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Abstract- In existence of instability within the financial dealings, a reasonable harmony among risks and returns has to 

be managed by an investor to derive at an optimum standpoint. Although there is a predominant instability, the 

advantage lies in the correlation of the combination of financial instruments/assets in a financial portfolio within a 

specific market condition. Portfolio management targets the risk-reward accord in allocation of investments directed 

towards numerous assets for maximizing returns or minimizing risks within a stipulated investment period. This article 

delineates the particle swarm optimization algorithm, followed by optimized portfolio asset distribution within a 

changeable market condition. The suggested way is consolidated for optimization of the Conditional Value-at-Risk 

(CVaR) measurement within divergent market conditions established on numerous targets and restraints. Results are 

compared to the values obtained by the optimization of Value-at-Risk (VaR) measurement of the portfolios under 

consideration.  
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I. INTRODUCTION 

In existence of instability in today's real work-a-day world's 

financial dealings, a reasonable harmony among risks and 

returns has to be managed by an investor to derive at an 

optimum standpoint. Although there is a predominant 

instability, the advantage lies in the correlation of the 

combination of financial instruments/assets in a financial 

portfolio in a stipulated market scenario. Of late, portfolio 

management is necessitated wanting for making decisions 

within the circumstances to invest involving a high-risk 

frame hence proving the present day’s scenario risks and 

returns to be inevitably interlinked resulting in the 

importance in the decision making procedure in the 

investment opportunities. It directs the risk-reward accord 

for allocation of investments in numerous assets in turn 

maximizing returns or minimizing risks within a stipulated 

investment time frame. According to Markowitz, choosing 

an asset should not be done depending only on its 

characteristic features but also taking into account its co-

movement with other assets [1]. Computation of risk as 

standard deviation of returns was done by Markowitz also 

showing diversification into different investment factors 

which in turn have limited or negative correlations in 

relation to their movements reducing overall risk [1]. This 

movement is measurable by a correlation coefficient varying 

between + 1 and -1 conferred to Markowitz [1]. 

There have been several general models to select portfolio 

which have come up over the years. These include the early 

mean variance models based on Markowitz's work in 1952 

[1]. Of late, a host of stochastic optimization procedure 

established on the market scenario has assumed importance 

[2, 3, 4, 5, 6, 7]. No matter which model one resorts to, the 

underlying principle/notion lies in the minimization of some 

measures of market risks while simultaneously focusing on 

maximizing the portfolio return. It is noted that the risk 

metric is assumed as the function of the possible portfolio 

returns nearly in all models.  

The most widely used method for assessing downside risk 

within a portfolio is the Value-at-Risk (VaR) which is 

characterized as the p
th

 percentile of portfolio return at the 

edge of the planning horizon. Incidentally, for low values of 

p (as low as 1, 5 or 10), it identifies the “worst case” 

outcome of portfolio returns. Stambaugh (1996) envisages 

VaR to be (1) a terminology for risk, (2) giving space to 

efficient and coherent risk management, (3) providing an 

enterprise-wide technique for market regulation, and (4) 

acting as a tool for risk assessment [8]. 

A score of literature exists regarding the varied techniques 

for the computation/calculation of a portfolio's VaR. One of 

the interesting perspectives of VaR derivation is ascertaining 

how it can be applied for allocation of portfolios in multi-
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financial instruments situation. If business organizations 

perform based on VaR, then it stands to be a vital issue in 

designing the strategy for investment selection. Furthermore, 

if organizations take decisions in a VaR context, then the 

implications of the organization’s risks are to be taken into 

cognizance. Since VaR is rather discrete in nature and is 

difficult to incorporate in traditional stochastic models, not 

much work has been reported in the literature with regards 

to its optimization attempts. Rockafellar and Uryasev (2002) 

proposed a scenario-based model for portfolio optimization 

[9]. They adopted the Conditional Value-at-Risk (CVaR) for 

this purpose. CVaR is described to be the amount of 

expected loss outrunning VaR. Their illustration curtails 

CVaR in course of calculating VaR. It was observed that the 

minimum-CVaR is equivalent to the minimum-VaR 

concerning of regularly apportioned portfolio returns.  

Thus for measuring the financial worth of an asset or of an 

asset’s portfolio within the market which gets decreased 

during a stipulated period of time (usually considered during 

1 day or 10 days) subservient to typical market conditions, 

Value-at-Risk (VaR) is considered as an effective tool. It is 

also highly valued for being incorporated within industry 

regulations regardless of suffering from the instability along 

with difficulty to work using numerical values if there is 

normal distribution of losses because loss distribution often 

tends to exhibit “fat tails” or empirical discreteness.  

Value-at-Risk (VaR) at a confidence level is thus treated as 

the maximum amount of loss not outstripping at a stated 

probability, over a stipulated time period. VaR has always 

been determined by three parameters, viz., (i) the stipulated 

time period (typically 1 day, 10 days, or 1 year) which is to 

be analyzed as the time over which any organization should 

hold its portfolio, or to the time required for liquidating its 

assets, (ii) the level of confidence (common values are 99% 

and 95%), which is the approximated value for the interval 

where the VaR would not likely exceed the unit of VaR in 

currency, and (iii) the maximum probable loss structure. 

Unlike Value–at-risk, Conditional Value-at-Risk (CVaR) 

stands as the risk measuring technique in case of risk having 

significant advantages, for deriving distribution of losses in 

finance involving discreetness [9]. Because of the 

customariness of different proposed structures found on 

varied scenarios and finite sampling, the utilization of such 

distributions have become an important property in the 

economic markets in turn. 

CVaR can be identified to be the mean value of VaR along 

with CVaR
+
 (the values themselves be contingent on the 

decision x along with the weights), where none of the values 

for VaR and CVaR+ stand to be coherent. The specific 

method for computing CVaR in relation to probability of 

VaR value gives the worth of weights, in existence of the 

other. 

Computational advantages of CVaR over VaR prove to be 

the leading impetus in the CVaR methodology development 

procedure, despite of substantial efforts for finding out the 

effective algorithms for optimization procedure of VaR in 

high-dimensional environments which are still unavailable. 

CVaR proved as a new coherent risk measuring structure 

having distinct advantages when been compared to VaR, 

quantifying risks beyond VaR, consistent at divergent 

positions of confidence α (smooth relating to α) and also 

being a static statistical estimate with integral characteristics 

[9]. CVaR has thus been entrenched as an excellent tool in 

the risk management procedure and optimization of 

portfolio accompanied by linear programming having huge 

dimensions in the company of substantial numerical 

implementations. At various time periods with divergent 

positions of confidence, distributions are also shaped for 

multiple risk constraints along with the previously 

mentioned tasks, which in turn stand as swift algorithms for 

online usage. Rockafellar and Uryasev (2002) have 

considered CVaR methodology as a consistent one having 

mean-variance method considered in turn as minimal 

portfolio (with return constraint), which can also be 

accepted as a variance minimal in terms of normal loss 

distribution [9]. 

Within this research work, an algorithm exercising particle 

swarm optimization has been used for evolving optimized 

portfolio asset allocations within instable financial dealings. 

The suggested way is to optimize the Conditional Value-at-

Risk (CVaR) measurement in divergent market scenarios in 

terms of numerous targets and restraints [9]. Other than 

implementing the general definition of CVaR and its 

minimization formulae associated, the writers have 

concentrated here into assessing the entire various 

distributions enhancing the usefulness and worth of CVaR in 

case furnishing the elementary way of calculating CVaR 

directly. The results obtained have been put into comparison 

with those ascertained from the optimization of Value-at-

Risk (VaR) measurement procedure of the portfolios on 

selected financial tool along with a real life data set of 

TATA Steel from mid-August and early September, 2015, 

enabling a distributional assumption for employing the 

particular type of financial assets for developing a much 

more generalized framework. 

The authors have planned the article into the following 

different sections providing an overview of the conventional 

concept of Conditional Value-at-Risk in section II. Section 

III then demonstrates the mathematical assertion of VaR 

along with CVaR measurement. A discussion of the particle 

swarm optimization process along with the algorithm 

associated is provided in section IV. The findings are 

summarized in section V. Conclusions added to future 

directions of research are drawn out finally in section VI. 
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II. CONVENTIONAL CONCEPT OF CONDITIONAL 

VALUE-AT-RISK 

Introduction of return risk management framework by 

Markowitz (1952) has come a long way in procedure of 

portfolio optimization [1]. Of late, the utilization of 

alternative coherent technique is been done for the reduction 

of probable amount of losses within a portfolio. This can be 

worked out by assessing of the specific loss that will be 

exceeding the value at risk. The outcome risk measurement 

is termed to be the Conditional Value-at-Risk (CVaR) [9]. 

Appreciation goes to the evolving fields of data intelligent 

management and archival techniques in industrial portfolio 

management. Simulation by fundamental requirements in 

turn has developed within portfolio optimization procedure 

by (i) risks, constraints and adequate modeling of utility 

functions and (ii) efficient handling of huge number of 

scenarios and instruments. In mathematical understandings, 

derivation of CVaR is done by considering the mean value at 

the intervals of the value-at-risks and the amount of loss 

outstripping the value-at-risks. CVaR being compared to 

VaR, it not only traces several different loss distributions but 

can even also be easily expressed in minimization formula. 

Measures of risk play an indispensible act especially in 

coping with losses which might have been incurring in 

finance under the shed of uncertain conditions. Loss, being 

derived as a function z =  f( x, y) within a decision heading 

x∈X representing the values of numerous variable viz. 

interest rates or weather data in terms of the future values. If 

y is assumed to be random with known probability 

distribution z, then it turns out to be a variable random in 

nature having its dependent distribution on the choice of x. 

If any optimization problem shows the involvement of z in 

spite of the choice of x, then it can be accounted not just as 

expectations but even as “riskless” of x. 

Percentile measures of loss or reward can be done by f(x,y), 

which is taken to be the loss function depending upon the 

decision vector x = (x1,….xn) and the random vector y = 

(y1,….ym), then VaR is calculated as α-percentile, 

representing the loss distribution which is treated as the 

minimal value where the probability which loss exceeds or 

is equivalent to the value which is exceeding or equaling to 

α. In such case, CVaR
+ 

which is also known to be the “upper 

CVaR” is the loss expected, which strictly exceeds VaR (in 

turn known as Mean Excess Loss) and Expected Shortfall. 

CVaR
- 
in turn known as “lower CVaR” is the loss expected 

weekly exceeding VaR, which is the loss expected equal to 

or exceeding VaR. It is also popular as Tail VaR. 

Thus, CVaR is the mean value of VaR and CVaR
+ 

[9]. It can 

be derived from the following formula: 

        CVaR = λVaR+(1 – λ) CVaR
+ 

,         0 ≤ λ ≤ 1  (1)        

Where, λ is the Lagrange multiplier. 

Considering CVaR is convex as shown in "Fig.1", VaR, 

CVaR
+
, CVaR

- 
can also be non-convex. This shows credible 

inequalities as: 

VaR ≤ CVaR
- 
≤ CVaR ≤ CVaR

+ 
(Rockafellar and Uryasev, 

2002) [9]. 

The relationships between VaR, CVaR, CVaR
- 

and CVaR
+ 

(Rockafellar and Uryasev, 2002) are shown in "Fig.2" [9].
 

 

Fig.1. CVaR: Convex Function (Rockafellar and Uryasev, 

2002) [9]. 

  

Fig.2. The relationships between VaR, CVaR, CVaR
-
and 

CVaR
+ 

(Rockafellar and Uryasev, 2002) [9].
 

III. MATHEMATICAL FORMULATION 

VaR is treated as an important approach for the disclosure of 

a stipulated financial portfolio within the varied risk 

situations, instinctive in financial structures, which in turn is 

also having paramount significance within a portfolio 

optimization purpose.  

Considering a portfolio P, levelheaded by k assets,     S = {S1, 

S2…Sk}, and W = {W1, W2…Wk} considered as the relative 

weights or portions of the assets within the stipulated 

portfolio, the price can be estimated as: 
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Within which Si(t) and Wi  stand to be the values and 

importance levels of the portfolio within a stipulated time 

period t, respectively.  

The VaR of the stated portfolio P, which is the maximum 

amount of loss expected within a stipulated holding period at 

a stated level of confidence (α), then can be considered to be 

the smallest number l such that the probability of the loss 

termed as L exceeds l is not larger than (1 - α), i.e. 

 

    
})(:inf{}1)(:inf{ ααα ≥∈=−≤>∈= lFRllLPRlVaR L  (3)                                                                             

   

All the techniques and models depend on  presumptions of 

their own. However, the common presumption that stands to 

be the best estimator for future changes in market conditions 

is the historical trace of available market data. Few of the 

acclaimed models for estimating VaR include:  

1. Variance-Covariance (VCV) model – It is helpful for 

the assumption of the risk factor returns which is to be 

normally (jointly) distributed in every cases, and at the 

same time the portfolio return which in turn is also 

normally distributed. It is also helpful in assumption 

of the modification in the portfolio’s worth which is 

dependent directly on every risk factor returns. In 

1990, this model got popularized. The assumption of 

portfolio’s return to be normally distributed shows the 

composition of assets within a portfolio. The 

changes/deltas being linear state, changes within the 

value of portfolio which in turn is dependent linearly 

on each and every changes in the values of the assets. 

This implies portfolio’s return is also dependent 

linearly on every asset returns and the asset’s return is 

moreover jointly normally distributed. With further 

assumption that the risk factor connected to a stated 

financial portfolio is the portfolio’s worth  itself, the 

95% level of confidence  VaR for N assets within a 

holding period, is given by 

                 
)645.1( pppVVaR σµ −−=            (4)                 
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Where, i refer to the return on asset, i and p refer to 

the portfolio’s return for standard deviation (σp) and 

mean (µp). Vp is taken to be the portfolio’s worth at 

the beginning (in currency units). ϖi is hence 

expressed to be the ratio of Vi to Vp.  

If compact and maintainable data set has been 

purchased from third parties, VCV model stands to be 

beneficial in context of their usage and also in the 

speed of calculation by the usage of optimized linear 

algebraic libraries. The main drawbacks of this model 

lie in the presumption that the portfolios generally 

comprise assets for which delta is linear and that the 

market price returns/asset returns are distributed 

normally. 

2. Historical simulation (HistSim) model – Emerging as 

the industry standard for calculation of VaR, in 

context to the presumption that the asset’s return in 

future always will be providing an equal amount of 

distribution as happened in the past. Hence, HistSim 

is treated as the simplest and transparent method for 

calculating the VaR. This model for computation of a 

percentile (VaR) associated within the prevailing set 

of portfolio across a set of historical trace for yielding 

modifications in the portfolio value. Its simplicity of 

implementation stands to be its most important 

benefit along with not assuming a distribution normal 

in nature of asset returns like the VCV model. Its 

intensive calculation computationally along with the 

necessity for a larger market scenario fall under its 

main drawbacks.  

In HistSim, VaR is evaluated as: 

                
1033.2 pMVaR σ=             (7)                                                       

Where, M is considered as the market worth of a 

portfolio and σp is treated as the historical instability 

of that portfolio. The constant 2.33 stands for the 

number of σp which is required for a level of certainty 

of 99% and the constant √10 refers to the number of 

days in the holding period.  
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Basically, calculation of VaR is done in the HistSim 

method in two simple steps. Firstly, construction of a 

series of pseudo historical portfolio returns is 

calculated by the usage of portfolio weights along 

with historical asset returns.  Secondly, the 

calculation of VaR and the prevailing asset returns 

quantile of the pseudo historical portfolio returns are 

carried out. 

3. Monte Carlo simulation – This model basically 

undergoes the random simulation of future asset 

returns. Usage of this simulation is done generally for 

calculating VaR for portfolios which are containing 

the securities with non-linear returns and in which the 

requirement of computational effort is non-trivial. 

Conceptually, simplicity of this method stands to be 

its added advantage, still it is computationally more 

intensive than both the VCV and HistSim models. 

The generic Monte Carlo VaR calculation 

incorporates the following steps: 

 

1. Predefining N, denoting the number of iterations 

which is to be performed. 

2. For every iteration in N,  

• Generating a random scenario of 

market which moves by the usage of 

some existing model present in the 

market. 

• Revaluing a portfolio under the 

simulated market volatility scenario. 

3. Computing a portfolio’s profit or loss (PnL) in 

case of the simulated scenario and for doing so, 

subtracting the current market worth of that 

portfolio from its market value which has already 

been estimated in the last previous steps. 

4. Sorting the result PnLs required for obtaining the 

simulated Profit and Loss (PnL) distribution 

within the stated portfolio. 

5. Finally, calculation of VaR at a stated level of 

confidence by using the function of percentile.  

The features of CVaR represent the risks which are simple 

and convenient in nature hence measuring the downside 

risks and are applicable to non-symmetric distribution of 

losses. Stable statistical estimates of CVaR appear to be its 

integral characteristics in comparison to VaR which can get 

influenced by any scenario. CVaR yields values in a 

continuous process in respect to the confidence level α, 

steady at divergent phases of confidence in comparison with 

VaR (VaR, CVaR
- 

, CVaR
+ 

may not be continuous to α). 

CVaR portfolios coexist within normal distribution of loss in 

optimal variance to the level of consistency in mean 

variance approach. CVaR is variedly acceptable due to its 

easy control and optimization process for non-normal 

distributions, even shaping of loss distribution is being done 

using CVaR constraints for the first online procedures. 

IV. PARTICLE SWARM OPTIMIZATION 

The occurrence of evolutionary estimation has been 

inspiring new resources for optimizating in different 

problem solving procedures variably within the area of 

portfolio management. Evolution of algorithms, like Genetic 

Algorithm (GA), Ant Colony Optimization (ACO), 

Simulated Annealing (SA) along with Particle Swarm 

Optimization (PSO), all of which tend to assess the global 

solution of a stated problem [10,11, 12, 13].These 

algorithms have come to usage as effective tools for 

evaluation of numerous points in  search space 

simultaneously.  

Based on the simulation of simplified social models viz. bird 

flocking, fish schooling, along with the swarming theory, 

PSO stands to be evolutionary computation mastery in 

context to individual enhancement along with population 

cooperation and competition. The concept desires primitive 

mathematical computations, which is not at all 

computationally expensive in consideration to memory 

requirements in terms of irrespective period of time. 

Optimization of fitness function is evaluated for every 

particle. The desired value for the comparison purpose of the 

particle’s fitness worth with particle’s pbest (personal best) 

is found out and if prevailing worth is better than pbest, 

pbest ‘s worth is set which in turn is equal to the prevailing 

worth and is equal to the current position in a K-dimensional 

space. Comparing fitness worth of the particle with the 

particle’s fitness values obtained so far falls into the next 

procedure. If the prevailing worth stands to be better than 

the gbest (global best), then the gbest value is reset to the 

prevailing particle’s worth. Repetition of this mechanism 

gets continued till the criterion for stopping is met. 

In the PSO mechanism, the representation of each potential 

particle representing a particle with a position vector x, 

refers to the phase weighting factor b and a moving velocity 

v, respectively. For K dimensional optimization, the location 

along with the velocity of the i
th

 particle are represented as 

,1 ,2 ,( , , ..., )i i i i Kb b b=b and , 

respectively. Each particle having its individual top position

,1 ,2 ,( , , , )P

i i i i K
b b b b= L which corresponds to the individual 

best objective value which is obtained till the time t, is 

referred to as pbest. The best particle globally (gbest) is 

expressed by , which is 

represented as the top particle so far at time t within the 

entire swarm. The recent velocity ( 1)i t +v  for particle i is 

reconditioned by  

���� + 1� = 	����� + 
��
�
����� + 
��


� ��� − 
� ����                                                                     
(8) 

,1 ,2 ,( , ,..., )i i i i Kv v v=v

( ),1 ,2 ,= , , ,G

g g g Kb b bb L
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where, w is supposed to be the inertia weight,
 

( )iv t is 

considered to be the old velocity for the particle i at time 

period t. Seemingly from the above stated equation, the 

newly obtained velocity in relation to the velocity which is 

found in the previous course which in turn is denoted by w 

(weight) and is also affiliated to the place of the particle 

with that of the global best one by acceleration constants
1c

and . Accelerations
1c and

2c , being the constants adjust to 

the value of tension in PSO system. High values fetching 

abrupt movement indicating the target areas in context to the 

lower values allows the particles to move far from the target 

areas before being tugged back. The acceleration constants

1c and 
2c are therefore been stated to be the cognitive and 

social rates for representing the weighting factor of the 

acceleration terms, pulling each particle towards the  best 

positions in respect to personal and global spectrum. Particle 

swarm optimization is thus a population-based stochastic 

optimization procedure which has been originated from the 

social behavior of bird flocking or fish schooling. Thus PSO 

is considered as every solution like a “bird” (particle) in the 

search area of food (the best solution). All particles having 

fitness values are evaluated by the fitness function, having 

velocities that direct the “flying” (or evaluation) of the 

particles which in turn begins with a set of random particles 

(solutions). PSO searches for the optimal solution by 

updating generations in each iteration. All particles are 

updated by the “best” values already stated as the pbest or 

personal best stating the best solution or fitness which a 

particle has obtained till that moment in turn the other is the 

gbest or global best stating the best value obtained by any 

particle in the population. The best value achieved within 

the topological neighbour or within the segment of a 

population is a local best known to be the pbest. Finding the 

best values, velocity and position for the particle are updated 

using "(9)" [14]. 

Vt+1iX(t+1)i=wVti+c1rand1()(pbesti−Xti)+c2rand2()(gbesti−Xti)=X

ti+V(t+1)I                                                         (9) 

Where, i is once again treated as the index of each particle, t 

is the current iteration number, rand1() and rand2() are 

random numbers within 0 and 1. pbesti is the best experience 

in previous course of the i
th

 particle while gbesti stands to be 

the best particle within the population as a whole. Constants 

c1 and c2 are considered as the weightage factors of the 

stochastic acceleration terms, which in turn exherts every 

particle toward the pbesti and gbesti, w being the inertia 

weight controlling the exploration characteristics of the 

algorithm. If c1 > c2, the particle tends to reach pbesti, the 

best position identified by the particle, rather than converge 

to gbesti found by the population and vice versa. 

The procedure of PSO starts with a population group 

generated randomly, both in turn having fitness values for 

evaluating the group of population. Population can be 

updated and searched for the optimum with random 

techniques in both the procedures without any success been 

guaranteed.  

However, unlike the genetic algorithm, PSO does not 

include genetic operators such as crossover and mutation. 

With the internal velocity, particles start updating 

themselves having memory, which stands to be of having 

most importance to the algorithm. PSO proves to be very 

differently significant, when terms of comparison arise in 

genetic algorithms (GAs). Chromosomes in turn share 

knowledge among each other for moving whole population 

like one group enhancing an optimal domain where only 

gbest (or lbest) gives out the information to others. Hence it 

proves to be mechanism for sharing information on one way 

basis in turn proving the evaluation just looking for the best 

solution, along with every particle tending for the best result 

quickly even in the local version in most of the cases. 

V. PROPOSED METHODOLOGY 

The suggested mechanism is targeted for optimization of the 

Conditional Value-at-Risk (CVaR) measures within a 

portfolio comprising numerous financial instruments at 

divergent market scenarios based on numerous goals and 

constraints. Application of PSO for CVaR optimization is 

demonstrated in respect to the minimization of the risks 

within the portfolios under consideration, thereby 

minimizing the portfolio losses incurred. The flow diagram 

of the suggested mechanism is shown in "Fig.3". 

 

Fig.3. Flow diagram depicting the proposed methodology 

The procedure of portfolio asset allocation optimization is 

demonstrated on a collection of 20 portfolios with several 

asset variations. Here in this process of optimization, the 

2c

START 

Compute VaR, CVaR at different market 

volatility conditions 

Optimizing CVaR using 

PSO 

STOP 
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particle swarm optimization algorithm has been run with two 

different numbers of generations viz., 500 and 1000 with the 

constants already been specified in Table I.  

TABLE I.  PARTICLE SWARM OPTIMIZATION PARAMETERS 

EMPLOYED 

Sl. No. PSO Parameter  Values used 

1. Number of Generations (500, 1000) 

2. Inertia weight 0.8 

3. Acceleration Coeffient (ϕ1) 1.5 

4. Acceleration Coeffient (ϕ2) 1.5 

 

The optimization of the portfolio asset allotment is achieved 

with particle swarm optimization [15]. In terms of faithfully 

allocating the assets within a given level of confidence, it 

minimizes the Conditional Value-at-Risk (CVaR) for the 

portfolio using "(10)" as the fitness function. 

                  ���� = ���
����
� �																									

 √�"
                     (10)                               

Where, a=0.01 considering a confidence level of 99% and 

VaR are the Value-at-Risk measures of the portfolios under 

consideration. 

Table II lists the different archived average optimized 

portfolios over two different numbers of generations along 

with their costs for a confidence level of 99%. 

In addition, as a comparative study, the Historical 

Simulation (HistSim) model has been used for calculating 

VaR of the portfolios under consideration. The particle 

swarm optimization algorithm is then utilized for obtaining 

optimum VaR measures of the portfolios using "(7)" as the 

fitness function. The optimized VaR values obtained using 

the particle swarm optimization algorithm is also delineated 

in Table II for the necessity of comparison. 

TABLE II.  COMPARATIVE RESULTS OF OPTIMIZED 

PORTFOLIOS WITH THEIR COSTS, CVARS AND VARS AT A 

CONFIDENCE LEVEL OF 99% 

Portfolio No. Portfolio Cost (in currency units) CVaR VaR 

1 26758.782629 0.190600 0.224732 

2 29942.989518 0.185829 0.226188 

3 34868.339288 0.183854 0.224514 

4 36591.431339 0.184595 0.224596 

5 35996.607129 0.185289 0.224314 

6 32243.667175 0.181077 0.224495 

7 30576.016315 0.182792 0.225213 

8 33300.584075 0.186494 0.225019 

9 30446.646374 0.181387 0.225806 

10 29874.663429 0.187987 0.225377 

11 36049.580870 0.182420 0.224926 

12 33303.676941 0.184245 0.225910 

13 38518.502646 0.179264 0.224766 

14 47675.001370 0.177929 0.224173 

15 26358.703336 0.193556 0.226707 

16 30098.635906 0.189505 0.225343 

17 35391.282927 0.184244 0.224860 

18 24874.327332 0.182948 0.224615 

19 33692.352544 0.184193 0.225842 

20 36283.390566 0.180552 0.224320 

 

From Table II, it is evident that the CVaR measures provide 

a more realistic impression for allocating the financial 

instruments since for all the 20 portfolios, the CVaR 

measures reflect minimized market risks as compared to 

their VaR measures.  

It can be observed from Table II and Table III that PSO 

delineates a faithful selection/allocation strategy of assets 

within the financial portfolio which can be derived by the 

usage of an optimization procedure in particular iteration 

and generated a solution which is local optimum. Moreover, 

PSO further explores to find much optimized solution using 

CVaR techniques than the one generated by PSO by usage of 

VaR techniques. The proposed approach aims at minimizing 

the CVaR measures of the portfolios under consideration by 

the usage of particle swarm optimization technique. The 

optimized portfolios are seen to outperform the 

corresponding VaR based optimized portfolios with regards 

to minimization of market risks. As far as our knowledge is 

concerned, no such attempts have been reported in the 

literature so far. Hence, this initiative is a maiden venture in 

this direction.  

VI. CONCLUSION 

Within the domains of economics and finance, portfolio 

management has proved having the supreme importance as a 

systematic discipline given at the strategies for 

diversification in investment. This research work targets to 

evolve a selection and allocation strategy of portfolios 

within an unstable market scenario by means of the 



   International Journal of Computer Sciences and Engineering                                     Vol.-5(2), Feb 2017, E-ISSN: 2347-2693 

    © 2017, IJCSE All Rights Reserved                                                                                                                                      84 

optimization of the Conditional Value-at-Risk (CVaR) 

measures of the portfolios under consideration. A particle 

swarm optimization mechanism is adopted on historical 

portfolio data and a real life data set of TATA Steel for this 

purpose which in turn is delineated in Table III. Faithful 

selection of results is exhibited on different portfolios with 

several asset   combinations. 

 

TABLE III.  COMPARATIVE RESULTS OF OPTIMIZED PORTFOLIOS OF TATA STEEL LIMITED WITH THEIR COSTS, CVARS AND VARS 

AT A CONFIDENCE LEVEL OF 99% 

Date 

 

Symbol 

 

Open 

Price 

 

High 

Price 

 

Low 

Price 

 

Last 

Traded 

Price 

 

Closing 

Price 

Total Traded 

Quantity 

 

Turnover 

 (in Lakhs) 

 

Difference 

Of Closing 

Prices of 

Consecutive 

Days 

CVaR VaR 

2/9/15 
TATA 

STEEL 
218.9 225.9 210.3 220.9 219.5 8909770 19476.16 3.200000 0.070347 0.199387 

1/9/15 
TATA 

STEEL 
222 226.25 213.05 216.4 216.3 6475249 14253.2 -9.100000 0.061473 0.200462 

31/8/15 
TATA 

STEEL 
225.3 228.7 223.65 225.3 225.4 5782337 13047.13 -3.550000 0.053436 0.205600 

30/8/15 
TATA 

STEEL 
232.6 234.6 223.2 229.5 228.95 9387248 21607.97 2.550000 0.061694 0.205542 

29/8/15 
TATA 

STEEL 
220 229.8 215.1 227.2 226.4 14227129 31569.67 10.750000 0.054159 0.204653 

28/8/15 
TATA 

STEEL 
213 219.7 208.95 214.8 215.65 8336683 17819.13 2.200000 0.077069 0.194805 

27/8/15 
TATA 

STEEL 
210 217.9 200.1 215 213.45 14206932 29799.94 7.350000 0.054156 0.203642 

26/8/15 
TATA 

STEEL 
229.3 229.3 202.65 204.45 206.1 11711489 25572.86 -31.150000 0.068291 0.201481 

25/8/15 
TATA 

STEEL 
238.5 238.5 231.5 236.3 237.25 5247042 12325.35 -4.300000 0.060858 0.203103 

23/8/15 
TATA 

STEEL 
247.7 248.4 240.5 242 241.55 4626334 11255.37 -8.250000 0.068447 0.200799 

22/8/15 
TATA 

STEEL 
250.1 253.35 246.75 249.55 249.8 4304085 10772.08 -2.550000 0.052530 0.205786 

21/8/15 
TATA 

STEEL 
248.1 254.9 246.6 252.4 252.35 9805064 24641.63 5.600000 0.061528 0.200201 

20/8/15 
TATA 

STEEL 
238.5 248.5 234.2 247.5 246.75 8524452 20665.62 9.150000 0.073113 0.200397 

19/8/15 
TATA 

STEEL 
234.25 239.2 229 237.5 237.6 9065329 21282.27 4.000000 0.060508 0.200104 

18/8/15 
TATA 

STEEL 
253.35 253.9 232.3 234 233.6 13764560 32979.36 -15.450000 0.050674 0.201994 

17/8/15 
TATA 

STEEL 
254.4 257.9 246.1 249.45 249.05 15172684 38227.01 2.250000 0.066088 0.199147 

16/8/15 
TATA 

STEEL 
259.95 260 245.7 247.3 246.8 8827248 22200.72 -14.350000 0.067079 0.201798 

15/8/15 
TATA 

STEEL 
262.9 265 260 260.25 261.15 3401136 8929.59 -0.900000 0.061850 0.201672 

14/8/15 
TATA 

STEEL 
261 264.55 260.15 262.05 262.05 3791638 9948.04 1.050000 0.069911 0.199146 

13/8/15 
TATA 

STEEL 
262.35 265.4 256.25 260.25 261 6376740 16691.22 -1.300000 0.051213 0.206873 

12/8/15 
TATA 

STEEL 
260 268.5 259.95 262.3 262.3 7979075 21145.9 6.000000 0.067111 0.199241 

11/8/15 
TATA 

STEEL 
249.7 259.75 246.05 258.8 256.3 9723318 24527.2 - - - 

 

CVaR being into a new risk measuring procedure provides 

significant advantages when been compared to VaR which in 

turn can quantify risks beyond the level of VaR. Hence it is 

known as a coherent risk measurement procedure which is 

consistent in different confidence levels. The writers have 

attempted evolving a strategy for selection and allocation of  

 

portfolios under different financial market conditions. For 

the stated purpose Particle Swarm Optimization (PSO) 

procedure is adopted under the above two mentioned 

conditions .Thus the proposed mechanism is targeted at 

minimizing the CVaR measures of the portfolio under 

consideration.  
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Methods however remain to be investigated to incorporate 

the aspect of return maximization in the portfolio allocation 

scenario through multi-objective optimization techniques. 

The authors are currently engaged in this direction. 
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