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Abstract— Image segmentation is very important application in a biomedical diagnosis use image data analysis. In medical 

analysis the accuracy of image segmentation has a critical clinical requirement for the localization of body organs or pathologies 

in order to raise the quality of prediction of disease or infections. This paper covers review that includes several articles in 

which latest A.I biomedical image segmentation techniques are applied to different imaging color space models. This review 

article describes how various computer assisted diagnosis system works for achieving the goal of finding abnormal segments of 

body organs in biomedical images of the MRI, ultrasound etc. It has been observed that those segmentation approach are 

broadly giving accurate results in which the segmentation of the images is performed by defining an active shape model and 

then localization of potential area of interest using thresholding. 
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I.  INTRODUCTION 

The use of colour and texture information collectively has 

strong links with the human perception and in many 

practical scenarios the colour-alone or texture-alone image 

information is not sufficiently robust to accurately describe 

the image content. An example is provided by the 

segmentation of natural images that exhibit both colour and 

texture characteristics. This intuitive psychophysical 

observation prompted the computer vision researchers to 

investigate a large spectrum of mathematical models with 

the aim of sampling the local and global properties of these 

two fundamental image descriptors. Nonetheless, the robust 

integration of colour and texture attributes is far from a 

trivial objective and this is motivated, in part, by the 

difficulty in extracting precise colour and texture models 

that can locally adapt to the variations in the image content. 

In particular the segmentation of natural images proved to 

be a challenging task, since these images exhibit significant 

in homogeneities in colour and texture and in addition they 

are often characterised by a high degree of complexity, 

randomness and irregularity. Moreover, the strength of 

texture and colour attributes can vary considerably from 

image to image and complications added by the uneven 

illumination, image noise, perspective and scale distortions 

make the process of identifying the homogenous image 

regions extremely difficult. All these challenges attracted 

substantial interest from the vision researchers, as the robust 

integration of the colour and texture descriptors in the 

segmentation process has major implications in the 

development of higher-level image analysis tasks such as 

object recognition, scene understanding, image indexing 

and retrieval, etc. 

Medical images play vital role in assisting health care 

providers to access patients for diagnosis and treatment. 

Studying medical images depends mainly on the visual 

interpretation of the radiologists. However, this consumes 

time and usually subjective, depending on the experience of 

the radiologist. Consequently the use of computer-aided 

systems becomes very necessary to overcome these 

limitations. Artificial Intelligence methods such as digital 

image processing when combined with others like machine 

learning, fuzzy logic and pattern recognition are so valuable 

in Image techniques can be grouped under a general 

framework; Image Engineering (IE). This is comprised of 

three layers: image processing (lower layer), image analysis 

(middle layer), and image understanding (high layer), as 

shown in Fig 1. Image segmentation is shown to be the first 

step and also one of the most critical tasks of image analysis. 

Its objective is that of extracting information (represented by 

data) from an image via image segmentation, object 

representation, and feature measurement, as shown in Fig 1. 

Result of segmentation; obviously have considerable 

influence over the accuracy of feature measurement [2]. The 

computerization of medical image segmentation plays an 

important role in medical imaging applications. It has found 

wide application in different areas such as diagnosis, 

localization of pathology, study of anatomical structure, 

treatment planning, and computer-integrated surgery. 

However, the variability and the complexity of the 
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anatomical structures in the human body have resulted in 

medical image segmentation remaining a hard problem [3]. 

 
 

Figure 1: Image engineering and image segmentation 

[2]. 

 

Based on different technologies, image segmentation 

approaches are currently divided into following categories, 

based on two properties of image. 

 

A. Detecting Discontinuities 

It means to partition an image based on abrupt changes in 

intensity [1], this includes image segmentation algorithms 

like edge detection. 

 

B. Detecting Similarities 

It means to partition an image into regions that are similar 

according to a set of predefined criterion [1]; this includes 

image segmentation algorithms like Thresholding, region 

growing, region splitting and merging. Thresholding is a 

very common approach used for Region based segmentation 

where an image represented as groups of pixels with values 

greater or equal to the threshold and values less to threshold 

value.  

 

Clustering is also an approach for region segmentation 

where an image is partitioned into the sets or clusters of 

pixels having similarity in feature space. Region growing is 

another approach of region segmentation algorithms where 

assigned the adjacent pixels or regions to the same segment. 

There are three types of images as gray scale, hyper spectral 

and medical images. 

 

2. Segmentation Techniques 

Large complexity and variability of appearances and shapes 

of anatomical structures make medical image segmentation 

one of the most challenging and essential tasks in any CAD 

system. Due to diversity of objects-of-interest, image 

modalities, and CAD problems, no universal feature set and 

general segmentation technique exist. Some popular rule-

based, statistical, atlas based, and deformable models based 

techniques, and their key strengths and weaknesses are 

outlined below. 

 

A. Rule-Based Segmentation  

In this case, image features over an individual region 

comply with a set of heuristic rules. Simple and 

straightforward feature thresholding is widely used, due to 

its computational simplicity and speed, for fast initial 

segmentation or at intermediate stages of various 

segmentation scenarios, but usually it cannot stand alone for 

the final segmentation. The simplest thresholding divides an 

image into two regions related to a goal object and its 

background, respectively: e.g., an object label is assigned to 

each pixel or voxel if its intensity exceeds a certain 

threshold; otherwise, it is classified as the background. The 

threshold can be fixed through all the image (global 

thresholding) or vary according to the pixel/voxel location 

(adaptive, or local thresholding). Frequently, it is selected 

by statistical analysis of image intensities over the whole 

image or a certain vicinity of the pixel or voxel under 

consideration, e.g., peaks and valleys of the gray-level 

histogram, or by optimizing a certain image-dependent 

criterion, e.g., minimizing the cross-entropy between an 

input gray-level image and the output binary image [4]. 

Figure 1.8 illustrates the global-threshold-based 

segmentation. If the intensity distributions for the object and 

background totally or partially intersect, simple 

comparisons to a global threshold either fail or produce too  

inaccurate results. Moreover, the thresholding does not 

guarantee connectedness of the found objects, which is a 

basic requirement in many medical imaging and CAD 

applications. More details about these techniques can be 

found in [5]. Region-growing (also called region merging) 

techniques guarantee a connected region for each 

segmented object. After initial seeds are selected, their 

neighbors are added up, and the group continues to grow by 

including adjacent pixels/voxels that comply with a 

predefined criterion specifying the required properties of the 

regions. Segmentation results depend on the latter criterion 

and rules for selecting the seeds and specifying the 

neighbors. Figure 3 illustrates a simple region growing 

procedure. First, a binary image is produced by global 

thresholding of the initial gray-scale image. Then a seed is 

selected manually within the region of interest, and begins 

to grow by testing and adding the immediate eight 

neighbors having the same properties (the intensity below 

the threshold). The process is repeated for each added pixel 

until no more connected neighboring pixels have the same 

intensity. For textured images, more complex region-

growing procedures are to be involved, e.g., using the first- 

and second-order statistics (e.g., mean and standard 
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deviation) for the current region and the candidate intensity 

to decide whether the neighbor should be added to the 

region [6]. The process is repeated and the statistics are 

recomputed for each added pixel until no more pixels are 

accepted. Obviously, the region growing techniques are 

very sensitive to initialization and often need user assistance 

to select proper seed points. Region split-and-merge 

techniques partition an image initially into a number of 

regions and then iteratively merge and/or split the current 

regions in accord with a certain region homogeneity rule. 

Just as the region growing, the split-and-merge approach is 

also sensitive to the initialization. However, its known 

applications to medical image segmentation include large 

brain lesions [7], cavity deletion [8], retinal blood vessels 

[9], and pulmonary nodules [10]. Additional information 

about the split-and-merge and region growing segmentation 

can be found in [11].  

 

 

 
Brain MRI 

 
White matter map (the threshold 128) 

 
CT lung image 

 
Lung tissue map (the threshol 135) 
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Cell image 

 

 
Cell map (the threshold 65) 

 

Fig. 2. Segmentation of anatomical structures with a 

global intensity threshold 

 
Cell Image 

 

 
Global intensity threshold 102 

 

 
Manually selected seed (in red) 

 

 
Region grown from the selected seed 

Fig. 3. Segmentation by thresholding followed by region 

growing 

 

B. Segmentation by Optimal Statistical Inference: 

Statistical image segmentation involves parametric or 

nonparametric probability models of appearance and shape 

of goal objects and optimal, e.g., Bayesian or maximum 

likelihood inference [12]. Popular nonparametric 

probability density models are built using the k-nearest 

neighbor and Parzen-window estimators [13]. Popular 

parametric models exploit tractable analytical 
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representations that allow for analytical or computationally 

feasible numerical parameter learning. In particular, the 

maximum likelihood estimates (MLE) of parameters of a 

Gaussian model are analytical, namely, the mean and the 

covariance matrix for a given set of training samples, while 

parameters of a Gaussian mixture model (the means, 

covariance matrices, and prior probabilities of the Gaussian 

components) are learned in part numerically and in part 

analytically with expectation-maximization (EM) 

techniques [14]. 

 

C. Atlas Based Segmentation 

The use of anatomical atlases as reference images to guide 

segmentation of new images is very popular in different 

medical applications, e.g., for segmenting brain and its 

internal structures or segmenting pathological lungs, lung 

lobes, heart and aorta, and internal abdominal organs [12]. 

The atlas typically depicts prototypical locations and shapes 

of anatomical structures together with their spatial relations 

[15]. All the known atlas-based methods can be classified 

into single and multi atlas-based segmentation. 

Single atlas-based segmentation uses an atlas constructed 

from one or more labeled segmented images. Once the atlas 

is created, it is registered to the target image, and the goal 

region map is obtained by so called label propagation that 

transfers the labels from the atlas back to the image using 

the same geometric  mapping as the registration. Obviously, 

the segmentation accuracy depends on the registration (if 

the latter fails, so does the segmentation). The registration 

always  

involves time consuming and complex local deformations. 

Also, the segmentation is affected by the ability of the atlas 

to represent the whole population of images under 

consideration.  

A single image to construct the atlas can be selected 

randomly, or by visual inspection based on practical 

criteria, or made artificially [16]. If the atlas is constructed 

from several images, one image can be selected as a 

reference and all other images are registered to it. To 

increase the signal-to-noise ratio, all the registered images 

are averaged, and the segmented average image is used as 

the atlas [17]. Alternatively, the atlas can be built by 

transforming the reference to the average image and 

segmenting the transformed reference [18]. Probabilistic 

atlases built by averaging the transformed images and 

analyzing the corresponding labels [19] provide different 

weights of each pixel. However, an average atlas does not 

handle elastic deformations of internal structures during the 

registration process. To overcome this problem, Leemput 

[20] proposed a mesh-based atlas representation instead of 

the average atlas. Also, an iterative atlas generation uses the 

output of each iteration as the input of the next iteration 

[15].  

Multi atlas-based segmentation registers many 

independently built atlases to a target image and then 

combines their segmentation labels. The underlying idea is 

that fusion of multiple independent classifiers might 

produce better classification [21]. There exist different ways 

for segmenting a particular target image, e.g., to select all 

the atlases or only their subset as well as to choose one or 

another strategy of combining the selected atlases to 

produce the goal region map. The pre or postregistration 

selection of atlases can be based on certain matching criteria 

such as the mutual information or the degree of deformation 

of the object of interest (obviously, the atlases of the highest 

local mutual information or the least object deformation are 

preferable).  

Popular strategies of combining the selected atlases to 

segment the target image include decision fusion (also 

called majority voting, majority rule, or label voting). In 

this strategy, the label of each pixel or voxel is selected as 

the label that most of the segmentations agree on [22]. 

Another strategy, called simultaneous truth and 

performance level estimation (STAPLE), evaluates the 

performance of each classifier iteratively, weighs the 

corresponding segmentation accordingly, and uses the EM 

approach to find the best final segmentation [23]. Isgum et 

al. [16] combined the propagated labels by spatially variant 

decision fusion weights derived from the local assessment 

of the registration accuracy, and Rohlfing and Maurer [24] 

proposed a shape-based averaging strategy based on the 

Euclidean distance map to perform the combining. 

 

D. Segmentation with Deformable Models 

Since the seminal paper by Kass et al. [25], deformable 

models became a dominant technique and gave rise to one of 

the most dynamic and successful areas in image 

segmentation, edge detection, shape modeling, and tracking 

of medical image structures. These techniques have quickly 

gained widespread popularity due to superiority over other 

segmentation techniques. In particular, these models end up 

with a continuous boundary of an object of interest in spite 

of possible large shape variations, image noise and 

inhomogeneities, and discontinuous object boundaries due to 

occlusions. In addition, they incorporate both the shapes and 

appearances of the objects of interest as their most 

significant discriminative features, and can be aided by 

interactions with the users. A deformable or active model is 

a curve in a 2-D digital image or a surface in a 3-D image 

that evolves to outline a goal object. Its evolution is guided 

by internal and external forces, which are defined so that the 

deformable model will eventually conform to the object 

boundary. The internal forces, coming from the 

curve/surface itself, are designed to keep the evolved curve 

smooth and unified. The external forces, depending on the 

image, propagate the evolution towards the object boundary. 

By representation and implementation, the deformable 

models are divided into two broad classes: parametric [26] 

and geometric [27]. 
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II. CONCLUSION 

This work comprises review of several segmentation 

methods applied for biomedical image segmentation. It has 

been observed that segmentation these techniques consist of 

pattern recognition in the images using an active shape 

model and then localization of potential lesions using 

thresholding. The second methods of segmentation are 

helpful in cardiac images MRI or ultrasound images. The 

segmentation is performed by using a region based snake 

where the data term is driven by virtual image forces 

derived from the image intensities. To overcome problems 

with the cardiac valve opening and closing during the 

cardiac cycle, we annotate two anchor points, one on each 

side of the valve. This method shows promising results. In 

some paper it is observed that methods are developed with 

objective of measuring the abnormality in shape of the 

organs achieved using the shortest path algorithm. The 

measurement consists of analysis of how much it deviates 

from a normal one. It can be concluded that the 

segmentation quality can be further improved by applying a 

two-stage method processing of both textured and non-

textured.  

First stage calculates textured features from the bands 

coefficients of the dual-tree wavelet transform of image. 

Thereafter filtering should be applied to minimize the 

ambiguities of texture regions at the boundaries of the image 

objects. The calculated texture feature can be used to find the 

space based gradient function thus the segmented regions 

obtained by transformation can be grouped to  meaningful 

region of similar features by using spectral clustering 

technique by using the weighted mean based cost function 

for region partitioning. 
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