

 © 2016, IJCSE All Rights Reserved 69

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-4, Issue-11 E-ISSN: 2347-2693

Evaluating the Overhead of Dynamic Information Flow Analysis
Performed by Security Typed Programming Languages

Doaa Hassan

Computers and Systems Department, National Telecommunication Institute, Cairo, Egypt
e-mail: doaa@nti.sci.eg

Available online at: www.ijcseonline.org

Received: Oct/14/2016 Revised: Oct/26/2016 Accepted: Nov/20/2016 Published: Nov/30/2016

Abstract— Security-typed programming languages aim to track insecure information flows in application program. This is achieved

by extending data types with security labels in order to identify the confidentiality and integrity policies for each data element. Such

policies specify which principals or entities are allowed to read from or write to the value of data respectively. In this paper, we

evaluate the run-time overhead of dynamic information flow (DIF) analysis in security typed programming languages. Such analysis

is performed by including the security labeling in the dynamic operational semantics. Our evaluation mechanism relies on

developing two different language implementations for a simple while programming language that has been considered as a case of

study. The first one is a traditional interpreter that implements the ordinary operational semantics of the language without security

labeling of data types and hence performs no information flow analysis. The second one is an interpreter that performs a dynamic

information flow analysis by implementing the security labeling semantics (where language data types are augmented with security

labels). Next, two execution times of a program executed using both interpreters are measured (i.e., one execution time for each

interpreter). The resulting difference in execution time represents the absolute run-time overhead of dynamic information flow

analysis. We have calculated the difference in execution time for some benchmark programs that are executed using both

implementations.

Keywords- Dynamic information flow; security labeling; run-time overhead; operational semantics

I. INTRODUCTION

Information flow control aims to protecting the

confidentiality when dealing with sensitive information and

dually the integrity when dealing with trustworthy

information. Security typed programming languages have

been a promising new approach for enforcing information

flow policies [1]. Much of the prior work on those languages

aims to track insecure information flows statically (i.e.,

before program execution) [2], [3]. Although such an

approach offers no run-time cost, it lacks precision as it may

reject safe programs [4]. On the other hand, there were few

attempts that were presented to address the same issue by

dynamically tracking insecure flows (i.e., during program

execution). Such analysis is more convenient for enforcing

information flow policies that varies dynamically. Also it

offers precision (in comparison to static analysis) by

rejecting only insecure executions. However such analysis

has a run-time cost and is unable to detect implicit flows via

branching on conditional or while-loop [5]. To this end, we

explore in this paper how to evaluate the cost of dynamically

tracking insecure information flow in the language runtime

with the possibility to detect implicit flows. The particular

language we consider is a simple while-language that

incorporates a mechanism for providing dynamic analysis of

information flow properties by adding security labeling to the

language semantics. Our approach for measuring the run-

time cost of dynamic tracking of insecure flows relies on

measuring the execution time of reducing programs written

in the language syntax to the outputs they generates. The

programs are reduced to their outputs using two prototype

interpreters which implements two different operational

semantics for the presented language. The first one is a

normal interpreter that implements the normal operational

semantics of the language, while the other implements an

operational semantics which uses straight forward security

labeling representation, where every variable has an

associated information flow label during its declaration to

express its security level. However, security labeling offers

overhead to allocate and dynamic track the labels attached to

each variable. Thus our approach aims to evaluate this

overhead by measuring the difference in execution time

when reducing several benchmark programs using both

interpreters.

The structure of this paper is organized as follows. The next

section introduces the language that we use as the basis for

our experiment. Section 3 presents the normal and secure

labeling semantics. Section 4 describes the two language

implementations, benchmarks, and experimental results.

Section 5 discusses the related work, and Section 6

concludes.

II. A SECURITY TYPED WHILE LANGUAGE

We formalize the dynamic information flow tracking in the

variables of a simple security typed while language. We call

 International Journal of Computer Sciences and Engineering Vol.-4(11), Nov 2016, E-ISSN: 2347-2693

© 2016, IJCSE All Rights Reserved 70

it secure-while language which is a variant of the standard

while language with a mechanism for augmenting declared

variables with information flow labels. The syntax of secure-

while is shown in Figure 1. Expression (e) includes constants

(c), variables (v) and arithmetic and Boolean operations on

expressions. A program (p) is a sequential piece of code,

whose body consists of a number of variable declarations

(vd) and statements (stmt). A statement (stmt) can be an

assignment, a conditional or a loop statement. We assume

that the information flow labels that augment variables are

elements of a simple security lattice LLH with two elements L

and H representing low and high confidentiality levels,

respectively [6], with the ordering operation L H, which

reads “less restrictive than”
1
. Hence, one can take the join

and meet of two labels to obtain respectively, more and

less restrictive labels (the least upper bound and the greatest

lower bound of the two labels, to be precise) than the

composed labels. The join operation is useful for computing

an upper bound on the security level of an expression that

combines sub-expressions at different security levels.

e ::= c | v| e op e

p ::= (vd | stmt)*

vd ::= type"{" label "}" ":" v ":="c";"

type ::= "bool" | "integer"| "string"

label ::= "L" | "H"

stmt ::= v ":=" e ";" | "if" e "then" p1 "else" p2 |

 "while" e "do" p

Figure 1. Syntax of secure-while language.

Let's now consider some examples written in the secure-

While syntax.

A. Example 1

1 int {H} :x=5;

2 int {H} :y=6;

3 int {L}:z=0;

3 z=x+y;

B. Example 2
 int {H} :a=1;

2 int {L} :b=6;

3 int {L} :c=4;

4 int {L} :z=0;

5 if(a==0) then

6 z=b+c;

7 else

8 z=b-c;

The first Example is illegal as it permits explicit flow by

assigning high level security information to lower level one.

The second example is also illegal as it permits an implicit

flow by deciding which branch to be taken in if-then-else

statement based on the high level security expression of if-

then-else (i.e., a in this case) and each branch make an

assignment to a lower level security variable.

III. NORMAL AND SECURITY LABELING

SEMANTICS

The normal semantics of while language is defined using the

big-step operational semantics. This semantics does not

perform dynamic information flow analysis, as the

information flow labels are excluded from type of each

variable (i.e., there is no security labeling). Each big-step

evaluation in the normal operational semantics takes the form

(p, v) →v
'
 where:

 p is a program written in the syntax given in Figure

1 after excluding the security labels from variable

declaration.

 v and v
'
 are valuations of variables, which denote,

respectively, the store (memory) before and after the

evaluation, and represented mathematically by

partial functions from variable names to values.

The security labeling semantics for secure-while language is

supposed to control explicit and implicit end-to-end

information flow to prevent information leakage. Each big-

step evaluation in this semantics takes the form PC (p, v, s)

→ (v
'
, s

'
), where:

 p, v and v
'
 have the same notion as in the normal

operational semantics, but we include again the

security labels in variable declaration.

 s and s
'
 are security labeling of variables before and

after the evaluation, represented by mappings from

variable names to their security labels.

 PC is the program counter and is represented

initially by the lower security level element (i.e., L

security label) in the security lattice LLH. The

program counter is used to detect implicit flows via

branching on conditional or while loop, following

the approach of [7].

Figure 2 and 3 respectively shows the normal and security

labeling operational semantics of while and secure-while

languages respectively.

1A more complex security lattice with more than two

elements might be considered in practice [21].

 International Journal of Computer Sciences and Engineering Vol.-4(11), Nov 2016, E-ISSN: 2347-2693

© 2016, IJCSE All Rights Reserved 71

Figure 2. Normal-Operational semantics of While

Language without security labeling

IV. IMPLEMENTATION AND EXPERIMENTAL

RESULTS

The evaluation of the run-time overhead of dynamic

information flow analysis is done by measuring the

execution-time in two cases: first when excluding the

security labeling of data types in the operational semantics

rules of the secure-while language (i.e., by implementing the

normal operational semantics presented in figure 2 in a

traditional interpreter) and the second case is when including

this labeling in the semantics (i.e., by implementing the

security labeling operational semantics presented in figure 3

in another interpreter that tracks insecure information flows

at run-time). We compared both implementations on the

following benchmark programs:

 Sum: adds the values of two variables and assign

the result to a third one.

 Implicit-if-true: Implements an implicit

information flow leakage, where the if-then-else

conditional expression e evaluates to true.

 Implicit-if-false: Implements an implicit

information flow leakage, where the if-then-else

conditional expression e evaluates to false.

Figure 3. Security labeling- operational semantics of

secure-While Language.

Implicit-do-while-true: Implements an implicit information

flow leakage example, where the while-do conditional

expression e evaluates to true.

Implicit-do-while-false: Implements an implicit information

flow leakage example, where the while-do conditional

expression e evaluates to false.

The measurements were performed on Intel Pentium (R)

Dual-Core CPU (2.00GHz) with 3GB of memory running

Lunix. Both language implementations were interpreters

developed using the language specification formalism

ASF+SDF [8]. The choice of ASF+SDF was because it

combines two formalisms: Algebraic Specification

Formalism (ASF) [9] and Syntax Definition Formalism

(SDF) [10]. The later allows the definition of concrete

(lexical and context free) and abstract syntax of the domain

specific language (DSL), while the former allows a

simultaneous definition of a set of conditional equations that

defines its semantics. Both formalisms allow the ASF+SDF

to integrate the syntax and semantics definition of the DSL in

a modular specification, where each module has a set of

lexical and context-free grammar rules specified in its SDF

part and a set of conditional equations specified in its ASF

 International Journal of Computer Sciences and Engineering Vol.-4(11), Nov 2016, E-ISSN: 2347-2693

© 2016, IJCSE All Rights Reserved 72

part. Each module can import one or more external modules

as well as library modules [11] that are required according to

the specification. Figures 4 and 5 show the implementation

of the while syntax and its assignment rule as one of its

normal operational semantics (presented in Figure 2) in SDF

and ASF respectively.

Another important reason for implementing the syntax and

semantics of the while language in the ASF+SDF formalism

is that it has an interactive development environment called

the ASF+SDF Meta-Environment [12], [13] which can be

integrated with Eclipse platform [14] that provides

functionality for on-line help and error reporting and

documentation [15]. Moreover, the ASF+SDF Meta-

Environment allows to construct the domain specific

languages (DSLs) definitions given their formal

specifications in ASF+SDF formalism, edit, check and

compile those definitions just like programs. We refer to [12]

for more information about implementing domain specific

languages in ASF+SDF.

Table I summarizes the results that estimate the execution

time of all bench mark programs. As the table shows, the

execution time with interpreter A shown in column 2

performs the fastest as it implements the normal operational

semantics without no security labeling and hence allowing

either explicit or implicit insecure information flows. On the

other hand, column three shows that interpreter B is slower

than interpreter A. This is because of adding the security

labeling to the language semantics (in order to prevent

explicit and implicit insecure information flows at run-time)

increases the execution time by the amount required for

doing information flow analysis dynamically. Column four

shows the absolute run-time overhead of dynamic

information flow analysis (DIFA), represented by the

difference in execution times when using both interpreters

for evaluating each benchmark program.

While these experimental results are for a prototype

preliminary interpreters for a simple imperative language,

these results do suggest that our approach for evaluating the

absolute run-time overhead of dynamic flow analysis can be

applied to a highly-optimized language implementation.

[Assignment]

1 $Varset1:=SetDeclaredVariables($v),

2 $Varset2:=SetExpressionVariables($exp,{}),

3 subset($Varset2,$Varset1)==true,

4 elem($var,$Varset1)==true,

5 $value:=ev-exp-value($exp,$v),

6 $v':=store($v,$var,$value),

7 ====>

8 ev-body($var:=$exp;$body,$v)=

9 ev-body($body,$v')

Figure 5. An implementation of the assignment operational

semantics rule for While language in ASF.

V. RELATED WORK

Shroff et al. [5], [16] introduced λ
deps

, a higher-order

language with mutable state, to dynamically track the

dependencies between program points at run-time and at the

same time use the collected set of dependencies to detect

indirect information flows. However, λ
deps

 might leak indirect

information in the initial run(s) before capturing the

appropriate dependencies. As an improvement to λ
deps

, in the

same work, they introduced λ
deps+

which is initialized with a

module whileL

imports expressions

imports values

imports basic/Whitespace

imports basic/Comments

exports

sorts

 Type VarDecl Statement Body Program

context-free syntax

"Integer"-> Type

"String"-> Type

"Boolean"-> Type

%% Definition of VarDecl

Type ":" Var "=" Value ";" -> VarDecl

Body -> Program

(VarDecl | Statement)* -> Body

%% Definition of Statement

Var ":=" EXP ";"-> Statement

"if" "(" EXP ")" "then" "{" Body "}" "else" "{" Body"}"

-> Statement

"while" "(" EXP ")" "do" "{" Body"}" -> Statement

hiddens

context-free start-symbols

Program

Figure 4. An implementation of the While

language syntax in SDF.

 International Journal of Computer Sciences and Engineering Vol.-4(11), Nov 2016, E-ISSN: 2347-2693

© 2016, IJCSE All Rights Reserved 73

TABLE I. BENCHMARK EXPERIMENTAL RESULTS

Benchmark

program

Interpret

er A

Interpret

er B

Run-time

overhead of

DIFA

Assignment 0.142s

0.211s

0.069s

if-true 0.161s

0.310s

0.149s

if-false 0.172s

0.322s

0.15s

do-while-

true
0.234s

0.432s

0.198s

do-while-

false

 0.251s 0.417s

0.166s

Average 0.19s 0.34s 0.15s

statically generated complete set of dependencies for a given

program to detect all indirect information flows at run-time.

Our approach is similar to their approach in that we also

track the implicit flows due to conditional and while-loop in

our dynamic analysis of information flow using the label of

the program counter. However, we are not aware of any

implementation for λ
deps

 to our knowledge. Thus the runtime

overhead of dynamic information flow analysis in λ
deps

 was

not evaluated.

Gurvan Le Guerntic presented a development of a monitor

for concurrent programs including synchronization

commands [17]. This monitor combines the dynamic and

static information flow analyses in order to check the

absence of insecure information flow in concurrent

programs. Gurvan also investigated the monitor precision as

well as its soundness regarding enforcing non-interference

property. However the focus of the work presented in [17]

was not on the evaluation of run-time overhead by the

monitor’s dynamic analysis of information flow.

Our work is inspired by that of Austin and Flanagan [18, 19].

They used dynamic information flow analysis in JavaScript

to prevent the leak of confidential information caused by

malicious JavaScript code. They presented two semantics for

λ
info

[18] a variant of λ-calculus from which the evaluation

rules for Featherweight JavaScript (FWJS), a subset of

JavaScript can be derived [20]. The first semantics uses

universal labeling scheme, where every value has an

associated information flow label to track information flow

in a straightforward manner. The second one uses Sparse

Labeling representation that leaves labels implicit and uses

explicit labels when values migrate between different

domains. This work is related to ours in that we also use two

different types of semantics; the normal and security labeling

operational semantics. However, they used Sparse Labeling

when migrating between different domains, which is not the

focus of our approach.

VI. CONCLUSIONS

There is a growing need for dynamic information analysis in

the application programs. This is due its ability to enforce

dynamic information flow policies that vary at run-time and

its precision in detecting insecure flows. In this paper, we

have shown that by using the security labeling in the

dynamic operational semantics of a simple imperative

language, it is possible to track information flow dynamically

with acceptable overhead. By comparing this overhead to the

one in case of excluding such type of labeling from the

semantics and get the difference, we have been able to

extract the absolute run-time cost of dynamic information

flow analysis.

As a future work, we are planning to apply our approach to

measure the run-time overhead caused by dynamic analysis

of secure information flow in more complicated security-

typed programming languages such as concurrent
ones.

REFERENCES

[1] Sabelfeld, A., and Myers, A. C.: Language-Based information-

Flow Security. IEEE J. on Sel. Areas in Comm., 21(1):5– 19,

2003.

[2] Myers, A. C.: Flow: Practical Mostly-Static information Flow

Control. In Proceeding of POPL’99, pp. 228–241, ACM, 1999.

[3] Simonet, v., and Rocquencourt, I.: Flow Caml in a Nutshell. In

Proc. Of APPSEM-II, pp. 152–165, 2003.

[4] Alejandro, R. and Andrei, S. Dynamic vs. Static Flow-Sensitive

Security Analysis. In Proceedings of 23rd IEEE Computer

Security Foundations Symposium (CSF’10), pp.186 - 199,

2010.

[5] Shroff, P., Smith, S., and Thober, M.: Securing information

Flow via Dynamic Capture of Dependencies. In Journal of

Computer Security, 16:673–688, 2008.

[6] Denning, D. E.: A Lattice Model of Secure Information Flow.

journal of Commun. ACM, 19(5):236 – 243, 1976.

[7] Molnar. D., Piotrowski, M. , Schultz,D., and Wagner, D: The

program counter security model: Automatic detection and

removal of control flow side channel attacks. In Proc. of

ICISC’05, vol. 3935 of LNCS, pp.156168. Springer, 2005.

[8] Brand, M. G. J. V. D., Deursen, A. V., Heering, J., Jonge, J. M.,

Kuipers, T., Klint, P. , Moonen, L., Olivier, P., Scheerder, J.,

Vinju, J.J. , Visser,E., and Visser, J.: The ASF+SDF Meta-

Environment: A Component-Based Language Development

Environment. In Proc. Of CC’01, vol. 2027 of LNCS, pp. 365–

370, Springer, 2001.

[9] Deursen, A. V., Heering, J., and Klint, P.: Language

Prototyping: An Algebraic Specification Approach: Vol. V.

AMAST Series in Computing, World Scientific, 1996.

[10] Heering, J., Hendriks, P., Klint, P., and Rekers.J.: The Syntax

Definition Formalism SDF - Reference Manual, 1989.

[11] Brand, M. G. J. V. D., and Klint, P. Asf+sdf Meta-

Environment User Manual Revision 1.134. Technical report,

CWI Centrum voor Wiskunde en Informatica, Amsterdam,

2003. Available at: http://www. cwi.nl/projects/MetaEnv/meta.

 International Journal of Computer Sciences and Engineering Vol.-4(11), Nov 2016, E-ISSN: 2347-2693

© 2016, IJCSE All Rights Reserved 74

[12] Brand, M. G. J. V. D., Klint, P., and Vinju, J.J. The Language

Specification Formalism ASF+SDF, 2008.

[13] Klint, P.: A Meta-Environment for Generating Programming

Environments. In ACM TOSEM, 2(2):176–201, 1993.

[14] Eclipse Platform technical overview. Object Technology

International, Inc., 2003.

[15] Brand, M. G. J. V. D., Jong, H. A., Klint, P. and Kooiker, A. T.

A language development environment for Eclipse. In

Proceedings of OOPSLA Workshop on Eclipse Technology

eXchange., 2003.

[16] Shroff, P., Smith, S., and Thober, M.: Dynamic Dependency

Monitoring to Secure Information Flow. In Proc. of CSF’07,

pp. 203–217, IEEE, 2007.

[17] Le Guernic, G. Confidentiality Enforcement Using Dynamic

Information Flow Analyses. PhD thesis, Kansas State

University, 2007.

[18] Austin, T. H. and Flanagan, C. Efficient Purely-Dynamic

Information Flow Analysis. In Proc. of PLAS 2009, pp. 113–

124, ACM, 2009.

[19] Austin, T. H. Dynamic Information Flow Analysis for

JavaScript in a Web Browser. PhD thesis, University of

California, Santa Cruz, March, 2013.

[20] Austin, T. H., Disney, T., Flanagan, C and Jeffrey, A. Dynamic

Information Flow Analysis for Featherweight JavaScript.

Technical Report #UCSC-SOE-11-19, University California,

Santa Cruz, 2011.

[21] Myers, A. C. and Liskov, B. Protecting Privacy Using the

Decentralized Label Model. ACM TOSEM, 9:410 – 442, 2000.

Authors Profile

Doaa Hassan earned her Ph.D. in January,
2012 from Computer and Systems
Engineering Department at Faculty of
Engineering at Zagazig University - Egypt.
As a part of her PhD, she also spent one
year and half as Ph.D. candidate at
Computer Science Department at
Eindhoven University of Technology in
Netherlands. Currently, she is affiliated as
an Assistant Professor at Computers and
Systems Department at National Telecommunication Institute in
Cairo- Egypt. She is also a visiting research associate at School of
Informatics and Computing at Indiana University - Bloomington.
Her research interest focuses on enforcement of information flow
policies and using machine learning and data mining techniques for
automatic detection of network intrusions and applications malware.

