
 © 2014, IJCSE All Rights Reserved 81

 International Journal of Computer ScienceInternational Journal of Computer ScienceInternational Journal of Computer ScienceInternational Journal of Computer Sciencessss and Engineeringand Engineeringand Engineeringand Engineering Open Access
Survey Paper Volume-2, Issue-11 E-ISSN: 2347-2693

Survey on CHOKe AQM Family

Vijith C
1*

 and M. Azath
2

1
*

,2
Department of Computer Science and Engineering, Met’s School of engineering, Kerala, India

cjvijith@gmail.com, mailmeazath@gmail.com

www.ijcaonline.org

Received: 24 Oct 2014 Revised: 04 Nov 2014 Accepted: 20 Nov 2014 Published: 30 Nov 2014

Abstract— One of the most important applications in internet is load balancing. For load balancing in IP networks, there are

different approaches including Active Queue Management (AQM) which has a proportionate development in research. CHOKe

is an AQM method ensures Quality of Service in congested traffic by differentiating responsive flows and unresponsive flows.

The survey attempts to study the CHOKe with its descendants and investigates the algorithms based on various congestion

metrics and short lived as well as long lived TCP traffic and UDP flows.

Keywords— AQM, CHOKe, IP Networks, Load balancing.

I. INTRODUCTION

Networks provide communication between computing
devices. An Internet Protocol network (IP network) is a
network of computers which communicate using internet
protocol (IP) [1]. The Internet is the largest and best known
IP network. Load balancing is the main networking solution
responsible for distributing incoming traffic and dividing the
amount of work between two or more computers so that work
can be done faster [2]. The main idea is to map the part of the
traffic from the heavily loaded paths to some lightly loaded
paths to avoid congestion in the shortest path route and to
increase the network utilization and network throughput. One
of the main reasons for congestion in traffic which causes
load unbalance is short or long lived TCP/UDP flows which
may be bursty in nature. Bursty flows are widely used in
internet and they generate issue of global synchronization in
packet receiving nodes. Congestion leads to high packet loss
resulting in large network delays and non-process data
transmissions. Queue management in routers plays an
important role in congestion avoidance and congestion
control.

Various scheduling and queue management algorithms are
implemented to avoid congestion. Fair queuing (FQ), which
can be construed as a packet approximation of generalized
processor sharing (GPS), is a scheduling algorithm used by
network schedulers, to allow flows in network to fairly share
the link [3]. Weighted fair queuing (WFQ) is a modified FQ
allowing different scheduling priorities for data flows [4]. In
general, FQ cannot be used for handling different flows
bandwidth requirements and WQ loses granularity and they
cannot be adjusted. Explicit Congestion Notification (ECN) is
introduced in TCP/IP which allows notification of congestion
in network without dropping packets [5]. The main problem
faced in ECN is that setting a non-compliant TCP connection
to indicate it was ECN-capable which leads to loss of ECN
messages in the network.

There is another queue management which works adaptively,
based on the traffic called Active Queue Management [6]. An
AQM system is used to control the length of a queue so that it
does not run full, adding its maximum delay under load. Such
management also enables TCP/UDP flows to do its job of
sharing links properly. Random early detection (RED), also
known as random early discard or random early drop is an
active queuing discipline for a network scheduler suited for
congestion avoidance [7]. RED has several variants like
WRED, ARED, RRED, FRED, SRED, DRED, BLUE etc.
These methods are good enough for queue management but
they possessed drawbacks in modern networks. The main
drawbacks are

1) They fail to recognize TCP and UDP flows

2) They failed to handle large busty traffic

3) They suffer from lockout and global synchronization
when the parameters are not tuned properly

4) They cannot handle short lived internet packets

5) They never penalize unresponsive flows

6) They do not provide fairness and quality of service
in network

To overcome these limitations new active queue management

mechanism is implemented called CHOKe. CHOKe stands

for Choose and Keep for Responsive Flows, Choose and Kill

for Unresponsive Flows. Responsive flows are the

information flow that are identical and unique to each other

and ready to get serviced in a communication link.

Unresponsive flows are other types of flows, mainly the

duplicate and similar information flows that will intersect

each other. The network is bursty and the majority of flows

will be unresponsive and short lived. The flows will be

mixture of TCP and UDP flows. So the loads are balanced

effectively and the fairness is guaranteed by handling

unresponsive flows using CHOKe and its descendants which

lead to ensure QoS and enhanced differentiated services.

 International Journal of Computer Sciences and Engineering Vol.-2(11), PP(81-85) Nov 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 82

II. CHOKE

CHOKe, Choose and Keep for Responsive flows, Choose and

Kill for Unresponsive flows, an Active Queue Management

method, is stateless, controls misbehaving flows with a

minimum overhead [9]. It is simple to implement, based on

queue length and differentially penalizes unresponsive flows

using the information of each flow. It shields responsive

flows from unresponsive or aggressive flows and provides

Quality of Service (QoS) to all users. CHOKe does not

require any special data structure for its operation. CHOKe

aims to provide maximum fairness flows that pass through a

congested router [10]. It inherits the good feature of RED

where the idea behind the CHOKe is that the contents of

FIFO buffer form a sufficient statistic about the incoming

traffic. CHOKe calculates the average occupancy of the

buffer using an exponential moving average called EWMA

(Exponential Waited Moving Average). On the arrival of a

packet at congested router, CHOKe randomly draws a packet

from buffer and compares arriving and drawing packets. If

they both have same flow information then the both is

dropped, else the randomly chosen packet is placed back and

the arriving packet is dropped or admitted with a probability

which is computed exactly as in RED. The reason is that the

FIFO buffer more likely to have packets from a misbehaving

flow, thus they have greater chances to be chosen for

comparison. Further, CHOKe assumes packets belonging to

misbehaving flows implicitly have same statistical

characteristics and QoS requirements. So it can easily

differentiate responsive and unresponsive flows and manages

buffers without per-flow state information. As a result

packets of misbehaving flows are dropped more than packets

of well-behaved flows. Algorithm and flowchart for CHOKe

is given fig.1 and fig.2 respectively. CHOKe marks two

thresholds on the buffer, a minimum threshold min
th
 and

max
th

. If the average queue size is less than min
th

, every

arriving packet is queued into the FIFO buffer [8]. If the

average queue size is lesser than min
th

 then the packets are

not dropped and arriving packet is allowed to enter in buffer.

If the average queue size exceeds max
th

, then every arriving

packet is immediately dropped. This moves the queue

occupancy back to below max
th

.

Fig.1 Algorithm for CHOKe

Fig.2 Flowchart for CHOKe

When the average queue size is between min
th

 and max
th

,

each arriving packet is compared with a randomly chosen

packet (drop candidate packet), from the FIFO buffer. If they

have the same flow ID, they are both dropped. Otherwise,

the randomly chosen packet is left intact in the buffer and the

arriving packet is dropped with a probability p that depends

on the average queue size. The drop probability is computed

as in RED. In particular, this means that packets are dropped

with probability 1 if they arrive when the average queue size

exceeds max
th

. In order to bring the queue occupancy back to

below max
th

 when the buffer occupancy exceeds max
th

,

CHOKe repeatedly compare and drop packets from the

queue. CHOKe works effectively in TCP flows. It could

provide better QoS in a bursty TCP traffic. The

differentiation and dropping policy of CHOKe makes global

synchronization in bursty flows. Busty flows are

 International Journal of Computer Sciences and Engineering Vol.-2(11), PP(81-85) Nov 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 83

characterized based on their flow information and they may

be allowed to occupy buffer if the buffer has enough space to

accommodate all connected bursty packets otherwise they

are dropped even without holding a single packet from the

bursty flow. So CHOKe gives same performance level for

individual and aggregate TCP flows. When the UDP flows

are present CHOKe acts similar to TCP flows. In normal

UDP rate under bandwidth capacity CHOKe performs

similar to RED. When UDP rate supersedes the link

bandwidth, CHOKe could penalize the UDP flow to make

average queue size around min
th

, and enable TCP flows to

get better bandwidth share. There are a growing number of

UDP based applications running in the Internet, such as

packet voice and packet video. Increasing number of UDP

flows increase the percentage of UDP packets in the

heterogeneous network, which will lead to high dropping

probability for TCP flows since the buffers are almost

occupied by the orphan UDP flows. The differentiation in

UDP flows is not that much effective compared to TCP

traffic. This leads CHOKe to face similar dropping problems

as seen in RED. Also CHOKe doesn’t show any

characterization for short lived and long lived traffic. There

are several variations on basic CHOKe scheme where basic

one is the Original CHOKe, in which the drop candidate

packet is chosen randomly from the queue. [9][10] The

descendants of CHOKe are listed below and they are

summarized in table 1.

A. Front CHOKe

The drop candidate is always the packet at the head of the

queue.

B. Back CHOKe

The drop candidate is always the packet at the tail of the

queue.

C. Multi-drop CHOKe (M-CHOKe)

m packets are chosen from the buffer to compare with the

incoming packet, and drop the packets that have the same

flow ID as the incoming packet.

D. XCHOKe

Algorithm uses data structure to store state information.

Maintains a table to hold flow’s hit counter n. In XCHOKe,

n depends solely on CHOKe hits [19].

E. RECHOKe

It is similar to XCHOKe. The flow’s hit counter n depends

on table hit when the packet’s flow ID is found in the table,

CHOKe hit when the arriving packet’s ID matches that of

the randomly chosen packet and RED hit whe n the

packet is chosen for dropping / marking with the RED drop

probability [19].

F. CSa-XCHOKe

It improves XCHOKe by calculating packet dropping

probability based on congestion level and link load.

Congestion level is determined from link load and average

queue length [11].

G. Self-Adjustable CHOKe (SAC)

The scheme treats TCP and UDP flows differently, and can

adaptively adjust its parameters according to the current

traffic status [12].

H. A-CHOKe

CHOKe algorithm is a good solution for lockout and global

synchronization problems but it sometime results in

worsening TCP performance and does not work well in case

of only few packets from unresponsive flows in the queue.

Adaptive CHOKe (A-CHOKe) provides a stable operating

point for the queue size and fair bandwidth allocation

irrespective of the dynamic traffic and congestion

characteristics of the flows [13]. It also obtains high

utilization, low queuing delay and packet loss by tuning

parameters adaptively. The dynamic value of parameter

adapts itself to the varying nature of the congestion and

traffic. A-CHOKe is a more sophisticated way to do M-

CHOKe such that the algorithm automatically chooses the

proper number of packets chosen from buffer where the

buffer is divided into a number of regions [7].

I. P-CHOKe

P-CHOKe (Piggybacking CHOKe) is an algorithm based on

Adaptive CHOKe. It aims to protect well-behaved flows

from misbehaving flow and adaptive flows from non-

adaptive flows [14]. P-CHOKe provides a stable operating

point for the queue size and fair bandwidth sharing

regardless of dynamic traffic and congestion characteristics

of flows. P-CHOKE obtains high Packet delivery Ratio and

throughput, low queuing delay and process time than the

existing Adaptive CHOKe. The algorithm has a gateway

module which draws, compares, admits or drops the packets

randomly and sends collected acknowledgements from

packet receiving nodes to sending nodes.

J. GCHOKe

gCHOKe (geometric CHOKe), is another method which

provides an advanced flow protection which is realized by

introducing an extra flow matching trial upon each

 International Journal of Computer Sciences and Engineering Vol.-2(11), PP(81-85) Nov 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 84

successful matching of packets [15]. The difference between

CHOKe and gCHOKe is the number of trials that they use to

differentiate. CHOKe punishes the unresponsive flow from

possibly dominating the use of the buffer and the link using a

single trial of flow matching per packet arrival. However,

gCHOKe additionally rewards each successful matching

with a bonus trial. The succession of bonus trials provides an

extra shield of protection to rate adaptive flows from

unresponsive ones [7]. By tuning the defined maximum

number of trials, a desired protection level may be achieved.

This makes traffic control more tractable, which is lacking in

the original plain CHOKe where flow protection is flat.

K. FAVQCHOKe

Flow based Adaptive Virtual Queue CHOKe

(FAVQCHOKe) uses both queue dimensions and load based

factors for tuning CHOKe parameters [16]. It is a congestion

avoidance scheme which utilizes the implementation of

virtual queues in packet receiving nodes. The actual buffers

are updated based on the virtual queue status. It helps to

protect internal buffers before they get vulnerable by

malicious unresponsive flows.

L. CHOKeW

CHOKeW uses "matched drops" created by CHOKe to

control the bandwidth allocation, but excludes the RED

module for bandwidth differentiation and TCP protection

which is important for implementing Quality of Services

(QoS) [17]. In DiffServ networks where flows have

different priority, CHOKe fails to support all levels

.CHOKeW does not need per flow state and it supports

multiple bandwidth priority levels by giving high priority

flows with high throughput. CHOKeW avoids flow

starvation. In CHOKeW, the adjustable number of draws is

not only used for restricting the bandwidth share of high-

speed unresponsive flows, but also used as signals to inform

TCP of the congestion status. CHOKeW is capable of

providing higher bandwidth shares to flows with higher

priority, maintaining good fairness among flows with the

same priority and protecting TCP against high speed

unresponsive flows when network congestion occurred.

J. CHOKeR

CHOKeR is advancement to CHOKeW algorithm which

overrides the problems of bandwidth differentiation in

multiple priority levels and poor performance on bursty

traffic in large congested network which are experienced by

CHOKeW [18]. CHOKeR does not maintain per flow state

information and it uses MISD (Multi step Increase and

Single step Decrease) model for congestion avoidance.

CHOKe family haven’t yet proved better reliability and

stability in modern social IP networks because they fail to

recognize and isolate link prediction problems raised during

the on-need formation of dynamic links [20].

III. CONCLUSION

This survey presents CHOKe from its formal beginnings to

gradual improvements. The stateless nature and queue length

with flow information based mechanism of CHOKe family

enhance adaptive queue management in the IP network. It

could be concluded that CHOKe family ensure fairness in

the network through differentiation of flows into responsive

and unresponsive flows. Although CHOKe and its

Method Pros Cons

CHOKe
Differentiation between flows into

responsive and unresponsive

Single trail and vulnerable by bursty

flows

M-CHOKe Multiple trails for matching
Global synchronization and lockout

problems

XCHOKe/RECHOKe/CSa-

XCHOKe

Uses historical data for flow

protection
Lacks stateless property

SAC
Provides simplicity and lower

processing cost

Does not provide support for multiple

priority levels

A-CHOKe
Protects well-adaptive flows from

non-adaptive flows
Fluctuation in heavy loads

P-CHOKe
It provides better packet delivery ratio

and low queue delay.
Fair bandwidth allocation

GCHOKe
Extra shield of protection by using

bonus trial on successful matching

Does not work well in long lived and

short lived TCP traffic

FAVQCHOKe
Uses virtual queue to guaranty more

security for internal queue

Imperfection in differential service since

load factor based

CHOKeW Supports Differentiated Services
Cannot provide the assured bandwidth

allocation for different priority flow

CHOKeR. Uses MISD scheme
No sustainability in heterogeneous real

time network

Table.1 Pros and Cons of CHOKe family

 International Journal of Computer Sciences and Engineering Vol.-2(11), PP(81-85) Nov 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 85

descendants are good solutions for congestion control in the

network, they fail to provide a stable mechanism for load

balancing when the heterogeneous network is dealing with

long and short lived TCP traffic and large UDP flows.

References

[1] en.wikipedia.org/wiki/IP_address.

[2] searchnetworking.techtarget.com/definition/load-balancing.

[3] en.wikipedia.org/wiki/Fair_queuing.

[4] en.wikipedia.org/wiki/Weighted_fair_queueing.

[5] en.wikipedia.org/wiki/Explicit_Congestion_Notification.

[6] gettys.wordpress.com/active-queue-management-aqm-faq.

[7] B. Kiruthiga and Dr. E. George Dharma Prakash Raj, “Survey

on AQM Congestion Control Algorithms”, IJCSMC, Vol. 2,

Issue. 2, pp.38–44, Feb 2014.

[8] G.F.Ali Ahammed, Reshma Banu, “Analyzing the

Performance of Active Queue Management Algorithms”,

IJCNC, Vol. 2, pp. 19, Mar 2010.

[9] Rong Pan, Balaji Prabhakar, Konstantinos Psounis, “CHOKe:

A stateless active queue management scheme for

approximating fair bandwidth allocation”, INFOCOM 2000,

vol.2, pp. 942-951, Mar 2000.

[10] Ao Tang, Jiantao Wang and Steven H. Low, “Understanding

CHOKe: Throughput and Spatial Characteristics”, IEEE/ACM

Trans. Networking, vol. 12, No. 4, pp. 694-707, Aug 2004.

[11] Jiang Ming, WU Chumming, Zhang Min and Bian Hao, “CSa-

XCHOKe: A Congestion Adaptive CHOKe Algorithm”,

Chinese Journal of Electronics, Vol.19, No.4, Oct 2010.

[12] Ying Jiang, and Jing Liu, “Self adjustable CHOKe: an active

queue management algorithm for congestion control and fair

bandwidth allocation”, IEEE computers and comm., Vol.2,

No.4, pp. 1018-1024, Jul 2013.

[13] K.Chitra and Dr. G.Padamavathi, “Adaptive CHOKe: An

algorithm to increase the fairness in Internet Routers”, IJANA,

vol. 01, Issue. 06, pp. 382-386, Apr 2010.

[14] G. Sasikala and E. George Dharma Prakash Raj, “P-CHOKe:

A Piggybacking-CHOKe AQM Congestion Control Method”,

IJCSMC, Vol. 2, Issue. 8, pp.136–144, Aug 2013.

[15] Addisu Eshete and Yuming Jiang, “Protection from

Unresponsive Flows with Geometric CHOKe”, Centre for

Quantifiable Quality of Service in Communication Systems,

Feb 2012.

[16] K.Chitra and Dr.G.Padmavathi, “FAVQCHOKE: To Allocate

Fair Buffer To A Dynamically Varying Traffic In An Ip

Network”, IJDPS, Vol. 2, Issue. 1, pp.73–82, Jan 2011.

[17] Shushan Wen, Yuguang Fang and Hairong Sun, “CHOKeW:

Bandwidth Differentiation and TCP Protection in Core

Networks”, IEEE Trans. Parallel and Distributed Sys. , Vol.

20, NO. 1, pp. 34-47, Jan 2009.

[18] Lingyun Lu, Haifeng Du and Ren Ping Liu, “CHOKeR: A

Novel AQM Algorithm with Proportional Bandwidth

Allocation and TCP Protection”, IEEE Trans. Industrail

Informatics, Vol. 10, No. 1, pp.637–644, Feb 2014.

[19] Addisu Eshete and Yuming Jiang, “Generalizing the CHOKe

Flow Protection”, Preprint submitted to Computer Networks,

pp.1–28, Feb 2012.

[20] Shalki Chahar, “Social Networking Analysis”, International

Journal of Computer Sciences and Engineering, Vol. 02, No.

5, pp.159–163, May 2014.

AUTHORS PROFILE

Vijith C has completed B Tech in CSE from Sahrdaya College of

Engineering and Technology, Thrissur, Kerala, in 2012. Presently

he is pursuing his M Tech in CSE from Met’s School of

engineering, Thrissur, Kerala. His research interests include

Networking, Computer Vision and Algorithms.

Dr. M. Azath is Head of Department of Computer Science and

engineering, Met’s School Of Engineering, Mala. He has received

Ph.D. in Computer Science and Engineering from Anna University

in 2011. He is a member in Editorial board of various international

and national journals and also a member of the Computer society of

India, Salem. His research interests include Networking, Wireless

networks, Mobile Computing and Network Security.

