

 © 2018, IJCSE All Rights Reserved 979

International Journal of Computer Sciences and Engineering Open Access

Review Paper Vol.-6, Issue-11, Nov 2018 E-ISSN: 2347-2693

A Review on Various Nearest Neighbor Searching Algorithms Using

Graphical Processing Units

Sneha Jacob, Anuj Mohamed

 School of Computer Sciences, Mahatma Gandhi University, Kerala, India

Available online at: www.ijcseonline.org

Accepted: 24/Nov/2018, Published: 30/Nov/2018

Abstract—The demand for Graphical Processing Units or GPUs, gained a tremendous hike during the past few years as a result

of its migration from processing and representation of mere high dimensional graphical patterns to a heterogeneous high

performance computing capability. The future generation data science requirements like Big Data Analysis and Deep Learning

increased the popularity of GPUs to a wide extend. Graphical Processing Units or GPUs are well suited for parallel processing

which enables visualization of vast amount of real time processed data in a more significant manner than CPU. From

processing mere graphical algorithms, GPU has gone through numerous advancements in the past few decades. They can be

used to improve the performance and efficiency of any algorithm nowadays. The expenditure of installation and use of GPUs

have come down to a great extent from the initial huge amount. Data classification tasks like kNN classification can be done

more efficiently and cost effectively by applying parallelism using GPU. kNN algorithms are the most popular data

classification algorithm, because of its simplicity, high accuracy and versatility. This paper studies four major kNN algorithms

developed for GPU processing and compares the techniques and methodologies used in them.

Keywords— GPU, BF CUDA, CUBLAS, CUKNN

I. INTRODUCTION

Classification is the process of categorizing a newly arrived

data to its original class label, by studying the characteristics

of previously trained data. The classification models are

categorized into two- Eager Learning methods and Lazy

Learning methods. The different eager learning classification

methods include Classification by Decision Tree Induction,

Bayesian Classification, Rule Based Classification,

Classification by Back propagation, Support Vector

Machines (SVM), Associative Classification etc. K Nearest

Neighbor classifier and Case-based reasoning classifiers are

examples of Lazy Learners. Even though Lazy Learners are

more expensive and require high storage space, they are well

suited for parallel implementation. kNN (k Nearest

Neighbour) classification [1] is the simplest and the most

popular technique in the Lazy Learner classification

methods. They are well suited to model high dimensional

data.

Over the past years, many authors have proposed a number

of optimal algorithms for kNN classification. For example

dW-ABC-kNN(distance Weighted kNN using Artificial Bee

Colony) algorithm [2], kTree method [3], coefficient

Weighted kNN classifier, Residual Weighted kNN

classifier[4] etc.

The main objective of this paper is a thorough study of the

different algorithms for implementing kNN classification, in

Graphical Processing Units. The four different Nearest

Neighbour Searching algorithms taken for this study are BF

CUDA (Brute Force Compute Unified Device Architecture),

GPU kNN, CUBLAS (CUDA Basic Linear Algebra

Subprograms) and CUKNN (CUDA kNN). These algorithms

are compared with regard to their speed, accuracy and the

sorting techniques used.

This paper is organized into 5 different sections. Section I

gives an introduction about the importance of classification

algorithms in Graphical Processing Units. Section II

illustrates a brief description about GPUs and CUDA

programming. Section III presents related works in this area.

Section IV depicts a simplified GPU memory architecture

and Section V illustrates the observations of the study.

Conclusion and future research directions are specified in

section VI.

II. GRAPHICAL PROCESSING UNITS AND CUDA

PROGRAMMING

When the same set of code is to be applied on a large amount

of data elements, Graphical Processing Units (GPU) provide

an efficient platform for the same through parallelism. Hence

the distance calculation and sorting steps which are

independent, in kNN classification, can be done parallel

using GPUs. GPUs achieve high degree of parallelism by

dedicating most of their transistors for data processing rather

than control and data flow management. Graphical

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 980

Processing Systems provide assistance for parallel processing

which in turn helps to achieve high degree of speed

acceleration in High Performance Computers. With its

multiple processors, working in parallel, GPU is highly

useful for both graphics and non-graphics processing [5].

Different companies developing GPUs include AMD

(Advanced Micro Devices), ARM Holdings, Broadcom

Limited, Imagination Technologies, Intel, Matrox, NVIDIA,

Qualcomm etc.

CUDA is a general purpose computing architecture that helps

to fully utilize the parallel processing capability of GPU.

CUDA stands for Compute Unified Device Architecture.

CUDA was introduced by NVIDIA in 2006. It supports

various high level programming languages like C, C++,

FORTRAN, Open CL, Direct Compute etc [6].

III. RELATED WORKS

Many researches are being done in the classical kNN search

to empower it to do advanced classifications like Multi Label

(ML-kNN) learning in which each object instance will be

associated with more than one class label [7]. Applying

parallelism in kNN using GPU, will increase the

performance of algorithms to several multiples of the original

one.

Due to high cost of GPU purchase, installation and

maintenance and limited languages in GPU computing, many

manufacturing companies even suspended their production

and maintenance supports of GPUs. Thus there came a gap in

the research and use of High Performance Computers for few

years.

Advances in Cloud computing, Big data analysis and Internet

of Things again demanded the capacities and capabilities of

HPCs for their efficient processing using GPUs. Studies have

proved that the use of GPUs helps to solve many high end

computing problems many times faster than using

conventional CPUs. This became handier by the

development of CUDA programming language. For instance,

the project named GAP utilizes the high end computing

power of GPU in various real time applications [8].

IV. GPU CUDA MEMORY ARCHITECTURE

GPUs were initially developed to accelerate floating-point

calculations[9]. Later, programming languages like CUDA

by NVIDIA has increased the usability of GPUs by making it

suitable for heterogeneous processing of numerous real time

data within a short period of time.

The major challenge in utilizing the high end features of

GPU is the thorough understanding of the GPU architecture.

Deciding the number of threads and blocks is one of the most

important tasks that affect the efficient utilization of GPU.

The GPU memory is being divided into Grids, Blocks and

Threads. Each Grid contains a number of blocks and each

block consists of a number of Threads. Kernel is the function

that invokes GPU. ‘Host’ represents the local system we are

using for programming and ‘Device’ refers to the GPU.

Several novel GPU memory architectures have been

proposed by various authors [10] to overcome the difficulty

in memory management of GPU. Many advanced

algorithms like Spatial Preprocessing (SPP) have been

developed to increase the efficient memory utilization of

GPUs [11].

The major difference between CPU and GPU is that, GPU

dedicates most of its transistors for data processing rather

than flow control and temporary storage. A combination of

GPU and CPU can present the most efficient and cost

effective high performance computing.

Figure 1. GPU Memory Architecture

V. STUDY AND OBSERVATIONS

BF-CUDA is a method for k Nearest Neighbour Search using

Brute Force method with CUDA in GPU. A comparison of

the performance of this new algorithm with three other

algorithms is also presented. They proved that the BF CUDA

algorithm is faster than the other algorithms named BF-

Matlab, BF-C and ANN (Approximated Nearest Neighbor)

C++ [12]. The Datasets used in this experiment were a

synthetic dataset and a real dataset. The Brute Force Method

employs four steps to find k Nearest Neighbours among ‘m’

reference and ‘n’ query points in a ‘d’ dimensional data. Let

Q{q1,q2,…,qn) be the set of query points and R{r1,r2…,rm}

 Find out distance between the query point (qi) with

each reference point (rj) in the set R.

 Sort these distance values.

 Select ‘k’ smallest distances from this sorted list.

 Repeat all the above steps for each element in the

set Q.

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 981

 The sorting technique used here is the insertion sort. High

complexity is the major disadvantage of Brute Force

approach. In this paper, they have compared both “Comb

Sort” and “Insertion Sort” implementations in CUDA. The

result states that the computation time for “Comb Sort”

remained constant whereas that of “Insertion Sort” increased

linearly.

 Kuang, Quansheng, and Lei Zhao [13] proposed a GPU

based kNN algorithm in which they used a data segmentation

method. They utilized the thread model of the GPU memory

hierarchy. Euclidean distance calculation method was used

for finding out the distance between query and reference

points. Instead of computing the final square root, squared

distances are used in this system. This will reduce the

computing time. They used a batch loading strategy while

reading the global memory. The sorting technique used here

is a CUDA based Radix Sort. After the analysis, it had been

found that, the distance calculation phase can be highly

paralleled and can reach a high speed up ratio in GPU

implementation. The sorting step can also be accelerated and

the rest of the steps are not much time consuming. For

finding out the classification labels, this method used a

simple statistical election, depending upon the frequency of

classification label. This step is accomplished using CPU

instead of GPU to avoid complexity. They have used the

Adult dataset from UCI Machine Learning Repository. In the

performance analysis, they found that GPU algorithm is

32.61 times faster than CPU algorithm and 14.98 times faster

than ANN BF method while using a1a dataset. In a2a dataset,

GPU algorithm reached a speedup of 34.91 times compared

with CPU algorithm and 15.36 times with ANN-Brute

method.

Garcia and Debreuve [14], proposed two fast GPU-based

implementations of the Brute Force KNN search algorithm

using CUDA and CUBLAS APIs. They proved that CUDA

and CUBLAS implementations are up to 64 times and 189

times faster on synthetic data than ANN C++ library and up

to 25 times and 62 times faster on high dimensional SIFT

matching. Search method used in this paper is the Insertion

sort. They have used the CUDA implementation in BLAS

library and named it as CUBLAS. This new method is 189

times faster than ANN and up to 4 times faster than their

previous approach. The distance calculation method they

used in their previous method had been modified and

rewritten in this paper. A modified insertion sort is used for

sorting. In the implementation stage, they had reformulated

the distance computation using CUBLAS library. They state

that for Synthetic datasets, CUBLAS is 189 times faster than

ANN and 4 times faster than CUDA. In case of HD SIFT

matching, CUBLAS is 62 times faster than ANN and 2.5

times faster than CUDA.

A CUDA based parallel implementation of KNN named

CUKNN is being proposed by Liang, Liu, Wang and Jian

[15]. They used a synthetic dataset and a real physical

simulation dataset. Techniques like CUDA stream and

Memory coalescing were utilized here. The sorting method

applied is the Quicksort. The results show that CUKNN is

46.71 times faster than serial KNN on synthetic dataset and

42.49 times faster on physical simulation dataset. CUKNN

achieved 21.81 times speed up over quicksort based KNN

and 46.71 times faster than Insertion sort based KNN.

Table1 shows a comparison chart of the different algorithms

executed in the GPU.

Table 1: A comparison of sorting techniques and speed of different kNN

algorithms using GPU

VI. CONCLUSION AND FUTURE SCOPE

In this paper, a comparison study of various GPU based

algorithms for kNN classification is presented. The

comparison of results presented by the works in [12], [13],

[14] and [15] shows that BRUTE FORCE CUDA (BF

CUDA) is the most efficient and faster algorithm for GPU

based data classification. CUDA programming has reduced

much of the complexities in GPU programing with its

scalability and extensibility, which in turn increased the

Algorith

m

Comparison of Algorithms

Dataset Sorting

Technique

Speed Reference

BF
CUDA

Synthetic

Insertion
Sort

407 X than

BF-
MATLAB,

295 X than

BF-C & 148
X than ANN

C++

[12]

Real

GPU
kNN

a1a

Radix
Sort

32.61 X than
CPU & 14.98

X than ANN-

BF [13]

a2a
34.91X than

CPU&15.36 X

than ANN-BF

CUBLAS

Synthetic

Insertion

Sort

189 X than

ANN & 4 X
than CUDA

[14]

HD SIFT
Matching

62 X than

ANN & 2.5 X

than CUDA

CUKNN

Synthetic

Quicksort

46.71 X than
Serial KNN

[15]
Real

Physical
Simulation

42.49 X than

Serial KNN

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 982

scope of GPU usage to a great extent. Further studies in this

area will surely benefit future real time data processing

especially in the field of Big data analysis and deep learning

as well.

ACKNOWLEDGEMENT

The authors acknowledge the support extended by

DST.PURSE (Phase II), Government of India.

REFERENCES

[1] Han, Jiawei, Jian Pei, and Micheline Kamber. “Data mining: concepts
and techniques”. Elsevier, 2011.

[2] Yigit, Halil. "A weighting approach for KNN classifier". Electronics,
Computer and Computation (ICECCO), International Conference on.
IEEE, 2013.

[3] Zhang, Shichao, et al. "Efficient knn classification with different
numbers of nearest neighbors". IEEE transactions on neural networks
and learning systems 29.5, 2018.

[4] Ma, Hongxing, Jianping Gou, Xili Wang, Jia Ke, and Shaoning Zeng.
"Sparse Coefficient-Based k-Nearest Neighbor Classification." IEEE
Access 5: 16618-16634, 2017.

[5] Buck, Ian. "Gpu computing: Programming a massively parallel
processor." International Symposium on IEEE, 2007.

[6] NVIDIA CUDA C Programming Guide Version 4.2, 2012.

[7] Zhang, Min-Ling, and Zhi-Hua Zhou. "ML-KNN: A lazy learning
approach to multi-label learning." Pattern recognition , 2007.

[8] Bauce, M., et al. "The GAP project-GPU for real-time applications in
high energy physics and medical imaging." 19th IEEE-NPSS Real
Time Conference. IEEE, 2014.

[9] McClanahan, Chris. "History and evolution of gpu architecture."

A Survey Paper, 2010.

[10] Kim, Youngsok, Jaewon Lee, Donggyu Kim, and Jangwoo Kim.
"ScaleGPU: GPU architecture for memory-unaware GPU
programming." IEEE Computer Architecture Letters, 2014.

[11] Delgado, Jaime, Gabriel Martín, Javier Plaza, Luis-Ignacio Jiménez,
and Antonio Plaza. "On the optimization of memory access to increase
the performance of spatial preprocessing techniques on graphics
processing units." IEEE International Geoscience and Remote Sensing
Symposium, 2016.

[12] Garcia, Vincent, Eric Debreuve, and Michel Barlaud. "Fast k nearest
neighbor search using GPU." at arXiv preprint arXiv:0804.1448 ,
2008.

[13] Kuang, Quansheng, and Lei Zhao. "A practical GPU based kNN
algorithm." Proceedings. The International Symposium on Computer
Science and Computational Technology (ISCSCI 2009). Academy
Publisher, 2009.

[14] Garcia, Vincent, et al. "K-nearest neighbor search: Fast GPU-

based implementations and application to high-dimensional

feature matching." Image Processing (ICIP), 17
th
 IEEE

International Conference, 2010.

[15] Liang, Shenshen, et al. "Design and evaluation of a parallel k-

nearest neighbor algorithm on CUDA-enabled GPU." Web

Society (SWS), IEEE 2nd Symposium, 2010.

