
 © 2016, IJCSE All Rights Reserved 94

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-4, Issue-7 E-ISSN: 2347-2693

A Process Web Application Testing Using TAO Tool Search

Based Genetic Algorithm

 N.Sudheer1*, V.Sharma2 and S.Hrushikesava Raju3
 1
Professor CSE, SIETK, Puttur, India

2
 Professor CSE, Aligarh Muslim University,Aligarh, India

3
Associate Professor CSE, SIETK, Puttur, India

Available online at: www.ijcseonline.org

Received:17/Jun/2016 Revised: 29/Jun/2016 Accepted: 19/Jul/2016 Published: 31/Jul/2016

Abstract—Search-based Software Engineering is use number of software engineering models. In domain Search-Based
Software Engineering many application is test data generation. We propose many methods for automating results bottleneck
finding using search-based input-sensitive application profiling. Our key idea is to use a genetic algorithm as a search heuristic
for obtaining combinations of input functions values that maximizes number of function to represents the elapsed execution
time of the application. We present TAO tool is a software testing tool result automated test and oracle generation based on a
semantic model. TAO is worked grammar-based test generation with automated semantics evaluation using a denotation
semantics framework. The quality of web application is a broad review of recent Web testing advances model and discuss their
goals, targets, techniques employed, inputs/outputs and stopping criteria. This research paper presents result testing of web
application using reactive-based framework for reducing the cost and increasing efficiency of the performance testing. Finally
test case can be generated automatically by solving and modify the problem using evolutionary algorithm. This model is
attractive because it take a suite of adaptive automated and semi-automated solutions in situations many large complex problem
spaces with multiple competing and conflicting objectives.

Keywords— Search-based Software Engineering, Evolutionary Algorithms, Optimization Problem, Evolutionary Testing,
Heuristic Search Techniques. Web applications, World Wide Web, Web testing, Survey, Performance

I. INTRODUCTION

Search based optimization techniques have been applied to
a number of software engineering activities[1] such as
requirements engineering, project planning and cost
estimation through testing, to automated maintenance,
service-oriented software engineering, compiler
optimization and quality assessment. can be the
optimization can be applied over the software engineering
activity.[2] We propose a novel approach for automating
performance bottleneck detection using search-based
application profiling. Our key idea is to use a genetic
algorithm (GA) as a search heuristic for obtaining
combinations of input parameter values that maximizes a
fitness function that guides the search process [3]. We
implemented our approach, coined as Genetic Algorithm-
driven Profiler (GA−Prof) that combines a search-based
heuristic with contrast data mining [4] from execution
traces to automatically and accurately determine bottleneck.
The testing of web based applications has much in common
with the testing of desktop systems like testing of
functionality, configuration, and compatibility. Web
application testing consists of the analysis of the web fault

compared to the generic software faults. There are various
non-equivalence issues between traditional software testing
and web application testing. As web applications become
more complex, testing web applications have also become
complex. To ease the difficulty of web application testing ,
automated tools and testing frameworks are now available
for different aspects of testing, such as unit testing,
functional testing, and load and performance testing.
Performance testing is very important to improve reliability
and feasibility of web applications for satisfying users. As
web application usage is enormous, traditional testing
technique is not suitable to solve the problem because of
several difficulties as follows [5].

1) Some metrics need to be predicted such as, the type of
users, the number of concurrent users, and access methods
because of difficulties for simulating real scenarios.
 2) Since performance is mostly related to user satisfaction,
issues related to reactivity should be considered in
performance testing
3) Performance testing and scalability are the focus of
system testing, because a large number of users will access
a service in one distributed web application concurrently.
Evolutionary testing makes use of meta-heuristic search
techniques for test case generation. Evolutionary Testing is Dr. N.Sudheer: professor,nidamanuri.sudheer@gmail.com

 Department of CSE, SIETK,Puttur, India

International Journal of Computer Sciences and Engineering Vol.-4(7), PP(94-100) Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 95

a sub-field of Search Based Testing in which Evolutionary
Algorithms are used to guide the search. The Fig.1 shows
the structure and interaction of test activities including test
case design by means of evolutionary algorithms.[6].

Figure 1. Structure of evolutionary algorithms

We firstly introduce a declarative tool, named TAO, which
performs automated test and oracle generation based on the
methodology of denotational semantics [7]. TAO combines
our previous work on a grammar-based test generator [8]
and a semantics-based approach for test oracle generation
[9], using a formal framework supporting the denotational
semantics. TAO takes as inputs a context-free grammar
(CFG) and its semantic valuation functions, and produces
test cases along with their expected behaviors in a fully
automatic way. We present a new automated web testing
framework by integrating TAO with Seleniumbased web
testing for functional testing of web applications. Our
framework incorporates grammar-based testing and
semantics-based oracle generation into the Selenium web
testing automation to generate an executable JUnit test
suite. Selenium is an open source, robust set of tools that
supports rapid development of test automation for Web-
based applications. The JUnit test scripts can then be run
against modern web browsers.

II. RELATED WORK

 A form of dynamic program analysis, is widely used in
software testing, such as test generation [10], functional
fault detection [11], and non-functional fault detection
Korel provided an approach that generates test cases based
on actual executions of AUT to search for the values of
input variables, which influence undesirable execution flow,
by using function minimization methods. Schur et al.
provided an tool ProCrawl, which mined an extended finite-
state machine as a behavior model and generated test scripts
for regression testing [12]. Artzi et al. used the Tarantula
algorithm to localize source codes which lead to failures in
web application by combining the concrete and symbolic
execution information [9]. Chilimbi et al. provided a tool.

Genetic Algorithms (GAs) is widely used in many areas of
software engineering such as software maintenance textual
analysis [13], cloud computing and testing Test generation
is a key point in software testing. Alshahwan et al. used
dynamically mined value seeding into search space to target
branches and generate the test data automatically [4]. To
achieve higher branch coverage, McMinn et al. used a
hybrid global-local search algorithm, which extended the
Genetic Algorithm with a Memetic algorithm, to generate
the test cases Harman designed an approach by using the
dynamic symbolic execution and search-based algorithms to
generate test data, which can kill both the first order and
higher order mutants for mutation testing [14]. Ali et al.
provided a systematic review for the search-based test case
generation, which built a framework to evaluate the
empirical search-based test generation techniques by
measuring cost and effectiveness.

Grammar-based test generation (GBTG) provides a
systematic approach to producing test cases from a given
context-free grammar. Unfortunately, naive GBTG is
problematic due to the fact that exhaustive random test case
production is often explosive. Prior work on GBTG mainly
relies on explicit annotational controls, such as production
seeds [15], combinatorial control parameters [9], and extra-
grammatical annotations [7]. GBTG with explicit
annotational controls is not only a burden on users, but also
causes unbalanced testing coverage, often failing to
generate many corner cases. TAO takes a CFG as input,
requires zero annotational control from users, and produces
well-distributed test cases in a systematic way. TAO
guarantees (1) the termination of test case generation, as
long as a proper CFG, which has no inaccessible variables
and unproductive variables, is given; and (2) that every
generated test case is structurally different as long as the
given CFG is unambiguous.

III. OPTIMIZATION TECHNIQUES

 Some of the optimization techniques that have been
successfully [4] applied to test data generation are Hill
Climbing(HC) ,Simulated Annealing(SA), Genetic
Algorithms(GAs),

Meta-heuristic Search Techniques Meta-heuristic
techniques have also been applied to testing problems in a
field known as Search Based Software Testing [2], [3], a
sub-area of Search Based Software Engineering (SBSE) [1].
Evolutionary algorithms are one of the most popular meta-
heuristic search algorithms and are widely used to solve a
variety of problems.
The local Search techniques generally used are
i. Hill Climbing
ii. Simulated Annealing
iii. Tabu Search

International Journal of Computer Sciences and Engineering Vol.-4(7), PP(94-100) Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 96

Hill Climbing In hill climbing, the search proceeds [16]
from randomly chosen point by considering the neighbors
of the point Once a neighbor is found to be fitter then this
becomes the current point in the search space and the
process is repeated. If there is no fitter neighbor, then the
search terminates and a maximum has been found HC is a
simple technique which is easy to implement and robust in
the software engineering applications of modularization and
cost estimation.

Simulated Annealing Simulated annealing is a local search
method. It samples the whole domain and improves the
solution by recombination in some form. In simulated
annealing a value x1, is chosen for the solution, x, and the
solution which has the minimal cost function, E, is chosen.
Cost functions define the relative and desirability of
particular solutions. Minimizing the objective function is
usually referred to as a cost function; whereas, maximizing
is usually referred to as fitness function.

Tabu Search Tabu search is a meta heuristic algorithm that
can be used for solving combinatorial optimization
problems, such as the travelling salesman problem (TSP).
Tabu search uses a local or neighborhood search procedure
to iteratively move from a solution x to a solution x' in the
neighborhood of x, until some stopping criterion has been
satisfied. To explore regions of the search space that would
be left unexplored by the local search procedure (see local
optimality), tabu search modifies the neighborhood
structure of each solution as the search progresses.

Genetic Algorithms GA forms a method of adaptive search
in the sense that they modify the data in order to optimize a
fitness function. A search space is defined, and the GAS
probe for the global optimum. A GA starts with guesses and
attempts to improve the guesses by evolution. A GA will
typically have five parts: (1) a representation of a guess
called a chromosome, (2) an initial pool of chromosomes,
(3) a fitness function, (4) a selection function and (5) a

crossover operator and a mutation operator. A chromosome
can be a binary string or a more elaborate data structure.
The initial pool of chromosomes can be randomly produced
or manually created. The fitness function measures the
suitability of a chromosome to meet a specified objective:
for coverage based ATG, a chromosome is fitter if it
corresponds to greater coverage. Genetic programming
results in a program, which gives the solution of a particular
problem. The fitness function is defined in terms of how
close the program comes to solving the problem. The
operators for mutation and mating are defined in terms of
the program’s abstract syntax tree. Because these operators
are applied to trees rather than sequences, Most of the work
on Software Testing has concerned the problem of
generating inputs that provide a test suite that meets a test
adequacy criterion. The schematic representation Often this
problem of generating test inputs is called ‘Automated Test
Data Generation (ATDG)’ though, strictly speaking,
without an oracle, only the input is generated. Fig.3
illustrates the generic form of the most common approach in
the literature, in which test inputs are generated according
to a test adequacy criteria [6]. The test adequacy criterion is
the human input to the process. It determines the goal of
testing.

Figure 2 A generic search generation schema

IV. METHODOLOGY

We use web-based subject applications the inputs for these
applications are URL requests. For instance, JPetStore has a
web based client-server architecture. Its GUI front-end
communicates with the J2EE-based back-end that accepts
HTTP requests in the form of URLs. Its back-end can serve
multiple URL requests from multiple users concurrently.
Each URL exercises different components of the
application. For each subject application, we traversed the
web interface and source code of these systems and
recorded all unique URLs sent to the back-end, in order to

International Journal of Computer Sciences and Engineering Vol.-4(7), PP(94-100) Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 97

obtain a complete set of URL requests. We define a
transaction as a set of URLs that are submitted by a single
user. To answer RQ1, we issued multiple transactions in
parallel collecting profiling traces and computing the total
elapsed execution time for the back-end to execute the
transactions. Our goal is to evaluate if GA−Prof can
automatically find combinations of URLs that cause
increase in elapsed execution time. In our experiments, we
set the number of concurrent users to five and the number of
URLs in one transaction to 50. To answer RQ2, we
randomly selected nine methods in each subject application
and injected time delays into them to test whether GA−Prof
can correctly identify them. In order to RQ3, we chose
FOREPOST [12] as competitive approach We conducted
comparison experiments on subject applications, with
artificial delays injected, and compared the effectiveness of
both approaches identifying them. To choose the delay
length and methods to inject bottlenecks into, we ran the
subject applications without injected bottlenecks and
obtained a ranked list of methods. On top of this list we
obtained natural bottlenecks. A threat to validity for our
empirical study is that our experiments were performed on
only three open-source web-based applications, which
makes it difficult to generalize the results to other types of
applications that may have different logic, structure, or
input types. However, JPetStore and DellDVDStore were
used in other empirical studies on performance testing [14]
and Agilefant is representative of enterprise-level
applications, we expect our results to be generalizable to at
least this type of web-based software applications. Our
current implementation of GA−Prof deals with only one
type of inputs - URLs, whereas other programs may have
different input types. While this is a potential threat, in our
opinion, this is not a major one, since GA−Prof can be
easily adapted to encode inputs of other types.

Figure 3: The architecture and workflow of GA−Prof.

V. STATE OF ART OF WEB TESTING

To bridge the gap between existing web testing techniques
and main new feature provided by web application. The
server side can be tested using any conventional testing
technique. Client side testing can be performed at various
levels. The selenium tool is very popular capture-replay tool
and allows DOM based testing by capturing user session i.e.
events fired by user. Such tool can access the DOM and
shows expected UI behaviour and replay the user session.
So today’s need is a testing tool which can test user session
and generate test cases on the basis of expected UI
behaviour as per event fired by user. State Based Testing:
Marchetto proposed a state based testing technique [17].
Idea is that the states of client side components of an AJAX
application need to be taken into account during testing
phase [18]. State based testing technique for AJAX is based
on the analysis of all the states that can be reached by the
client-side pages of the application during its execution.
Using AJAX, HTML elements—like TEXTAREA, FORM,
INPUT, A, LI, SELECT, OL, UL, DIV, SPAN, etc.—can
be changed at runtime according to the user interactions. In
this testing the HTML elements of a client-side page
characterize the state of an AJAX Web page, and their
corresponding values are used for building its finite state
model. State based technique results indicate that state
based testing is powerful and can reveal faults otherwise
unnoticed or very hard to detect using existing techniques.

Figure4. Traces for Cart Events

VI. TAO (Testing Assist par Ordinateur)

TAO is an integrated tool performing automated test and
oracle generation based on the methodology of denotational
semantics. It extends a grammar-based test generator [19]
with a formal framework supporting the three components
of denotational semantics, syntax, semantics domains, and
the valuation functions from syntax to semantics. It
provides users a general Java interface to define a semantic
domain and its associated methods, which is integrated with
TAO for supporting semantic evaluation. TAO takes as
inputs a context-free grammar (CFG) and its semantic

International Journal of Computer Sciences and Engineering Vol.-4(7), PP(94-100) Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 98

valuation functions, and produces test cases along with their
expected behaviors in a fully automatic way. An online
version of TAO is available at [8]. Denotational semantics
[20,21] is a formal methodology for defining language
semantics, and has been widely used in language
development and practical applications. Broadly speaking,
for a webbased application under test (WUT) which
requires grammar-based structured inputs, the specification
of the structured inputs is a formal language; for those
testing scripts (or methods) running together with a WUT,
the specification of those scripts is a formal language.
Denotational semantics is concerned with finding
mathematical objects called domains that capture the
meaning of an input sentence — the expected result of the
WUT, or the semantics of a testing script the running
behavior of the script itself along with the WUT. In
automated test script generation, it would be ideal that
runtime assertions can be automatically embedded into a
test script, so that when a test script is invoked for software
testing, the running result immediately indicates either
success or failure of testing; otherwise, a post-processing
procedure is typically required to check the running result

against the oracle. TAO provides an easy tagging
mechanism for users to embed expected semantic results
into a generated test case. It allows users to create a tagging
variable as a communication channel for passing results
from semantics generation to test generation.

An automated web testing framework based on our testing
tool TAO and Selenium browser automation. The
framework consists of the following main procedures. (i) A
WUT is modeled using a methodology of denotational
semantics, where CFGs are used to represent the GUI-based
execution model of the WUT, semantics domains are used
to describe functional behaviors of the WUT, and valuation
functions map user interactions to expected web behaviors.
(ii) TAO takes the denotational semantics of the WUT as an
input, and automatically generates a suite of JUnit tests,
supported in the Selenium browser automation tool. Each
JUnit test contains a GUI scenario of the WUT as well as
expected WUT behaviors embedded. (iii) Through
Selenium’s web drivers, a suite of JUnit test scripts can be
executed to test different scenarios of the WUT.

Figure 5: Automated Web Testing Framework

The function APPLY(α, test, root, pNode), defined in
Algorithm 2, applies the reduction strategy α on each node
pNode in the derivation tree rooted at root in a top-down,
depth-first order. For each nonterminal node pNode (line
21), the sub-function checks whether the the reduction
strategy α is applicable on the subtree rooted at pNode (line
22). We highlight two implementation details in this

algorithm. (1) We adopt the first-child/next-sibling data
structure for representing derivation trees; thus, reducing a
subtree of pNode can be achieved by changing its first child
link. (2) We use a store/restore mechanism to maintain the
original subtree of pNode (line 23). In case that the reduced
test case is not failure inducing, we have to restore the
original subtree of pNode (lines 27− 30); otherwise, the

International Journal of Computer Sciences and Engineering Vol.-4(7), PP(94-100) Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 99

reduced one will be used for further reduction. The function
REDUCEBY(pNode, α) applies the reduction strategy α on
pNode.

Derivation tree rooted at root, respectively. The function
TESTING(SUT , reduced, oracle) is invoked to check
whether the reduced test case is still failure-inducing. Only
a failure-inducing reduced test case will be kept for further
delta debugging. In both cases, either reduced or not, the
function will continue with applying the reduction strategy
α on each child node of pNode recursively (lines 34−36).

VII. EXPERIMENTAL RESULTS

 In this section, we first show our preliminary experimental
results on automated delta debugging by applying the GDD
approach on applications which require structured inputs,
and then show experimental results on Selenium-based web
testing .

Preliminary experiments have been conducted on testing
and debugging 5 different buggy Java programs (student
submissions) which take an arithmetic expression as an
input and perform its integer calculation, We used the
extended TAO with new capabilities, instant oracle and
grammardirected reduction strategies, to generate 1000
arithmetic expressions and locate the failure-inducing
patterns.

We further used 200 executable Selenium-based test scripts
for the experiment of automated web testing and debugging

by applying the GDD approach, where 28 executable test
scripts cause testing failure. Each of those failing test scripts
may contain one or multiple rounds of parking cost
calculations, and in each round of parking cost calculation,
users may set entry/exit dates and times in any order and
modify them repeatedly. Our GDD approach was able to
reduce a failing test script to a simplified one, with an
average reduction ratio about 22%. We found out that most
failures were caused by different time-boundary issues. For
example, consider the short-term parking rates, where the
daily maximum short-term parking fee is $24; however, the
web parking calculator could display $26 if your total
parking time is 12 hours and 30 minutes. We summarize the
faults as follows

Table 1: Faults Summary for the Online Parking Calculator

Both automated instant oracle generation and grammar-
directed delta debugging are critical to automating web
testing and fault localization.

Figure 6: Distribution of the quantity of captured injected
bottlenecks. The x-axis corresponds to the number of
injected bottlenecks that are captured by one certain
GA−Prof run.

VIII. CONCLUSIONS

 We presented TAO, a testing tool performing automated
test and oracle generation based on a semantics based
approach, and showed a new automated web testing
framework by integrating TAO with Selenium based web
testing for web testing automation. Our framework is able
to generate a suite of executable JUnit test scripts by
utilizing grammar-based test generation and semantics-
based oracle generation. The main goal is to make a study

International Journal of Computer Sciences and Engineering Vol.-4(7), PP(94-100) Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 100

of the use of search-based optimization techniques to
automate the evolution of solutions for software engineering
problems. For example, real world problems such as
optimizing software resource allocation, triangle
classification, software clustering, component selection and
prioritization for next release. These are the basis input to
our automated test case generation model. In our future
work we will be implementing the automated test case
generation model using evolutionary algorithm that is
genetic algorithm. software engineering problems.
For example, real world problems such as optimizing
software resource allocation, triangle classification,
software clustering, component selection and prioritization
for next release.

IX. FUTURE WORK

As more and more web technologies have moved a long
way to create web application. Web testing plays an
important role. Here in this paper we discussed two well
known testing techniques:-state based testing and invariant
based testing. While these approaches are tested successful
on various case studies This finding remarks that, there is a
need to generate a test environment to test latest web
technology designed web application and exercise each of
them. New testing issues can arise for testing web services
for improving effectiveness and efficiency of web.

REFERENCES

[1] Wasif Afzal, Richard Torkar, and Robert Feldt. A systematic

review of search-based testing for non-functional system
properties. Inf. Softw. Technol., 51:957–976, June 2009

 [2] Mark Harman, “The Current State and Future of SBSE”,
Future of Software Engineering (FOSE'07), IEEE Computer
Society, 2007, pp. 1-16.

[3] Elbaum, S. Karre,S., Rothermel,G., Improving web application
testing with user session data. In International conference of
software Engineering, pages 49-59, 2003.

 [4] Fujiwara, S.,Bochmann, G.,Khendek, F.,Amalou, M.,
Ghedasmi, A. , Test selection based on finite state models,
IEEE Transactions on Software Engineering 17(6):591-603,

June 1991
 [5] J. Clark, J. J. Dolado, M. Harman, R. M. Hierons, B. Jones, M.

Lumkin, B. Mitchell, S. Mancoridis, K. Rees, M. Roper,and
M. Shepperd, “Reformulating Software Engineering as a
Search Problem,” IEE Proceedings - Software, vol. 150,no. 3,

2003, pp. 161–175.
[6] Daniel Malcolm Hoffman, David Ly-Gagnon, Paul Strooper &

Hong-Yi Wang (2011): Grammar-based test generation with
YouGen. Software Practice and Experience 41(4), pp. 427–

447, doi:10.1002/spe.1017.
[7] Ralf Lämmel & Wolfram Schulte (2006): Controllable

combinatorial coverage in grammar-based testing. In:
International conference on Testing of Communicating
Systems, pp. 19–38, doi:10.1007/11754008_2.

[8] A. Baars, M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, P.
Tonella, and T. Vos. Symbolic search-based testing. In ASE
’11, pages 53–62, 2011.

 [9] L. C. Briand, Y. Labiche, and M. Shousha. Stress testing real-
time systems with genetic algorithms. In GECCO ’05, pages
1021–1028, 2005.

 [10] J. Burnim, S. Juvekar, and K. Sen. Wise: Automated test
generation for worst-case complexity. In ICSE ’09, pages

463–473, 2009.
 [11] Y. Cai, J. Grundy, and J. Hosking. Synthesizing client load

models for performance engineering via web crawling. In
ASE ’07, pages 353–362, 2007

 [12] Yuanyuan Zhang, “Multi-Objective Search - based
Requirements Selection and Optimisation”, Ph.D Thesis,
King’s College, University of London, February 2010, pp. 1-

276.
.

AUTHORS PROFILES:

Dr. N.Sudheer, born in Ongole, Prakasam Dt., AP.
Presently working as a Professor (CSE) in Siddharth
institute of Engg.& Technology, Puttur and completed
Ph.D.(CSE), in Aligarh Muslim University, Aligarh, India.
His Research interest includes Software Engineering and
Testing Methodologies,Published number of Journals.
Email:nidamanuri.sudheer@gmail.com

Dr. V.Sharma born in Aligarh, UP. Working as a Professor
(CSE), in Aligarh Muslim University, Aligarh, Uttar-
Pradesh, India. He Guided Number of Ph.D Scholars in
Aligarh Muslim University & Published number of
Journals. His Research interest includes Software
Engineering, Networks and Testing Methodologies ,
Published number of Journals. Email:
dr.vidhushisharma@rediffmail.com

Mr. S. HrushiKesava Raju, working as a Professor in the
Dept. of CSE, SIETK, Narayanavanam Road, Puttur. He is
pursuing Ph.D from Rayalaseema University in the area “
Development of Data preprocessing on certain advanced
Data Structures by refining their existing algorithms for
getting improved time complexities”. His other areas of
interest are Data Mining, Data Structures, and Networks.
E-mail: hkesavaraju@gmail.com

