the 

information flow labels are excluded from type of each 

variable (i.e., there is no security labeling). Each big-step 

evaluation in the normal operational semantics takes the form 

(p, v) →v
'
 where: 

 

 p is a program written in the syntax given in Figure 

1 after excluding the security labels from variable 

declaration. 

 v and v
'
 are valuations of variables, which denote, 

respectively, the store (memory) before and after the 

evaluation, and represented mathematically by 

partial functions from variable names to values. 

 

The security labeling semantics for secure-while language is 

supposed to control explicit and implicit end-to-end 

information flow to prevent information leakage. Each big-

step evaluation in this semantics takes the form PC  (p, v, s) 

→ (v
'
, s

'
), where: 

 

 p, v and v
'
  have the same notion as in the normal 

operational semantics, but we include again the 

security labels in variable declaration. 

 s and s
'
 are security labeling of variables before and 

after the evaluation, represented by mappings from 

variable names to their security labels. 

 PC is the program counter and is represented 

initially by the lower security level element (i.e., L 

security label) in the security lattice LLH. The 

program counter is used to detect implicit flows via 

branching on conditional or while loop, following 

the approach of [7]. 

 

Figure 2 and 3 respectively shows the normal and security 

labeling operational semantics of while and secure-while 

languages respectively. 

   
1A more complex security lattice with more than two 

elements might be considered in practice [21]. 
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Figure 2.  Normal-Operational semantics of While 

Language without security labeling 

IV. IMPLEMENTATION AND EXPERIMENTAL 

RESULTS 

 

The evaluation of the run-time overhead of dynamic 

information flow analysis is done by measuring the 

execution-time in two cases: first when excluding the 

security labeling of data types in the operational semantics 

rules of the secure-while language (i.e., by implementing the 

normal operational semantics presented in figure 2 in a 

traditional interpreter) and the second case is when including 

this labeling in the semantics (i.e., by implementing the 

security labeling operational semantics presented in figure 3 

in another interpreter that tracks insecure information flows 

at run-time). We compared both implementations on the 

following benchmark programs: 

 Sum: adds the values of two variables and assign 

the result to a third one. 

 Implicit-if-true: Implements an implicit 

information flow leakage, where the if-then-else 

conditional expression e evaluates to true. 

 Implicit-if-false: Implements an implicit 

information flow leakage, where the if-then-else 

conditional expression e evaluates to false. 

 

 

 

 
 

Figure 3.  Security labeling- operational semantics of 

secure-While Language.  

Implicit-do-while-true: Implements an implicit information 

flow leakage example, where the while-do conditional 

expression e evaluates to true. 

Implicit-do-while-false: Implements an implicit information 

flow leakage example, where the while-do conditional 

expression e evaluates to false. 

The measurements were performed on Intel Pentium (R) 

Dual-Core CPU (2.00GHz) with 3GB of memory running 

Lunix. Both language implementations were interpreters 

developed using the language specification formalism 

ASF+SDF [8]. The choice of ASF+SDF was because it 

combines two formalisms: Algebraic Specification 

Formalism (ASF) [9] and Syntax Definition Formalism 

(SDF) [10]. The later allows the definition of concrete 

(lexical and context free) and abstract syntax of the domain 

specific language (DSL), while the former allows a 

simultaneous definition of a set of conditional equations that 

defines its semantics. Both formalisms allow the ASF+SDF 

to integrate the syntax and semantics definition of the DSL in 

a modular specification, where each module has a set of 

lexical and context-free grammar rules specified in its SDF 

part and a set of conditional equations specified in its ASF 
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part. Each module can import one or more external modules 

as well as library modules [11] that are required according to 

the specification. Figures 4 and 5 show the implementation 

of the while syntax and its assignment rule as one of its 

normal operational semantics (presented in Figure 2) in SDF 

and ASF respectively. 

Another important reason for implementing the syntax and 

semantics of the while language in the ASF+SDF formalism  

is that it has an interactive development environment called 

the ASF+SDF Meta-Environment [12], [13] which can be 

integrated with Eclipse platform [14] that provides 

functionality for on-line help and error reporting and 

documentation [15]. Moreover, the ASF+SDF Meta-

Environment allows to construct the domain specific 

languages (DSLs) definitions given their formal 

specifications in ASF+SDF formalism, edit,  check and 

compile those definitions just like programs. We refer to [12] 

for more information about implementing domain specific 

languages in ASF+SDF. 

Table I summarizes the results that estimate the execution 

time of all bench mark programs. As the table shows, the 

execution time with interpreter A shown in column 2 

performs the fastest as it implements the normal operational 

semantics without no security labeling and hence allowing 

either explicit or implicit insecure information flows. On the 

other hand, column three shows that interpreter B is slower 

than interpreter A. This is because of adding the security 

labeling to the language semantics (in order to prevent 

explicit and implicit insecure information flows at run-time) 

increases the execution time by the amount required for 

doing information flow analysis dynamically. Column four 

shows the absolute run-time overhead of dynamic 

information flow analysis (DIFA), represented by the 

difference in execution times when using both interpreters 

for evaluating each benchmark program.  

While these experimental results are for a prototype 

preliminary interpreters for a simple imperative language, 

these results do suggest that our approach for evaluating the 

absolute run-time overhead of dynamic flow analysis can be 

applied to a highly-optimized language implementation. 

 

[Assignment] 

1 $Varset1:=SetDeclaredVariables($v), 

2 $Varset2:=SetExpressionVariables($exp,{}), 

3 subset($Varset2,$Varset1)==true, 

4 elem($var,$Varset1)==true, 

5 $value:=ev-exp-value($exp,$v), 

6  $v':=store($v,$var,$value), 

7 ====> 

8 ev-body($var:=$exp;$body,$v)= 

9  ev-body($body,$v') 

Figure  5. An implementation of the assignment operational 

semantics rule for While language in ASF. 

V. RELATED WORK 

Shroff et al. [5], [16] introduced λ
deps

, a higher-order 

language with mutable state, to dynamically track the 

dependencies between program points at run-time and at the 

same time use the collected set of dependencies to detect 

indirect information flows. However, λ
deps

 might leak indirect 

information in the initial run(s) before capturing the 

appropriate dependencies. As an improvement to λ
deps

, in the 

same work, they introduced λ
deps+ 

which is initialized with a  

 

 

module whileL 

imports expressions 

imports values 

imports basic/Whitespace 

imports basic/Comments 

 

exports 

 

sorts 

 Type VarDecl Statement Body  Program 

 

context-free syntax 

 

"Integer"-> Type 

"String"-> Type 

"Boolean"-> Type 

 

%% Definition of VarDecl 

Type ":" Var "=" Value ";" -> VarDecl 

 

Body -> Program 

 

(VarDecl | Statement)*  -> Body 

 

%% Definition of Statement 

Var ":=" EXP ";"-> Statement 

"if" "(" EXP ")" "then" "{" Body "}" "else" "{" Body"}" 

-> Statement 

"while" "(" EXP ")" "do"  "{" Body"}" -> Statement 

 

hiddens 

context-free start-symbols 

Program 

 

Figure 4.  An implementation of the While 

language syntax in SDF. 
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TABLE I.  BENCHMARK EXPERIMENTAL RESULTS 

Benchmark 

program 

Interpret

er A 

Interpret

er B 

Run-time 

overhead of  

DIFA 

Assignment 0.142s 
 

0.211s 
 

0.069s 
 

if-true 0.161s 
 

0.310s 
 

0.149s 
 

if-false 0.172s 
 

0.322s 
 

0.15s 
 

do-while-

true 
0.234s 

 

0.432s 
 

0.198s 
 

do-while-

false 

  0.251s 0.417s 
 

0.166s 
 

Average   0.19s   0.34s   0.15s 

 

 

statically generated complete set of dependencies for a given 

program to detect all indirect information flows at run-time. 

Our approach is similar to their approach in that we also 

track the implicit flows due to conditional and while-loop in 

our dynamic analysis of information flow using the label of 

the program counter. However, we are not aware of any 

implementation for λ
deps

 to our knowledge. Thus the runtime 

overhead of dynamic information flow analysis in λ
deps

 was 

not evaluated. 

Gurvan Le Guerntic presented a development of a monitor 

for concurrent programs including synchronization 

commands [17]. This monitor combines the dynamic and 

static information flow analyses in order to check the 

absence of insecure information flow in concurrent 

programs. Gurvan also investigated the monitor precision as 

well as its soundness regarding enforcing non-interference 

property. However the focus of the work presented in [17] 

was not on the evaluation of run-time overhead by the 

monitor’s dynamic analysis of information flow. 

Our work is inspired by that of Austin and Flanagan [18, 19]. 

They used dynamic information flow analysis in JavaScript 

to prevent the leak of confidential information caused by 

malicious JavaScript code. They presented two semantics for 

λ
info 

[18] a variant of λ-calculus from which the evaluation 

rules for Featherweight JavaScript (FWJS), a subset of 

JavaScript can be derived [20]. The first semantics uses 

universal labeling scheme, where every value has an 

associated information flow label to track information flow 

in a straightforward manner. The second one uses Sparse 

Labeling representation that leaves labels implicit and uses 

explicit labels when values migrate between different 

domains. This work is related to ours in that we also use two 

different types of semantics; the normal and security labeling 

operational semantics. However, they used Sparse Labeling 

when migrating between different domains, which is not the 

focus of our approach. 

 

VI. CONCLUSIONS 

There is a growing need for dynamic information analysis in 

the application programs. This is due its ability to enforce 

dynamic information flow policies that vary at run-time and 

its precision in detecting insecure flows. In this paper, we 

have shown that by using the security labeling in the 

dynamic operational semantics of a simple imperative 

language, it is possible to track information flow dynamically 

with acceptable overhead. By comparing this overhead to the 

one in case of excluding such type of labeling from the 

semantics and get the difference, we have been able to 

extract the absolute run-time cost of dynamic information 

flow analysis. 

As a future work, we are planning to apply our approach to 

measure the run-time overhead caused by dynamic analysis 

of secure information flow in more complicated security-

typed programming languages such as concurrent 
ones. 
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