
 © 2015, IJCSE All Rights Reserved 81

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
 Research Paper Volume-3, Issue-9 E-ISSN: 2347-2693

Performance evaluation of Hadoop Distributed File System
In pseudo distributed mode and fully distributed mode

D.Sudheer1* and A.Ramana Lakshmi2
1*,2 Department of Computer Science and Engineering,

Prasad V Potluri Siddhartha Institute of Technology, Kanuru, India

www.ijcseonline.org

Received: Aug/22/2015 Revised: Aug/29/2015 Accepted: Sep/24/2015 Published: Sep/30/2015

Abstract— Huge amounts of data are required to build internet search engines and therefore large number of machines to
process this entire data. The Apache Hadoop is a framework that allows for the distributed processing of large data sets across
clusters of machines. The Hadoop having two modules: 1. Hadoop distributed file system and 2. MapReduce. The Hadoop
distributed file system is different from the local normal file system. The hdfs can be implemented as single node cluster and
multi node cluster. The large datasets are processed more efficiently by the multi node clusters. By increasing number of nodes
the data will be processed faster than the fewer nodes.

Keywords— BigData, HDFS, MapReduce, Namenode, Datanode, Jobtracker, Tasktracker

I. INTRODUCTION

The data uses through internet is rapidly increasing
day by day because of the importance of internet of things
(IOT) is more than earlier days. As 2013, the World Wide
Web has 4 zettabytes of data. Research report from
university southern California reports in 2007, humankind
successfully sent 1.9 zettabytes of information to broadcast
technology. The data is increasing as multiple of bytes as
much as users. The most contribution of data in the internet
is because of social media. As of January 2014, 74% of
online adults are using the social networks. The present
technologies are facing problems to process this huge
amount of data in effective manner. So the distributed file
systems are introduced to the industry. The distributed file
systems are storing the data on several machines instead of
single machine. The data will achieve parallel processing,
so the fastness of data accessing is more than the other file
system [1].

II. BIGDATA

The BigData is a keyword to the present data trends.
The data is increasing rapidly, but the hardware is not
feasible to process the huge amount of data with sufficient
velocity. So the user has to wait more time to perform
operations on the data.
The main challenges facing BigData are:

• Velocity:-User requires immediate result to their
actions, so the data should be processed and transferred
faster through the network.

• Volume:-Volume is the storage issue. Transactional
based data contains from years. This data may have
huge volume. Though the storage cost is negligible
when compare to data processing.

• Variety:-There are many verities of data like
transactional, textual and multimedia data. The data
should be processed any kind of information.

• Veracity:-Trust worthiness of data.

Fig.1. where does the data comes from?

Figure 1 shows in the global marketplace, business
suppliers and customers are creating and consuming vast
amounts of information. Today the petabytes of data is
considered as BigData. The commodity of hardware is
failure to process the large datasets. Maintaining high
performance computers to process this datasets is costly
service. The large datasets are processed with low cost
clusters of machines [5]. Here the dataset will distributed to
several machines has small chunks. To maintain relations
between chunks of data is highly complex task. For that
purpose schema less data is used for BigData concept. To
achieve high availability, reliability and parallelism to
process the data the present trend using Hadoop technology.

III. TECHNOLOGY OVERVIEW

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(81-86) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 82

Hadoop is a framework introduced by the apache
organization which is used to process the large datasets
using commodity of hardware. The Hadoop having two
modules: a. HDFS (Hadoop Distributed File System) b.
MapReduce.

a. HDFS

HDFS is a block-structured file system: individual files
are broken into blocks of a fixed size. These blocks are
stored across a cluster of one or more machines with data
storage capacity. Individual machines in the cluster are
referred to as DataNodes. A file can be made of several
blocks, and they are not necessarily stored on the same
machine; the target machines which hold each block are
chosen randomly on a block-by-block basis. Thus access to
a file may require the cooperation of multiple machines, but
supports file sizes far larger than a single-machine DFS;
individual files can require more space than a single hard
drive could hold. The default block size of HDFS is 64MB.
The default replication factor for HDFS is 3. For Example,
to store 512MB of data we need 8 blocks (as block size is
64MB) and every block has 3 replications [8]. Finally, we
should have 24 blocks to store 512MB of data in HDFS.

Fig.2. Dividing large datasets into small chunks

Hadoop is designed as master-slave architecture. The
namenode acts as the master and all datanodes acts as the
slaves. The jobs assigned to slaves through the jobtracker.
The datanodes are responsible to store the data in blocks.
All slaves are frequently communicated with the master and
sending reports periodically. The above divided small-small
chunks (Fig.2) are going to store in a blocks of datanodes.

Figure 3 shows the communication between namenode
and datanodes in both master and slaves. The slave
machines are having tasktracker and datanodes. The master
machine having jobtracker and namenode, sometimes
master can act as slave also.

Fig.3. Communication between namenode and datanode

The NameNode and DataNode are designed to run
on commodity machines. Namenode will store the metadata
of the HDFS. These machines typically run on a Linux
operating system (OS). HDFS is built using the Java
language; any machine that supports Java can run the
NameNode or the DataNode. Usage of the highly portable
Java language means that HDFS can be deployed on a wide
range of machines. A typical deployment has a dedicated
machine that runs only the NameNode. Each of the other
machines in the cluster runs one instance of the DataNode.

The jobtracker is another part along with
namenode in the master. Jobtracker will assign jobs to the
slaves through the tasktrackers. Jobtracker uses the
metadata stored in the namenode to assign the jobs. All the
demons are continuously communicate each other by the
TCP/IP protocol. There is another master to store logs of a
namenode periodically that is called as secondary
namenode. The secondary namenode act as a mirror to the
namenode.

b. MapReduce

Hadoop MapReduce is a software framework for easily
writing applications which process vast amounts of data
(multi-terabyte data-sets) in-parallel on large clusters
(thousands of nodes) of commodity hardware in a reliable,
fault-tolerant manner.

A MapReduce (Fig.4) job usually splits the input data-
set into independent chunks which are processed by the map
tasks in a completely parallel manner. The framework sorts
the outputs of the maps, which are then input to the reduce
tasks. Typically both the input and the output of the job are
stored in a file-system. The framework takes care of
scheduling tasks, monitoring them and re-executes the
failed tasks [4].

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(81-86) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 83

Fig.4. MapReduce

Typically the compute nodes and the storage nodes are
the same, that is, the MapReduce framework and the
Hadoop Distributed File System are running on the same set
of nodes. The MapReduce is a simple programming
paradigm to process large datasets parallel on several
systems. The MapReduce program creates as multiple
instances depend on the blocks of data. All the instances are
running parallel at each block. The combiner will join the
all intermediate results and reduce as single output. It is
easiest process because of there is no need to travel the data
through the network every time. The mapreduce program is
having small size. So distribution of mapreduce program to
all nodes is easiest task than other techniques. The data
never travels through namenode [2]. When user requests to
store the data according to the metadata, namenode will
give the available block information to the user, then the
user directly stores into the blocks.

IV. HADOOP RUNS ON A SINGLE NODE CLUSTER

Hadoop single node cluster runs on single
machine. The namenodes and datanodes are performing on
the one machine. The installation and configuration steps as
given below:

� Openjdk 7 Installation
Command: sudo apt-get install openjdk-7-jdk.
Command: java –version

� Install openssh-server
Command: sudo apt-get install openssh-server

� Create a ssh key
Command: ssh-keygen -t rsa –P ""

� Moving the key to authorized key
Command: cat $HOME/.ssh/id_rsa.pub >>
$HOME/.ssh/authorized_keys

� Add JAVA_HOME in hadoop-env.sh file
Command: sudo gedit hadoop-1.2.0/conf/hadoop-
env.sh
Type: export JAVA_HOME=/usr/lib/jvm/java-6-
openjdk-i386

� Download and extract Hadoop:
Command: wget
http://archive.apache.org/dist/hadoop/core/hadoop-
1.2.0/hadoop-1.2.0.tar.gz
Command: tar -xvf hadoop-1.2.0.tar.gz

� Change the directory to hadoop-1.2.0

Command: cd hadoop-1.2.0/

� To check hadoop version give the below command

Command: bin/hadoop version

� Configure core-site.xml
Command: sudo gedit conf/core-site.xml
<property>

<name>fs.default.name</name>
<value>hdfs://localhost:8020</value>

</property>

� Configure hdfs-site.xml
Command: sudo gedit conf/hdfs-site.xml
<property>

<name>dfs.replication</name>
<value>1</value>

</property>
<property>

<name>dfs.permissions</name>
<value>false</value>

</property>
<property>

<name>dfs.name.dir</name>
<value>${Hadoop.tmp.dir}/dfs/name</value>

</property>

� Configure mapred-site.xml
Command: sudo gedit conf/mapred-site.xml
<property>

<name>mapred.job.tracker</name>
<value>localhost:8021</value>

</property>

� Format the name node

Command: bin/hadoop namenode -format

� Start the namenode, datanode

Command: bin/start-dfs.sh

� Start the task tracker and job tracker
Command: bin/start-mapred.sh

� To check if Hadoop started correctly

Command: jps

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(81-86) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 84

� Create input directory on hdfs

Command: bin/hadoop fs -mkdir /user/input

� Put the file from local file system to hdfs

Command: bin/hadoop fs -put input/file.txt /user/input

� Apply the WordCount program on input directory

Command: bin/hadoop jar wc.jar WordCount

/user/input /user/output

� To see the output

Command: bin/hadoop fs -ls /user/output/

Command: bin/hadoop fs -cat /user/output/part-r-

00000

V. HADOOP RUNS ON A MULTI NODE CLUSTER

All the demons like namenodes and datanodes are runs on
different machines. The data will replicate according to the
replication factor in client machines. The secondary
namenode will store the mirror images of namenode
periodically. The namenode having the metadata where the
blocks are stored and number of replicas in the client
machines [9]. The slaves and master communicate each
other periodically. The configurations of multinode cluster
are given below:

Openssh Server Installation

Hadoop requires openssh-server for creating
passwordless ssh environment to manage hadoop services
from namenode to datanodes. The namenode seldom
communicates with the datanodes. Instead datanodes
communicate with namenode to send heartbeat and build
block locations with the help of block reports sent by
datanodes to namenodes. The datanode to namenode
communication is based on simple socket communications.

sudheer@nn:~$ sudo apt-get install openssh-server

Passwordless Ssh Configuration

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(81-86) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 85

sudheer@nn:~$ssh-keygen -t rsa
sudheer@nn:~$ssh-copy-id -i ~/.ssh/id_rsa.pub
sudheer@nn2
sudheer@nn:~$ssh-copy-id -i ~/.ssh/id_rsa.pub
sudheer@dn1
sudheer@nn:~$ssh-copy-id -i ~/.ssh/id_rsa.pub
sudheer@dn2
sudheer@nn:~$ssh-copy-id -i ~/.ssh/id_rsa.pub
sudheer@dn3
NOTE: Verify the passwordless ssh environment from
namenode to all datanodes as “sudheer” user.
Openjdk 7 Installation

sudheer@nn:~$ sudo apt-get install openjdk-7-jdk

NOTE: Openjdk installation has to be done on all nodes.
After the installation verify the java installation by running
the below command.
sudheer@nn:~$ java -version

Hadoop Installation

� Download and extract Hadoop:
Command: wget
http://archive.apache.org/dist/hadoop/core/hadoop-
1.2.0/hadoop-1.2.0.tar.gz
Command: tar -xvf hadoop-1.2.0.tar.gz

Now move it to /usr/local location.
sudheer@nn:~$ sudo mv hadoop-1.2.1 /usr/local/hadoop
Note: Installation of hadoop has to be done on all nodes.

User Environment Configuration

Now we will configure the environment for user
“sudheer”. As we are already logged into the sudheer home
directory, we need to append the .bashrc file with the below
mentioned variables to set the user environment.
sudheer@nn:~$ sudo gedit .bashrc
###HADOOP ENVIRONMENT###
export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64/
export PATH=$PATH:$JAVA_HOME/bin
export HADOOP_PREFIX=/usr/local/hadoop/
export PATH=$PATH:$HADOOP_PREFIX/bin
export PATH=$PATH:$HADOOP_PREFIX/sbin

Execute the .bashrc file.

sudheer@nn:~$ exec bash
To verify the defined hadoop variables execute the

below command to check the hadoop version that is
installed.
sudheer@nn:~$ hadoop version

NOTE: User environment has to be configured on all
nodes. It is very important to define the hosts in /etc/hosts
file on all nodes.
sudheer@nn:~$sudo gedit /etc/hosts
192.168.8.30 nn
192.168.8.31 nn2

192.168.8.32 dn1
192.168.8.33 dn2
192.168.8.34 dn3
Hadoop Configuration

sudheer@nn:~$ sudo gedit /usr/local/hadoop/conf/hadoop-
env.sh
Type: export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-
amd64

After defining the variables we need to create the
hadoop-log directory in /var/log location on all nodes with
the required “sudheer” user ownership and permissions.
sudheer@nn:~$ sudo mkdir /var/log/hadoop-log
sudheer@nn:~$ sudo chown -R sudheer:hadoop
/var/log/hadoop-log
NOTE: It is necessary to modify hadoop-env.sh with same
parameters across all nodes in the cluster and
/var/log/hadoop-log directory has to be created on all nodes
with required “sudheer” user ownership and permissions

� Configure core-site.xml
Command: sudo gedit /usr/local/Hadoop/conf/core-
site.xml
<property>
<name>fs.default.name</name>
<value>hdfs://nn:10001</value>
</property>
<property>
<name>Hadoop.tmp.dir</name>
<value>/usr/local/Hadoop/tmp</value>
</property>
Command:sudo mkdir /usr/local/Hadoop/tmp

� Configure hdfs-site.xml
Command: sudo gedit /usr/local/Hadoop/conf/hdfs-
site.xml
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
<property>
<name>dfs.name.dir</name>
<value>${Hadoop.tmp.dir}/dfs/name</value>
</property>

� Configure mapred-site.xml
Command: sudo gedit /usr/local/Hadoop/conf/mapred-
site.xml
<property>

<name>mapred.job.tracker</name>
<value>localhost:10002</value>
</property>

Similary in all datanodes we need to create hdfs and data
directories.
sudheer@dn1:~$ sudo mkdir -p /hdfs/data
sudheer@dn1:~$ sudo chown -R sudheer:hadoop /hdfs

conf/masters

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(81-86) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 86

The masters file contains the location where the
secondary namenode daemon would start.
sudheer@nn:~$ sudo gedit /usr/local/hadoop/conf/masters
nn2
NOTE: We have configured separate machine for the
secondary namenode hence we are defining secondary
namenode explicitly here. There is no need to duplicate this
file to all nodes.

conf/slaves

The slaves file contains the list of datanodes where the
datanode and task-tracker daemons will run.
sudheer@nn:~$ vi /usr/local/hadoop/conf/slaves
dn1
dn2
dn3
NOTE: The file should contain one entry per line. We can
also mention “namenode” and “secondary namenode”
hostname in this file if we want to run datanode and task-
tracker daemons on “namenode” and “secondary
namenode” too.
Starting Hadoop Cluster

Formatting HDFS via namenode

Before we start our cluster we will format the HDFS
via namenode. Formatting the namenode means to initialize
the directory specified in “dfs.name.dir” and “dfs.data.dir”
parameter in hdfs-site.xml file.
sudheer@nn1:~$ hadoop namenode -format

NOTE: We need to format the namenode only the first time
we setup hadoop cluster. Formatting a running cluster will
destroy all the existing data. After executing the format
command, it will prompt for confirmation where we need to
type “Y” as it is case-sensitive.
Starting the Multi-Node Hadoop Cluster

Starting a hadoop cluster can be done by a single command
mentioned below.
sudheer@nn:~$ start-all.sh

This command will first start the HDFS daemons. The
namenode daemon is started on namenode and datanode
daemon is started on all datanodes. The secondary
namenode daemon is also started on secondary namenode.
In the second phase it will start theMapReduce daemons,
job-tracker on namenode and task-trackers on datanodes.

JPS (Java Virtual Machine Process Status Tool) is used
to verify that all the daemons are running on their respective
nodes, we will execute “jps” command to see the java
processes running.

VI. CONCLUSION

In single node cluster all the demons are run on a single
machine that means the burden java processes is heavy. The
large datasets cannot efficiently process by the HDFS in a
single node cluster because resource utilization is more than

supply. Whereas in multi node cluster all demons are run on
different machines. So the processing of data will be faster
and efficient than the single node cluster. So that we
conclude that Hadoop distributed file system will achieve
high availability, reliability, fault tolerant and more features
in multi node cluster than the single node cluster.

REFERENCES

[1] Linthala Srinithya, Dr. G. Venkata Rami Reddy,

“Performance Evaluation of Hadoop Distributed file System

and Local File System” in IJSR ISSN: 2319-7064, Volume 3

Issue 9, September 2014.

[2] Liu Liu, Jiangtao Yin, Lixin Gao, “Efficient Social Network

Data Query Processing on MapReduce” ACM August 16,

2013.

[3] E. Dede, M. Govindaraju, D. Gunter, R. Canon, L.

Ramakrishnan,”Performance Evaluation of a MongoDB and

Hadoop Platform for Scientific Data Analysis”.

[4] Christos Doulkeridis, Kjetil Norvag, “A Survey of Large-

Scale Analytical Query Processing in MapReduce”.

[5] Stephen Kaisler, Frank Armour, J. Alberto Espinosa, William

Money, “Big Data: Issues and Challenges Moving Forward”.

[6] Hadoop The Definitive Guide,©2012, Tom White.

[7] K.Udhaya Malar,D.Ragupathi and G.M.Prabhu, "The Hadoop

Dispersed File system: Balancing Movability And

Performance", IJCSE, Volume-2, Issue-9, september-2014.

[8] Apache Hadoop. http://hadoop.apache.org/ Tuesday, June 23,

2015.

[9] Hadoop multinode cluster configuration,

http://hashprompt.blogspot.in/2014/06/multi-node-hadoop-

cluster-on-ubuntu-1404.html, Wednesday, August 19, 2015.

AUTHORS PROFILE

D.Sudheer is presently M.Tech Student, Dept. of Computer
Science & Engineering, Prasad V Potluri Siddhartha
Institute of technology (Autonomous), kanuru, India.

A.Ramana Lakshmi is presently Associate Professor,
Dept. of Computer Science & Engineering, Prasad V Potluri
Siddhartha Institute of technology (Autonomous), kanuru,
India.

