
 © 2015, IJCSE All Rights Reserved 92

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
 Research Paper Volume-3, Issue-7 E-ISSN: 2347-2693

Web based ETL Approach to Transform Relational Database to

Graph Database
Sonali D. Chaure

1*
, M. U. Kulkarni

2
 and Pankaj M. Jadhav

3

1,2,3
Computer Engineering and Information Technology, VJTI, Mumbai, India

www.ijcseonline.org

Received: Jun/03/2015 Revised: Jul/10/2015 Accepted: July/24/2015 Published: July/30/ 2015

Abstract— Data size is growing exponentially, it is coming in more and more connected form. Graph Database Management

System (GDBMS) provides efficient solution to data storage in current scenarios. Nowadays, many companies rely on cloud

services where you pay as per your need basis and most of the cloud platforms supports non-relational database to avoid

scalability issues. Graph Databases have applications in many domains such as social network, organization management,

banking, insurance, fraud detection, etc. Therefore there is need to migrate data from relational to non-relational database. Also

many companies shifting from traditional relational database to NoSQL databases to avoid scalability issues. In this paper a web

based ETL approach has been suggested to convert a Relational Database to Graph Database. Experimental results have been

presented to show feasibility of the proposed methodology. Also query execution comparison is done on source and target

databases.

Keywords—GDBMS, NoSQL, TRDB

I. INTRODUCTION

ETL is most important component of Data warehousing.
Using ETL we can extract, transform and load data [1].
Relational databases are in existence from since 1970s [2].
Because of prolonged existence of relational databases, they
are matured well but they do not support scalability and also
not well designed to handle sparse, large data [3]. Nowadays
data is coming in more and more connected form, so while
increasing data size there is a need for scalability of database
[4]. Most of the popular applications requires huge database
to store and retrieve data. We can achieve scalability in two
ways- vertical and horizontal scalability. Vertical scalability
means to scale up and it is achieved by increasing resources
to a single machine. Horizontal scalability means to scale out
and it is achieved by adding commodity servers to the
existing node. Therefore vertical scalability is expensive as
compared to horizontal scalability. With increasing data size
vertical scalability is not an efficient option. Relational
database does not support horizontal scalability and recently
evolved non-relational database i.e. NoSQL databases
supports horizontal scalability and it is achieved by
increasing commodity servers or by increasing cloud
instances [5]. There are several advantages of NoSQL
databases over relational databases such as NoSQL
databases are schema-less, easy for fast traversal and highly
scalable etc. NoSQL databases are classified into four
classes - Key Value pair, Document, Graph and Column-
oriented, each class has its own features to suit their data,
thus different storage and retrieval requirements as per class.
NoSQL means ”Not only SQL” to emphasize that they may
also support SQL-like query languages [6]. Graph Databases
are use for fast traversal of nodes that are connected to each
other by number of relationships [7]. There are many social

networking websites like twitter, facebook produces huge
amount of data and nowadays this data is coming in very
connected form. To traverse such a highly scalable and
connected data, graph databases are used. In every graph
model every node is connected to adjacent node by
relationship, this helps to get faster querying results on huge
amount data. big retailers like eBay and Wal-Mart are using
Neo4j for their critical business projects [8]. Also it helps to
eliminate the need of any index lookup for searching or table
joins as in RDBMS. There are many graph databases exists
like Neo4j [9], OrientDB [10] etc. Nowadays, many
companies rely on cloud services where you pay as per your
need basis and most of the cloud platforms supports non-
relational database to avoid scalability issues and many
companies shifting from traditional relational database to
NoSQL databases to avoid scalability issues. Therefore there
is need to migrate data from relational database to non-
relational database.

The ultimate objective of this paper is to present a Web
based ETL approach to transform Relational Database to
Graph Database. This takes input as a Relational Database R
(MySql) and converts it into Graph database G (Neo4j). Also
comparative analysis of migrated Graph Database creation
time, SQL and CQL results is done. MySql (open source
Relational Database) and Neo4j (open source Graph
Database) is used for evaluating the outcomes of the
research. Finally visualization of migrated Graph Database is
also shown.

Related work of our approach is presented in section 2,
system design and implementation of proposed system is
presented in section 3, experimental results and visualization
of migrated Graph Database are shown in section 4 and
concludes the paper by analysing experimentation results.

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(92-97) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 93

II. RELATED WORK

Data analysis is playing a significant role in science and

engineering. Data warehouses provide online analytical

processing tools for the interactive analysis of

multidimensional data of various granularities. ETL is one

of most important components of data warehousing. ETL

tool can extract data from multiple heterogeneous sources,

combine them together, apply various transformations and

load the transformed data into target database [11].
 Relational Database exists from 1970s, organize

data into tables i.e. it stores data in 2-dimensional tables. A

table is a two-dimensional structure made up of rows (tuple,

records) and columns (attributes, fields). SQL is use to

retrieve data from relational database. It does not support

scalability, also not good to handle huge and more

connected database as it takes too many join operations

[12]. Example: RDBMS (open source) MySql. In relational

database relational schema is denoted as Ri(Ai), where Ri is

ith relation and Ai is set of attributes of ith relation. The set

of such relational schema R1(A1)..Rn(An) is called as

Relational Database schema. The Relational Database R is

set of Tuples over all the Relational schema

R1(A1)..Rn(An). Figure 1 shows the example of Relational

Database R. Figure 2 shows the schema details of

Relational Database R. Attributes that belongs to primary

key of that relation are underlined.

Fig. 1. Example of Relational Database R

FIG. 2. SCHEMA DETAILS OF EXAMPLE RELATIONAL DATABASE R

A NoSQL database provides a mechanism for storage
and retrieval of data that is modelled in means other than the
tabular relations used in relational databases. Motivations to

use NoSQL Database are simplicity of design, horizontal
scaling, and finer control over availability. NoSQL databases
are increasingly used in big data and real-time web
applications. NoSQL means ”Not only SQL” to emphasize
that they may also support SQL-like query languages [13].
NoSQL databases are classified into four classes - Key
Value pair, Document, Graph and Column-oriented, each
class have its own features to suit their data, thus different
storage and retrieval requirements as per class. Graph
Databases has been invented for fast traversal of millions of
nodes that are interconnected via number of relations [14].
Social network websites like facebook and twitter produce
several terabytes of data within a month. They contain
highly interconnected data. To traverse such data Graph
Databases are used. Graph Databases provide flexible model
to distribute data over many servers. This property provides
high scalability for growing data. In graph model every node
has its related node directly connected to it. This eliminates
the need of any index lookup or table joins as in RDBMS.
Graph model based data stores are backbone of social
networking websites. Graph databases allow you to tell a
story. They allow you to connect the dots. When you use this
powerful type of database, true meaning is one query away.
Graph databases are based on graph theory. Graph databases
employ nodes, properties, and edges. Neo4j is an open
source NoSQL Graph Database.

 There are different approaches are present to
convert relational database into Graph Database, it uses
schema paths and source constraints [15]. Initially before
conversion lots of paper work involves in their approach,
therefore their approach is not fully automatic [16]. In this
paper, presented a web based ETL approach to transform
Relational Database to Graph Database. Our approach will
take input as a relational database R (MySql) and finally it
converts into graph database G (Neo4j).

III. PROPOSED WORK

A. System Architecture

Block diagram of our system web based ETL to transform

Relational Database to Graph Database consists of seven

modules as below:

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(92-97) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 94

1. Web Page: Web based ETL to transform Relational DB

to Graph DB

This module consists of web page of our system containing

List of Relational Databases (MySql database from our

wamp server).

2. Selection of Relational Database for conversion

In this module user can select one Relational Database from

List for conversion.

3. Send conversion web request to Eclipse IDE code

In this module user can send web request for conversion to

Eclipse IDE.

4. Algorithms to transform Relational DB to Graph DB

In this module different algorithms used to convert

Relational Database to Graph Database. By using these

algorithms, I have migrated foreign key relations from

Relational Database to Graph Database without any data

loss.

5. Target Graph Database

In this module Target (Migrated) Graph Database will be

created with nodes and its respective relations.

6. Cypher Query Execution on Target Graph Database

In this module, Cypher query execution will be done on

Target Graph Database created in pervious module.

7. Analysis of Results of Cypher Query Execution on

Target Graph Database

In this module, Analysis of results of Cypher query

execution will be done. From this analysis user can

conclude that time complexity of migrated Graph Database

creation time depends on factors like number of nodes and

number of relations. Finally comparative analysis of SQL

(on Source Database) and CQL (on Migrated Database)

results will be performed based on average time required to

retrieve all data from database.

Finally visualization of migrated Graph Database is shown.

B. Algorithms to convert Relational Database to
Graph Database

In this section, initially created all nodes for each tuple
belongs to all tables. For creating relations between nodes
proposed below algorithms and finally target Graph
Database is shown in figure 8.

Consider example given in Figure 1,

TraversedTables[] = Initially list is empty. After traversal of
table, table name will be added to list.

AllTables[] = User, Follower, Blog, Tag, Comment

RelationInfoTables[] = List of information related to all
tables in below format (Parent Table, Primary Key, Child
Table, Foreign key). Traverse each table belongs to
RelationInfoTables[] and after traversing add it to
TraversedTable[] Different methods called from algorithm 1
are explained as follows:

1. TraverseRelationInfoTables() = This method is called for
each table that belongs to RelationInfoTables[] list.

2. TraverseRemaining() = This method is called for each

table that belongs to AllTables[] and does not belongs to

RelationInfoTables[].

Fig. 4. Algorithm to Convert Relational Database to Graph

Database

Fig. 5. Flow Chart

Figure 5 shows the flowchart for conversion of Relational

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(92-97) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 95

Database R to Graph Database G. It shows the flow of
Algorithm defined above.

Relational Database R is given as input.

There are three for loops. Each loop calls a specific module
until the condition holds. Both modules are called in a
specific order.

After processing through all the modules the output
generated is the Graph Database G.

Different modules are called from the main module.
Functionality of all algorithm modules is explained below.

Fig. 6. Algorithm to TraverseRelationInfoTables()

TraverseRelationInfoTables () method is called for each

table that belongs to RelationInfoTables[] list, Consider ex-

ample given in Figure 1. Initially consider Parent Table=

User and Primary Key= Uid. Find out node from graph

database which has combination like Node.propertry.key =

t.ParentTable-PrimaryKey from this will get first node

(User-Uid), then find second reference node from graph

database like combination Node.propertry.key =

t.ChildTable-ForeignKey (i.e. Blog-Admin) from this will

get second joinable node with first node and then check

whether there object values are equal, if equal then add edge

between them because they are joinable Tuples. So finally

add edge between first node (User-Uid=u01, User-

Uname=Date) and second node(Blog-Bid=b02, Blog-

Bname=Database, Blog-Admin=u01). Repeat this

procedure for all Tuples of table belongs to

TraverseRelationInfoTables[].
TraverseRemaining () method is called for each table that
belongs to AllTables[] and does not belongs to RelationIn-
foTables[], All this tables does not have relation with other
tables, So their nodes are isolated, So after visiting add that
table to TraversedTables[].

Fig. 7. Algorithm to TraverseRemaining()

Figure 8 shows the Graph Database G which is obtained

from the Relational Database R shown in Figure 1 after the

execution above proposed algorithms to convert Relational

to Graph Database.

Fig. 8. Graph Database G

IV. EXPERIMENTAL RESULTS

Fig. 9. Web page for ETL Tool to convert Relational

Database to Graph Database

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(92-97) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 96

In this project, created one web page which is having list of
Relational Database (MySql) from wampserver as shown in
figure 9. From this list user needs to select one Relational
Database for Graph Database conversion and click on
Convert, then conversion web request will be send to Eclipse
IDE for selected Relational Database and output will be
displayed on Eclipse IDE output console.

This Web based approach has been tested on seven
Relational Database (MySql) as shown in figure 10.

Fig. 10. Comparison of Graph Database creation time based on its total

number of nodes and total number of relations

per figure 10 seven Relational Databases are taken for
testing. Graph Database creation time is the time taken to
migrate Relational Database to Graph Database. Bigdb-user
database takes 4573 ms for migration, which has 902 nodes,
438 relations. Bigdbmin-user database takes 6104 ms for mi-
gration, which has 902 nodes, 895 relations, both Bigdb-user
and Bigdbmin-user databases has 902 rows still Bigdbmin-
user takes more time for migration than Bigdbmin-user
because it has more number of relations than total number of
relations present in Bigdb-user. Blog-user database takes
2013 ms for migration, which has 307 nodes, 148 relations.
Classicmodels database takes 9179 ms for migration, which
has 3865 nodes and 3728 relations. Relations-user-blog
database takes 1228 ms for migration, which has 75 nodes
and 22 relations. User-blog database takes 1415 ms for
migration, which has 75 modes and 68 relations. Relations-
user-blog and User-blog has same number of nodes still
User-blog database takes more time for migration than
Relations-user-blog because it has more number of relations
than total number of relations present in Relations-user-blog.
World database takes 2108 ms for migration, which has
5303 nodes and 0 relations. World database has more
number of nodes than Classicmodels, still Classicmodels
takes more time for migration than World database because
it has comparatively too many relations than World
database.

Representations of above results are in the form of bar
chart as shown in figure 11. As per bar chart, Classicmodels
database takes more time than other databases since it has
3865 nodes and 3728 relations. Classicmodels database has
less number of nodes than World database but it has
comparatively too many numbers of relations than World
database.

Therefore Classicmodels database takes more time for
migration than other databases. Relations-user-blog and

User-blog has same number of nodes still User-blog takes
more time for migration than Relations-user-blog because it
has more number of relations than Relations-user-blog.

From above results, it is observed that time complexity of

Graph Database creation is not only depends on number of

nodes but also depends on number of relations.

Fig. 11. Bar Chart for Time Comparison of Graph Database

To compare SQL and CQL results based on their
execution time referred figure 7 observations. For each
database calculated both SQL and CQL time (in millisecond)
to retrieve all data from database. For comparison purpose,
taken average of all SQL time required to retrieve all data
from all Relational Databases and also taken average of all
CQL time required to retrieve all data from migrated all
Graph Databases.

Comparison of SQL and CQL execution time based on

average time taken to retrieve all data from databases is

shown in figure 12.

Fig. 12. Comparison of SQL and CQL based on average
time to retrieve all data from database

Figure 12, shows that Cypher queries are much faster as
compared to the SQL queries because Joins in SQL queries
are slower than the pattern matching in the Cypher queries.

Migrated Graph Database Relations-user-blog has 75 nodes
and 22 relations selected for visualization.

Neo4j community version 2.2.3 is downloaded for visual-
ization purpose. Visualization for displaying all nodes and
relations from Relations-user-blog is shown in figure 13.

After getting results user can export output in different
format like PNG, JSON and CSV etc.

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(92-97) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 97

Fig. 13. Visualization of all nodes and relations from Relations-

user-blog

Visualization for displaying all nodes in the form of rows
from Relations-user-blog is shown in figure 14. In this all
nodes from Relations-user-blog are represented in the form
of rows.

Fig. 14. Visualization of all nodes in the form of rows from

Relations-user-blog

Visualization of all relations from Relations-user-blog is
shown in figure 15.

Fig. 15. Visualization of all relations from Relations-user-blog

Visualization for displaying all relations of particular type
from Relations-user-blog is shown in figure 16.

Fig. 16. Visualization of all relations of particular type from Relations-

user-blog

V. CONCLUSION AND FUTURE WORK

In this paper, presented a web based ETL approach to
convert relational database to graph database. This approach
uses integrity constraints defined over source and Tuples of
Relational Database to transform into target Graph Database
without any data loss. Also no prior paper work needed to
this web based approach. While querying joins are used in
relational database are converted to a traversal path in graph
database. From analysis of implementation results, it is
observed that time complexity of migrated Graph Database
creation is depends on both parameters i.e. Number of nodes
and Number of relations. Also from comparative analysis of
SQL and CQL on the basis of their execution time to retrieve
all data from database, Cypher queries are much faster as
compared to the SQL queries because Joins in SQL queries
are slower than the pattern matching in the Cypher queries.
Finally visualization of migrated Graph Database is shown
in Neo4j community.

This web based Relational Database to Graph
Database migration can be further explored for transforming
data from Relational Database to various other NoSQL
databases and for these migrations new methodologies can
be use.

REFERENCES
[1] Kimball R, Caserta J, “The data warehouse ETL toolkit: practical

techniques for extracting, cleaning, conforming, and delivering data”,

Wiley.
[2] E.F. Codd,“A Relational Model of Data for Large Shared Data

Banks, Communications of the ACM.
[3] Relational-databases-sandbox-handout (doc.gold.ac.uk).
[4] K. Kaur and R. Rani, “Modeling and Querying Data in NoSQL

Databases”,IEEE International Conference on Big Data, pp. 7, 6-9,
Oct. 2013.

[5] C. Strauch, “NoSQL Databases”, ACM.
[6] https://en.wikipedia.org/wiki/NoSQL.
[7] http://highscalability.com/neo4j-graph-database-kicks-Buttox.
[8] Neotechnology. (http://www.neotechnology.com/ebay-walmart-

adopt-neo4j-graph-transforming retail/)
[9] Rob McColl, David Ediger, “A Brief Study of Open Source Graph

Databases”.
[10] A Brief Study of Open Source Graph Databases.
[11] Mohammed Shafeeq Ahmed, “Data Warehousing Applications: An

Analytical Tool for Decision Support System”, International Journal
of Computer Science and Informatics.

[12] Relational-databases-sandbox-handout.

[13] https://en.wikipedia.org/wiki/NoSQL.
[14] Database (http://neo4j.com/developer/graph-database).

[15] Arora and R.R. Aggarwal, “An Algorithm for Transformation of

Data from MySQL to NoSQL (MongoDB)”, International Journal of

Advanced Studies in Computer Science and Engineering (IJASCSE).

[16] Roberto De Virgilio, Antonio Maccioni Riccardo Torlone,

“Converting Relational to Graph Databases”, 2013 ACM.

