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Abstract—The demand for Graphical Processing Units or GPUs, gained a tremendous hike during the past few years as a result 

of its migration from processing and representation of mere high dimensional graphical patterns to a heterogeneous high 

performance computing capability. The future generation data science requirements like Big Data Analysis and Deep Learning 

increased the popularity of GPUs to a wide extend. Graphical Processing Units or GPUs are well suited for parallel processing 

which enables visualization of vast amount of real time processed data in a more significant manner than CPU. From 

processing mere graphical algorithms, GPU has gone through numerous advancements in the past few decades. They can be 

used to improve the performance and efficiency of any algorithm nowadays. The expenditure of installation and use of GPUs 

have come down to a great extent from the initial huge amount. Data classification tasks like kNN classification can be done 

more efficiently and cost effectively by applying parallelism using GPU. kNN algorithms are the most popular data 

classification algorithm, because of its simplicity, high accuracy and versatility. This paper studies four major kNN algorithms 

developed for GPU processing and compares the techniques and methodologies used in them.  
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I.  INTRODUCTION  

Classification is the process of categorizing a newly arrived 

data to its original class label, by studying the characteristics 

of previously trained data. The classification models are 

categorized into two- Eager Learning methods and Lazy 

Learning methods. The different eager learning classification 

methods include Classification by Decision Tree Induction, 

Bayesian Classification, Rule Based Classification, 

Classification by Back propagation, Support Vector 

Machines (SVM), Associative Classification etc. K Nearest 

Neighbor classifier and Case-based reasoning classifiers are 

examples of Lazy Learners. Even though Lazy Learners are 

more expensive and require high storage space, they are well 

suited for parallel implementation. kNN (k Nearest 

Neighbour) classification [1] is the simplest and the most 

popular technique in the Lazy Learner classification 

methods. They are well suited to model high dimensional 

data.   

Over the past years, many authors have proposed a number 

of optimal algorithms for kNN classification. For example 

dW-ABC-kNN(distance Weighted kNN using Artificial Bee 

Colony) algorithm [2], kTree method [3], coefficient 

Weighted kNN classifier, Residual Weighted kNN 

classifier[4] etc. 

 

The main objective of this paper is a thorough study of the 

different algorithms for implementing kNN classification, in 

Graphical Processing Units. The four different Nearest 

Neighbour Searching algorithms taken for this study are BF 

CUDA (Brute Force Compute Unified Device Architecture), 

GPU kNN, CUBLAS (CUDA Basic Linear Algebra 

Subprograms) and CUKNN (CUDA kNN). These algorithms 

are compared with regard to their speed, accuracy and the 

sorting techniques used. 

 

This paper is organized into 5 different sections. Section I 

gives an introduction about the importance of classification 

algorithms in Graphical Processing Units. Section II 

illustrates a brief description about GPUs and CUDA 

programming. Section III presents related works in this area. 

Section IV depicts a simplified GPU memory architecture 

and Section V illustrates the observations of the study. 

Conclusion and future research directions are specified in 

section VI.  

II. GRAPHICAL PROCESSING UNITS AND CUDA 

PROGRAMMING 

When the same set of code is to be applied on a large amount 

of data elements, Graphical Processing Units (GPU) provide 

an efficient platform for the same through parallelism. Hence 

the distance calculation and sorting steps which are 

independent, in kNN classification, can be done parallel 

using GPUs. GPUs achieve high degree of parallelism by 

dedicating most of their transistors for data processing rather 

than control and data flow management. Graphical 
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Processing Systems provide assistance for parallel processing 

which in turn helps to achieve high degree of speed 

acceleration in High Performance Computers. With its 

multiple processors, working in parallel, GPU is highly 

useful for both graphics and non-graphics processing [5]. 

Different companies developing GPUs include AMD 

(Advanced Micro Devices), ARM Holdings, Broadcom 

Limited, Imagination Technologies, Intel, Matrox, NVIDIA, 

Qualcomm etc. 

 

CUDA is a general purpose computing architecture that helps 

to fully utilize the parallel processing capability of GPU. 

CUDA stands for Compute Unified Device Architecture.  

CUDA was introduced by NVIDIA in 2006. It supports 

various high level programming languages like C, C++, 

FORTRAN, Open CL, Direct Compute etc [6]. 

III. RELATED WORKS 

Many researches are being done in the classical kNN search 

to empower it to do advanced classifications like Multi Label 

(ML-kNN) learning in which each object instance will be 

associated with more than one class label [7]. Applying 

parallelism in kNN using GPU, will increase the 

performance of algorithms to several multiples of the original 

one.  

Due to high cost of GPU purchase, installation and 

maintenance and limited languages in GPU computing, many 

manufacturing companies even suspended their production 

and maintenance supports of GPUs. Thus there came a gap in 

the research and use of High Performance Computers for few 

years.   

Advances in Cloud computing, Big data analysis and Internet 

of Things again demanded the capacities and capabilities of 

HPCs for their efficient processing using GPUs. Studies have 

proved that the use of GPUs helps to solve many high end 

computing problems many times faster than using 

conventional CPUs. This became handier by the 

development of CUDA programming language. For instance, 

the project named GAP utilizes the high end computing 

power of GPU in various real time applications [8].  

IV. GPU CUDA MEMORY ARCHITECTURE 

GPUs were initially developed to accelerate floating-point 

calculations[9]. Later, programming languages like CUDA 

by NVIDIA has increased the usability of GPUs by making it 

suitable for heterogeneous processing of numerous real time 

data within a short period of time.  

 

The major challenge in utilizing the high end features of 

GPU is the thorough understanding of the GPU architecture. 

Deciding the number of threads and blocks is one of the most 

important tasks that affect the efficient utilization of GPU. 

The GPU memory is being divided into Grids, Blocks and 

Threads. Each Grid contains a number of blocks and each 

block consists of a number of Threads. Kernel is the function 

that invokes GPU. ‘Host’ represents the local system we are 

using for programming and ‘Device’ refers to the GPU.  

 

Several novel GPU memory architectures have been 

proposed by various authors [10] to overcome the difficulty 

in memory management of GPU.  Many advanced 

algorithms like Spatial Preprocessing (SPP) have been 

developed to increase the efficient memory utilization of 

GPUs [11].  

 

The major difference between CPU and GPU is that, GPU 

dedicates most of its transistors for data processing rather 

than flow control and temporary storage. A combination of 

GPU and CPU can present the most efficient and cost 

effective high performance computing. 

 

       
Figure 1.  GPU Memory Architecture 

 

V. STUDY AND OBSERVATIONS 

BF-CUDA is a method for k Nearest Neighbour Search using 

Brute Force method with CUDA in GPU.  A comparison of 

the performance of this new algorithm with three other 

algorithms is also presented. They proved that the BF CUDA 

algorithm is faster than the other algorithms named BF-

Matlab, BF-C and ANN (Approximated Nearest Neighbor) 

C++ [12]. The Datasets used in this experiment were a 

synthetic dataset and a real dataset. The Brute Force Method 

employs four steps to find k Nearest Neighbours among ‘m’ 

reference and ‘n’ query points in a ‘d’ dimensional data. Let 

Q{q1,q2,…,qn) be the set of query points and R{r1,r2…,rm} 

 

 Find out distance between the query point (qi) with 

each reference point (rj) in the set R. 

 Sort these distance values. 

 Select ‘k’ smallest distances from this sorted list. 

 Repeat all the above steps for each element in the 

set Q. 
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 The sorting technique used here is the insertion sort. High 

complexity is the major disadvantage of Brute Force 

approach. In this paper, they have compared both “Comb 

Sort” and “Insertion Sort” implementations in CUDA. The 

result states that the computation time for “Comb Sort” 

remained constant whereas that of “Insertion Sort” increased 

linearly. 

 

 Kuang, Quansheng, and Lei Zhao [13] proposed a GPU 

based kNN algorithm in which they used a data segmentation 

method. They utilized the thread model of the GPU memory 

hierarchy. Euclidean distance calculation method was used 

for finding out the distance between query and reference 

points. Instead of computing the final square root, squared 

distances are used in this system. This will reduce the 

computing time. They used a batch loading strategy while 

reading the global memory. The sorting technique used here 

is a CUDA based Radix Sort. After the analysis, it had been 

found that, the distance calculation phase can be highly 

paralleled and can reach a high speed up ratio in GPU 

implementation. The sorting step can also be accelerated and 

the rest of the steps are not much time consuming. For 

finding out the classification labels, this method used a 

simple statistical election, depending upon the frequency of 

classification label. This step is accomplished using CPU 

instead of GPU to avoid complexity. They have used the 

Adult dataset from UCI Machine Learning Repository. In the 

performance analysis, they found that GPU algorithm is 

32.61 times faster than CPU algorithm and 14.98 times faster 

than ANN BF method while using a1a dataset. In a2a dataset, 

GPU algorithm reached a speedup of  34.91 times compared 

with CPU algorithm and 15.36 times with ANN-Brute 

method. 

 

Garcia and Debreuve [14], proposed two fast GPU-based 

implementations of the Brute Force KNN search algorithm 

using CUDA and CUBLAS APIs. They proved that CUDA 

and CUBLAS implementations are up to 64 times and 189 

times faster on synthetic data than ANN C++ library and up 

to 25 times and 62 times faster on high dimensional SIFT 

matching. Search method used in this paper is the Insertion 

sort. They have used the CUDA implementation in BLAS 

library and named it as CUBLAS. This new method is 189 

times faster than ANN and up to 4 times faster than their 

previous approach. The distance calculation method they 

used in their previous method had been modified and 

rewritten in this paper. A modified insertion sort is used for 

sorting. In the implementation stage, they had reformulated 

the distance computation using CUBLAS library. They state 

that for Synthetic datasets, CUBLAS is 189 times faster than 

ANN and 4 times faster than CUDA. In case of HD SIFT 

matching, CUBLAS is 62 times faster than ANN and 2.5 

times faster than CUDA. 

 

A CUDA based parallel implementation of KNN named 

CUKNN is being proposed by Liang, Liu, Wang and Jian 

[15]. They used a synthetic dataset and a real physical 

simulation dataset. Techniques like CUDA stream and 

Memory coalescing were utilized here. The sorting method 

applied is the Quicksort. The results show that CUKNN is 

46.71 times faster than serial KNN on synthetic dataset and 

42.49 times faster on physical simulation dataset. CUKNN 

achieved 21.81 times speed up over quicksort based KNN 

and 46.71 times faster than Insertion sort based KNN. 

 

Table1 shows a comparison chart of the different algorithms 

executed in the GPU.  

 

 
Table 1: A comparison of sorting techniques and speed of different kNN 

algorithms using GPU 

 

 

VI. CONCLUSION AND FUTURE SCOPE  

In this paper, a comparison study of various GPU based 

algorithms for kNN classification is presented. The 

comparison of results presented by the works in [12], [13], 

[14] and [15] shows that BRUTE FORCE CUDA (BF 

CUDA) is the most efficient and faster algorithm for GPU 

based data classification. CUDA programming has reduced 

much of the complexities in GPU programing with its 

scalability and extensibility, which in turn increased the 

Algorith

m 

Comparison of Algorithms 

Dataset Sorting 

Technique 

Speed Reference 

BF 
CUDA 

Synthetic  

Insertion 
Sort 

407 X than 

BF-
MATLAB, 

295 X than 

BF-C & 148 
X than ANN 

C++ 

[12] 

Real 

GPU 
kNN 

a1a 

Radix 
Sort 

32.61 X than 
CPU & 14.98 

X than ANN-

BF [13] 

a2a 
34.91X than 

CPU&15.36 X 

than ANN-BF 

CUBLAS 

Synthetic 

Insertion 

Sort 

189 X than 

ANN & 4 X 
than CUDA 

[14] 

HD SIFT 
Matching 

62 X than 

ANN & 2.5 X 

than CUDA 

CUKNN 

Synthetic 

Quicksort 

46.71 X than 
Serial KNN 

[15] 
Real 

Physical 
Simulation 

42.49 X than 

Serial KNN 
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scope of GPU usage to a great extent.  Further studies in this 

area will surely benefit future real time data processing 

especially in the field of Big data analysis and deep learning 

as well. 
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