

 © 2016, IJCSE All Rights Reserved 111

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Review Paper Volume-4, Issue-9 E-ISSN: 2347-2693

Different Approach Analysis for Static Code in Software Development

N.Sudheer
1*

and S.Hrushikesava Raju
2

 1

*
Department of CSE, Associate Professor CSE, Siddharth Inst.of Engineering & Technology, Puttur, India

 2
 Department of CSE, Associate Professor CSE, Siddharth Inst.of Engineering & Technology, Puttur, India

Available online at: www.ijcseonline.org

Received: 22/Aug/2016 Revised: 02/Sept/2016 Accepted: 20/Sept/2016 Published: 30/Sep/2016

Abstract—Static analysis examines program code and reasons over all possible behaviors that might arise at run time. Tools

based on static analysis can be used to find defects in programs. Recent technology advances has brought forward tools that do

deeper analyses that discover more defects and produce a limited amount of false warnings. The aim of this work is to

succinctly describe static code analysis, its features and potential, giving an overview of the concepts and technologies behind

this type of approach to software development as well as the tools that enable the usage of code reviewing tools to aid

programmers in the development of applications, thus being able to improve the code and correct errors before an actual

execution of the code.

Keywords— static analysis, code review, code inspection, source code, bugs, dynamic analysis, software testing, manual

review.

1. INTRODUCTION

The use of analytical methods to review source code in order

to correct implementation bugs is, and has been, one of the

backbone pillars behind software development. In the

beginning of software development there was no conscience

on how necessary and effective a review might be, but in the

1970’s, formal review and inspections were recognized as

important to productivity and product quality, and thus were

adopted by development projects. This new approach to

software development acknowledges defect removal in the

early stages of the development process proved to produce

more reliable and efficient programs. So, as far as source

code is concerned, it is in the best interest of the programmer

to take advantage of static analysis. Although this does not

imply that other forms of software analysis should be

discouraged, on the contrary, the best way to certify that an

implementation has the least amount of errors or defects is by

combining both the static and the dynamic measures of

analysis. The static analysis approach is meant to review the

source code, checking the compliance of specific rules, usage

of arguments and so forth; the dynamic approach is

essentially executing the code, running the program and

dynamically checking for inconsistencies of the given results.

This means that testing and reviewing code are separate and

distinguishable things, but it is unadvised that one should

occur without the other, and it is also arguable as to what

should be done first, testing or reviewing software. This work

focuses on the description of the static methods of analysis,

with a special attention to the available tools in the market

that provide this kind of service. This paper is organized in

the following sections: Section 1, this current section,

introduced the static analysis approach; Section 2 will

describe a relative brief overview of static analysis, followed

by the description of the most common methods of code

reviewing done by humans: self review, walkthrough, peer

review, inspection and audit. In order to ascertain the truly

fundamental qualities of static code analysis and more

importantly, to distinguish them from the dynamical testing

approaches, Section 3 will describe the advantages and

disadvantages regarding static analysis.

A comprehensive comparison between code review and

testing shall explain why the usage of just one of them is

discouraged; Section 4 will summarize a listing of the most

popular software tools that are capable of performing this

type of code analysis which shall be followed by a

comparison between some aspects of these tools; a further

evaluation of these tools is described in Section 5; in Section

6 will feature some possible enhancements to be performed

on such tools; and finally Section 7 will express a discussion

over static code analysis tools in software development.

2. OVERVIEW OF THE STATIC ANALYSIS

APPROACH

Static code analysis is the analysis of computer software

which is performed without the actual execution of the

programs built from that software, as opposite of dynamic

Dr. N.Sudheer: Associate professor,nidamanuri.sudheer@gmail.com

 Department of CSE, SIETK,Puttur, India

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 112

analysis (testing software by executing programs). For the

majority of cases the analysis is performed on some version

of the source code and in the other cases some form of the

object code. The term is usually applied to the analysis

performed by an automated software tool, with human

analysis being called program understanding, program

comprehension or code inspection. It can be argued that

software metrics and reverse engineering are forms of static

analysis, but such discussion is not the aim of this work.

Programmers make little mistakes all the time, like a missing

semicolon here, an extra parenthesis there, and so on. Most of

the time these gaffes are inconsequential, the compiler notes

the error, the programmer fixes the code, and the

development process continues. However, this quick cycle of

feedback and response normally does not apply to most

security vulnerabilities, which can lie dormant for an

indefinite amount of time before discovery. As explained

earlier, the longer a defect on the software lies dormant, the

more expensive it can be to fix. The promise of static analysis

is to identify many common coding problems automatically

before a program is released. Static analysis aims to examine

the text of a program statically, without attempting to execute

it. Theoretically, static analysis tools can examine either a

program’s source code or a compiled form of the program to

equal benefit, although the problem of decoding the latter can

be difficult .

2.1 Manual Review

Manual reviewing or auditing is a form of static analysis, very

time-consuming, and to perform it effectively, human code

auditors must first know what type of errors there are

supposed to find before they can rigorously examine the code.

The reviewing of an application’s code can be done in any

phase of software development, but the best results are when

this is done at an early stage, because the costs and risk of

detecting and correcting security vulnerabilities and quality

defects late in the software development process can be high.

When those bugs escape into the market and are discovered

by customers, the fallout can affect the bottom line and

damage reputations. Reviewing includes not only the code,

but all documentation, requirements and designs the

developer produces, everything is susceptible of being
review, because there can be errors hidden in every step of

software development. Basically, static code analysis

performed by humans can be divided in two major categories:

self reviews and 3rd party reviews, which are tightly related

to the Personal Software Process and the Team Software

Process.

In every programmer there should be a sense of personal

responsibility in his implementations, and as such, it is always

a good idea to try and keep track of the most common

mistakes he does. This way in time it will become easier to

prevent repeating them once again. There are some guidelines

as to how to perform a proper self review: producing

reviewable items (code, design, specifications, etc.); trying

not to review code on screen, to circumvent the tendency to

correct bugs as they are found; not reviewing the code right

after it is written; to follow a structured review process; create

personal checklists of the most common mistakes; taking

enough time to review the code, so as to be certain that

everything is as it should be (usually half the time it was

required to write the code is more than enough to properly

review it).The team review process can be a bit more

complex, and there several different steps in reviewing

software as a group of people. An interesting method is the

walkthrough, in which the developer explains his code and

ideas to an audience, being subject to their criticism. In

addition, there are formal requisites to perform static reviews

of code. This kind of group review can be achieved with a

before-after technique, meaning there is a necessity of a

review plan prior to the review (assembled by the leading

reviewer) and a review report that contains all the results. The

components of a formal review plan are: the review goals, the

collection of items being reviewed, a set of preconditions for

the review, roles, team size, participants, training

requirements, review steps and procedures, checklists and

other related documents to be distributed to participants, the

time requirements, the nature of the review log and summary

report, and rework and follow-up criteria and procedures.

The list of components of a formal review report: checklist

will all items checked and commented, list of defects found,

list of attendees, review metrics (time and effort spent, size of

the item being reviewed in lines of code or pages, number of

defects found and ratios of defects/time, defects/size and

size/time), status of the reviewed item (if it is accepted or to

be re-inspected, depending on the number and gravity of

defects found), estimate of rework effort and date for

completion.

2.2 Usage of automated tools for static analysis

Static analysis tools compare favorably to manual reviews

because they’re faster, which means they can evaluate

programs much more frequently, and they encapsulate some

of the knowledge required to perform this type of code

analysis in a way that it isn’t require the tool operator to have

the same level of expertise as a human auditor. Just as a

programmer can rely on a compiler to consistently enforce the

finer points of language syntax, the operator of a good static

analysis tool can successfully apply that tool without being

aware of the finer points of the more hard to find bugs.

Furthermore, testing for errors like security vulnerabilities is

complicated by the fact that they often exist in hard-to-reach

states or crop up in unusual circumstances. Static analysis

tools can peer into more of a program’s dark corners with less

fuss than dynamic analysis, which requires actually running

the code. Static analysis has also the potential to be applied

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 113

before a program reaches a level of completion at which

testing can be meaningfully performed. Good static analysis

tools must be easy to use, this means that their results must be

understandable to normal developers who might not know

much about security and that they educate their users about

good programming practice. Another critical feature is the

kind of knowledge (the rule set) the tool enforces. The

importance of a good rule set can’t be overestimated. In the

end, good static checkers can help spot and eradicate common

security bugs. Static analysis for security should be applied

regularly as part of any modern development process. That

being said, static analysis tools cannot solve all of the security

problems, mainly because these tools look for a fixed set of

patterns, or rules, in the code. Although more advanced tools

allow new rules to be added over time, if a rule hasn’t been

written yet to find a particular problem, the tool will never

find that problem. The output of static analysis tools still

requires human evaluation. There’s no way for a tool to know

exactly which problems are more or less important for the

programmer automatically, so there is no way to avoid

studying the output and making a judgment call about which

issues should be fixed and which ones represent an acceptable

level of risk. A tool can also produce false negatives (the

program contains bugs that the tool doesn’t report) or false

positives (the tool reports bugs that the program doesn’t

contain). False positives cause a problem because of the time

it may take the developer to understand there is no error after

all, but false negatives are much more dangerous because

they lead to a false sense of security. A good tool for static

analysis is one that, although sometimes shows a false

positive, never lets a false negative pass A further study of

these tools can be found in sections 4 and 5 of this document.

3. ADVANTAGES AND DISADVANTAGES OF

STATIC CODE ANALYSIS

The testing of a software application has many points of

procedure, in order for it to be considered in conformance

with the designated specifications of performance and

usability. Static analysis can only gain meaning if the other

forms of analysis are made, because nobody can only use this

technique and be sure that the software is defect proof, which

can be seen as a huge disadvantage. On the other hand, there

is no way of ever being sure that the implementation is error

free...There are basically two types of software analysis:

dynamic and static. As it was explained in section 2 of this

document, static analysis is performed without actually

executing programs built from that software, however

dynamic analysis is performed by executing programs on a

real or virtual processor. Although dynamic analysis checks

the functional requirements of a software project, static

analysis can decrease the amount of testing and debugging

necessary for the software to be deemed ready. The

disadvantage of dynamic analysis is that the results produced

are not generalized for future executions. There is no

certainty that the set of inputs over which the program was

run is characteristic of all possible program executions.

Applications that require correct inputs (such as semantics-

preserving code transformations) are unable to use the results

of a typical dynamic analysis, just as applications that require

precise inputs are unable to use the results of a typical static

analysis. Dynamic analysis can be as fast as program

execution. Some static analyses run quite fast, but in general,

obtaining accurate results requires a great deal of computation

and long waits, especially when analyzing large programs.

Typically, static analysis is conservative and sound.

Soundness guarantees that analysis results are an accurate

description of the program’s behavior, no matter on what

inputs or in what environment the program is run.

Conservatism means reporting weaker properties than may

actually be true; the weak properties are guaranteed to be true,

preserving soundness, but may not be strong enough to be

useful. Software design is also prone to the existence of

mistakes, such as the need to improve errors messages, badly

structured specifications and models, and so on. These

problems are difficult to detect via testing, mostly because

most problems have their origin in requirements and design of

software. Requirements and design artifacts can be reviewed

but not executed and tested. On the other hand, if the focus is

set on the job of different developers or testers’ teams, either

it is impossible to find design related problems or problems of

slow code development because of poorly organized and

unstructured code.

One of the advantages of the static analysis approach during

development is that the code is forcefully directed in a way as

to be reliable, readable and lees prone to errors on future tests.

This also influences the verification of the code after it is

ready, reducing the number of problems found in further

implementations that code. A good example of the advantages

of static analysis over the other types of analysis is this study:

“Subject Project Study - Analysis Technique Comparison”.

The goal was to present “Code Reading versus Functional

Testing versus Structural Testing”. Comparing them in

respect to fault detection effectiveness and cost classes of

faults detected.

4. TOOLS FOR STATIC CODE ANALYSIS

Tools based on static analysis can be used to discover defects

in programs. Several tools have been developed through the

years in order to aid this process. The tools build on static

analysis and can be used to find runtime errors as well as

resource leaks and even some security vulnerabilities

statically, i.e. without executing the code. This section

describes some of the most popular tools for static code

analysis. These tools can be classified in the following

categories: Microsoft .NET, Java, C/C++ and Multi-

Language. In addition, these tools are either open-source or

commercial ones.

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 114

4.1 Microsoft .NET

One static analysis tool within the Microsoft .NET

Framework is FxCop, which is a free tool created by

Microsoft. FxCop analyzes the intermediate code of a

compiled .NET assembly and provides suggestions for

design, security, and performance improvements. By default,

FxCop analyzes an assembly based on the rules set forth by

Design Guidelines for Developing Class Libraries. The

design guideline rules are divided into nine categories,

including design, globalization, performance, and security,

among others. Furthermore, FxCop not only displays more

than 200 rules that are used when analyzing an assembly but

also allows the user to turn off existing rules and add custom

ones. FxCop is intended for class library developers but is

also useful as an educational tool for people who are new to

the .NET Framework. This tool is available as a standalone

application and includes a command-line implementation that

makes it easy to plug into an automated build process.

Another free static code analysis tool from Microsoft is

StyleCop. Whereas FxCop evaluates design guidelines

against intermediate code, StyleCop evaluates the style of C#

source code in order to enforce both a set of style and

consistency rules. Style guidelines are rules that specify how

source code should be formatted. They dictate whether spaces

or tabs should be used for indentation and the format of for

loops, if statements and other constructs. Some StyleCop

rules include: the body of for statements should be wrapped

in opening and closing curly brackets; there should be white

space on both sides of the = and != operators; and calls to

member variables within a class must begin with "this".One
powerful but commercial static code analysis tool is

CodeIt.Right from vendor SubMain. It takes static code

analysis to the next level by enabling rule violations to be

automatically refactored into conforming code. Like FxCop,

CodeIt.Right ships with an extensive set of predefined rules,

based on the design guidelines mentioned earlier, with the

ability to add custom rules. But CodeIt.Right makes it much

easier to create and use custom rules, and is also capable of

automatically fix the code issues it finds.

4.2 Java

In the Java world, there are many high-quality static analysis

tools available for free. One recognized static analysis tool for

Java code is FindBugs. It uses a series of ad-hoc techniques

designed to balance precision, efficiency, and usability. One

of its main techniques is to syntactically match source code to

known suspicious programming practice.

PMD is another static analysis tool that, like FindBugs,

performs syntactic checks on program source code, but does

not have a data flow component. In addition to some

detection of clearly erroneous code, many of the “bugs” PMD

looks for are stylistic conventions whose violation might be

suspicious under some circumstances. For instance, having a

try statement with an empty catch block might indicate that

the caught error is incorrectly discarded. Since PMD includes

many detectors for bugs that depend on programming style,

PMD includes support for selecting which detectors or groups

of detectors should be run. Additionally, PMD is easily

extensible by developers, who can write new bug pattern

detectors using either Java or XPath. A further open source

tool that enforces coding conventions and best practice rules

for Java code is known as CheckStyle. It works by analyzing

Java source code and reporting any breach of standards. It can

be integrated in an IDE as a plug-in, so that developers can

immediately see and correct any breaches of the official

standards. In addition, it can also be used to generate project-

wide reports that summarize the breaches found. Checkstyle

includes more than 120 rules and standards, and deals with

issues that range from code formatting and naming

conventions to code complexity metrics.

Jlint is a free static analysis tool. It will check Java code and

find bugs, inconsistencies and synchronization problems by

performing data flow analysis and building lock graph. Jlint

performs local and global data flow analyses, calculating

possible values of local variables and catching redundant and

suspicious calculations. Except for deadlocks, Jlint is able to

detect possible race condition problem, when different

threads can concurrently access the same variables.

Regarding message reporting, it uses a smart approach - all

messages are grouped in categories, and it is possible to

enable or disable reporting messages of specific category as

well as concrete messages. Jlint is capable of remember

reported messages and it won’t report them once again when

Jlint runs a second time. Nevertheless, Jlint is not easily

expandable. One more tool based on theorem proving,

performs formal verification of properties of Java source

code. The ESC/Java, Extended Static Checking system for

Java, is designed so that it can produce some useful output

even without any specifications. In order to use ESC/Java, the

developer needs to add preconditions, post conditions, and

loop invariants to source code in the form of special

comments. In addition, ESC/Java uses a theorem proofer to

verify that the program matches the specifications. Its

approach to finding bugs is notably different from the other

mentioned tools.

4.3 C/C++

Lint was the name originally given to a particular program

that flagged suspicious and non-portable constructs (likely to

be bugs) in C language source code. It can be used to detect

certain language constructs that may cause portability

problems. In addition, Lint can be used to check C programs

for syntax and data type errors. It checks these areas of a

program much more carefully than the C compiler does,

displaying many messages that point out possible problems.

Lint checks language semantics and syntax errors,

considering areas such as: program flow; data type checking;

variable and function checking; portability; and inefficient

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 115

coding style. A further commercial static analysis tool, Code

Sonar, is a sophisticated source code tool that performs a

whole-program, inter-procedural analysis on C/C++ code and

identifies complex programming bugs that can result in

system crashes, memory corruption, and other serious

problems. Code Sonar pinpoints problems at compile time

that can take weeks to identify with traditional testing. Like a

compiler, Code Sonar does a build of the code, but instead of

creating object code it creates an abstract representation of the

program. After the individual files are built, a synthesis phase

combines the results into a whole-program model. The model

is symbolically executed and the analysis keeps track of

variables and how they are related. Warnings are generated

when anomalies are encountered. Code Sonar does not need

test cases and works with the existing build system. Another

static analysis tool for C and C++ programs is called HP

Code Advisor. This commercial tool reports various

programming errors in the source code. This tool enables

programmers to identify potential coding errors, porting

issues, and security vulnerabilities. HP Code Advisor

leverages the advanced analysis capabilities of HP C and HP

C++ compilers available on the HP Integrity systems. HP

Code Advisor is a powerful static code analysis tool that

automatically diagnoses various issues in a source program.

HP Code Advisor leverages advanced cross-file analysis

technology from HP compilers. It stores the diagnosed

information in a program database. With the built-in

knowledge of system APIs, HP Code Advisor looks deep into

the code and provides helpful warnings with fewer false

positives. HP Code Advisor detects a wide range of coding

errors and potential problems such as memory leaks, used

after free, double free, array/buffer out of bounds access,

illegal pointer access, uninitialized variables, unused

variables, format string checks, suspicious conversion and

casts, out of range operations, C++ coding style warnings.

Mygcc is an extension of the gcc compiler, supporting user-

defined checks written in a simple formalism that can be

checked efficiently. It can be customized very easily by

adding user-defined checks for detecting for instance,

memory leaks, unreleased locks, or null pointer dereferences.

User-defined checks are performed in addition to normal

compilation, and may result in additional warning messages.

Path queries can be run on the control-flow graph of

functions, specifying a start node, a stop node, and constraints

on the path in between. Gcc already includes many built-in

checks such as uninitialized variables, undeclared functions,

format string inspection. Mygcc allows programmers to add

their own checks that take into account syntax, control flow,

and data flow information. The implementation of mygcc as a

lightweight patch to gcc, and is based on the disruptive

concept of unparsed pattern matching, which make the patch

easily portable. Splint is a tool for statically checking C

programs for security vulnerabilities and coding mistakes.

With minimal effort, Splint can be used as better lint. If

additional effort is invested adding annotations to programs,

Splint can perform stronger checking than can be done by any

standard lint. In addition, Splint checks unused declarations,

type inconsistencies, use before definition, unreachable code,

ignored return values, execution paths with no return, likely

infinite loops, and fall throughcases. Another tool worth

mentioning is PolySpace Verifier. It enables embedded

software developers to detect run-time errors in C, C++

before they compile and run the code and prove automatically

which operations are error-free. Overflows, out of bounds

array index and divide-by-zero errors, amongst others, are

easily detected by PolySpace which models the flow of data

through the code. PolySpace Verifier can also be integrated

into Model-Based Design tools to trace back errors to their

root cause in the model. PolySpace’s Verifier is used

extensively for Embedded Software development and more

especially in the Transportation, Defense, Aerospace and

Automotive industries where there is a high expectation of

safety-critical systems.

4.4 Multi-Language

Coverity Prevent is the leading automated approach for

ensuring the highest quality, most reliable software at the

earliest phase of the development lifecycle. The most accurate

static code analysis solution available today, it automatically

scans C/C++, Java and C# code bases with no changes to the

code or build system. Because it produces a complete

understanding over the build environment and source code,

Prevent is the tool of choice for developers who need flexible,

deep, and accurate source code analysis. Hundreds of

development organizations worldwide use Prevent to

automatically analyze large, complex code bases and root out

the critical, must-fix defects that lead to system failures,

runtime exceptions, security vulnerabilities, and performance

degradation. Coverity Prevent offers the following benefits:

automatically find critical defects that can cause data

corruption and application failures; improve development

team efficiency and speed time to market for critical

applications; and improve software integrity and end-user

satisfaction.

Most recently Klocwork announced the debut of a new static

analysis tool that aims to ensure quality and security in the

code development process, both at the level of thedesktop and

organization wide – Klockwork Insight. It applies complex

static analysis techniques to C, C++, and Java and C# to

automatically locate critical programming bugs and security

vulnerabilities in source code. By applying inter-procedural

control flow, data flow, value-range propagation and

symbolic logic evaluation, this tool can find hundreds of

errors on well-validated, feasible execution paths.

Furthermore, Insight is designed to fit within existing

development process and is scalable to large organizations

due to role-based access control and extended analysis

capabilities such as parallelization, distributed and

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 116

incremental analysis. Klocwork Insight is a groundbreaking

approach to source code analysis that has been proven in

some of the most demanding software development

environments in the world. Hammurapi is a versatile

automated code review solution. This tool establishes code

ascendancy processes in organizations by injecting automated

code review "hooks" into development and build processes.

Its main features include: robustness, by not failing on source

files with errors and also don’t fail if some inspectors throw

exceptions; extensibility, since Hammurapi is a modular

solution, as a result different pieces of the solution can be

independently extended or even replaced; power, due to the

fact that the tool uses a rules engine, to infer violations in the

source code, allowing to implement non-trivial logic in

inspectors; and is capable of reviewing sources in multiple

programming languages - In modern applications, where

pieces of Java or other programming language code are glued

together with XML descriptors and where client-side

JavaScript invokes server-side actions (AJAX, Flex), it is

very important to have a holistic view of the application.

Reviewing only Java or C#sources is not enough to ensure

health of the application. Mesopotamia can parse and store

source files written in different programming languages.

Hammurapi works on Mesopotamia object model and as such

can review sources in multiple programming languages,

perform cross-language inspections, and generate a

consolidated report .

RATS - Rough Auditing Tool for Security - is an open source

tool developed and maintained by Secure Software security

engineers. RATS is a tool for scanning C, C++, Perl, PHP and

Python source code and flagging common security related

programming errors such as buffer overflows and TOCTOU

(Time Of Check, Time Of Use) race conditions. RATS

scanning tool provides a security analyst with a list of

potential trouble spots on which to focus, along with

describing the problem, and potentially suggest remedies. It

also provides a relative assessment of the potential severity of

each problem, to better help an auditor prioritize. This tool

also performs some basic analysis to try to rule out conditions

that are obviously not problems. As its name implies, the tool

performs only a rough analysis of source code. It will not find

every error and will also find things that are not errors.

Manual inspection of the code is still necessary, but greatly

aided with this tool.

Understand is a commercial static code analysis software

tool produced by SciTools. It is primarily used to reverse

engineer, automatically document, and calculate code metrics

for projects with large code-bases. Understand helps

programmers to quickly comprehend, measure, maintain and

document their source code. In addition, is fast and easy to

use, it is a programmer’s IDE oriented at maintenance tasks.

It supports C/C++/C# and Java. Its most significant features

are: semantic change analysis; advanced metrics; multi-

scenario source code maintenance estimation; combined

language analysis; custom architecture creation; and creation

of code analysis snapshots.

5. TOOL COMPARISON

Testing has the potential of finding most types of defects,

however, testing is costly and no amount of testing will find

all defects. Testing is also problematic because it can be

applied only to executable code, i.e. rather late in the

development process. Alternatives to testing, such as dataflow

analysis and formal verification, have been known since the

1970s but have not gained widespread acceptance outside

academia, that is, until recently; lately several commercial

tools for detecting runtime error conditions at compile time

have emerged. This section demonstrates two evaluations

performed on two different sets of static analysis tools. The

first evaluation refers to ARCHER, BOON, Poly Space C

Verifier, Splint, and UNO tools (some of these tools weren’t

mentioned in previous section due to space limitations). Four

are open-source tools (ARCHER, BOON, SPLINT, UNO)

and one is a commercial tool (Poly Space C Verifier). These

tools have been evaluated using source code examples

containing 14 exploitable buffer overflow vulnerabilities

found in various versions of Send mail (SM), BIND, and

WU-FTPD. Each code example included a “BAD” case with

and an “OK” case without buffer overflows. Buffer overflows

varied and included stack, heap, bss and data buffers; access

above and below buffer bounds; access using pointers,

indices, and functions; and scope differences between buffer

creation and use. Buffer overflow vulnerabilities often permit

remote attackers to run arbitrary code on a victim server or to

crash server software and perform a denial of service (DoS)

attack. Poly Space and Splint detected a substantial fraction

of buffer overflows while the other three tools generated

almost no warnings for any model program. Boon had two

confusions (detections combined with false alarms), one on

each of SM and FTPD. Archer had one detection on SM and

no false alarms. UNO generated no warnings concerning

buffer overflows. The detection rates of three of the five

systems tested were below 5% when tested on C source code

modeled after those sections of open-source C WU-FTPD,

Send mail, and BIND server software that contain known and

exploitable buffer overflows.

Even though two static analysis tools (Splint and Poly Space)

had high detection rates of 87% and 57%, they are not

without problems. These tools would have detected some in-

the-wild buffer overflows, but warnings generated by them

might have been ignored by developers annoyed by high false

alarm rates. The false alarm rate measured just on the patched

lines in the model programs was 43% and 50%. More

concerning, perhaps, is the rate of false alarms per line of

code, which for these tools is 1 in 12 and 1 in 46.

Additionally, these tools do not appear to be able to

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 117

discriminate between vulnerable source code and patched

software that is safe, making them of little use in an iterative

debugging loop. The tool with the best performance, Poly

Space is slow enough to preclude common use; it takes days

to analyze a medium-sized program of 100,000 lines [32].

The second evaluation refers to three market leading static

analysis tools in 2006/07: Poly Space Verifier, Coverity

Prevent and Klocwork K7 (now called Insight). The main

objective of this study was to identify significant static

analysis functionality provided by the tools, but not addressed

in a normal compiler, and to survey the underlying supporting

technology. The goal was not to provide a ranking of the

tools; nor was it to provide a comprehensive survey of all

functionality provided by the tools. While all three tools have

much functionality in common, there are noticeable

differences, in particular when comparing Poly Space Verifier

against Coverity Prevent and Klocwork K7. The primary aim

of all three tools obviously is to find real defects, but in doing

so any tool will also produce some false positives.

While Coverity and Klocwork are prepared to sacrifice

finding all bugs in favor of reducing the number of false

positives, Poly Space is not; as a consequence the former two

will in general produce relatively few false positives but will

also typically have some false negatives. Coverity claims that

approximately 20 to 30 per cent of the defects reported are

false positives. Klocwork K7 seems to produce a higher rate

of false positives, but stays in approximately the same league.

Poly Space, on the other hand, does in general mark a great

deal of code in orange color which means that it may contain

a defect, as opposed to code that is green (no defects), red

(definite defect) or grey (dead code). If orange code is

considered a potential defect then Poly Space Verifier

produces a high rate of false positives.

All three tools rely at least partly on inter-procedural

analyses, but the ambition level varies significantly. Poly

Space uses the most advanced technical solution where no

execution sequences are forgotten, but some impossible

execution paths may be analyzed due to the approximations

made. Coverity Prevent and Klocwork K7 account only of

interval ranges of variables in combination with “simple”

relationships between variables in a local context with the

main purpose to prune some infeasible execution paths, but

do not do as well as Poly Space. Global variables and

nontrivial aliasing are not accounted for or treated only in a

restricted way. As a consequence neither Coverity nor

Klocwork take all possible behaviors into account which is

one source of false negatives. It is somewhat unclear how

Coverity Prevent and Klocwork K7 compare with each other,

but impression is that the former does a more accurate

analysis. While Poly Space appears to be aiming primarily for

the embedded systems market, Klocwork and Coverity have

targeted in particular networked systems and applications as

witnessed, for instance, by a range of security checkers.

Klocwork and Coverity address essentially the same sort of

security issues ranging from simple checks that critical

system calls are not used inappropriately to more

sophisticated analyses involving buffer overruns (which is

also supported by Poly Space) and the potential use of so-

called tainted (untrusted) data. Coverity supports incremental

analysis of a whole system, where only parts have been

changed since last analysis. Results of an analysis are saved

and reused in subsequent analyses.

An automatic impact analysis is done to detect and, if

necessary, re-analyze other parts of the code affected

indirectly by the change. Such an incremental analysis may

take significantly less time than analyzing the whole system

from scratch. With the other tools analysis of the whole

system has to be redone. None of the tools provide very

sophisticated support for dealing with concurrency. Klocwork

currently provides no support at all. Coverity is able to detect

some cases of mismatched locks but does not take

concurrency into account during analysis of concurrent

threads. The only tool which provides more substantial

support is Poly Space which is able to detect shared data and

whether that data is protected or not.

6. PROPOSED IMPROVEMENTS

Tools used to identify bugs in source code often return large

numbers of false positive warnings to the user. True positive

warnings are often buried among a large number of

distracting false positives. By making the true positives hard

to find, a high false positive rate can frustrate users and

discourage them from using an otherwise helpful tool. The

use of historical data mined from the source code revision

history can be useful in refining the output of a bug detector

by relating code flagged by the tool to code changed in the

past. Examining the code changes and the state of the code

before and after the change may allow matching previous

code changes to warnings produced by a bug finding tool.

Warnings could be matched to code changes in a number of

ways. The functions invoked the location in the code

(module, API or function) or the control or data flow may be

used to link the flagged code to the code from the repository.

Warnings that flag code similar to code snippets that have

been changed in the past may be more likely to be true

positives. In order to understand an error report, users must

develop a way to take the information in the report and relate

it to the potential problem with the code. Moreover, to decide

whether an error report is a false positive, the user has to

realize something about the sources of imprecision in the

analysis. Therefore, they can create their own ad-hoc,

inconsistent procedures that neglected some sources of

imprecision. This situation can be addressed by encoding a

triaging procedure as a checklist that enumerates the steps

required to triage a specific report.

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 118

7. DISCUSSION

Good static analysis tools must be easy to use. This means

that their results must be understandable to normal developers

so that they educate their users about good programming

practices. Another critical feature is the kind of knowledge

(the rule set) the tool enforces. The importance of a good rule

set can’t be overestimated. In the end, good static checkers

can help spot and eradicate common security bugs. This is

especially important for languages such as C, for which a

very large corpus of rules already exists. Static analysis

should be applied regularly as part of any modern

development process.

Static code analysis tools provide a fast, automated way to

ensure that source code remains to predefined design and

style guidelines. Following such guidelines helps produce

more uniform code and also can point out potential security,

performance, interoperability, and globalization

shortcomings. Static code analysis tools are not a replacement

for human-led code reviews. Rather, they can generate a first

pass of the code base and highlight areas that require more

attention from a senior developer.

REFERENCES

[1] Ernst. M,” Static and dynamic analysis: synergy and duality”,

MIT Lab for Computer Science, Cambridge, Workshop on

Dynamic Analysis, ICSE’03 International Conference on

Software Engineering Portland, Oregon (2003), Volume-05,

Issue-07, Page No (9-16), Mar -2003.

[2] McGraw, G, Chess, B.”Static Analysis for Security”,

IEEE Computer Society (2004), Volume-03, Issue-05, Page No

(21-28), Oct -2004.

[3] Klocwork. “Early bug detection comprehensive coverage”.

Klocwork Inc. (2008), http://www.klocwork.com

/solutions/defectDetection.asp, Volume-08, Issue-04, Page No

(35-41), Aug -2008.

[4] Humphrey, W,” The Personal Software ProcessSM

(PSPSM)”, Carnegie Mellon University, Massachusetts

(2000), IJCSCL, Volume-05, Issue-07, Page No (58-66), Mar -

2000.

[5] Faria, J. P,” Software Reviews and Inspections”, FEUP,

Porto(2008), Volume-09, Issue-02, Page No (36-42), June -

2008.

[6] Basili, V,”Experimentation in Software Engineering.

Experimental Software Engineering Group”, IJRIT,

Volume-08, Issue-05, Page No (96-103), Mar -2002.

[7] Emanuelsson, P.Nilsson, ”A Comparative Study of

Industrial Static Analysis Tools”, University Electronic Press

(2008),IJAR, Volume-03, Issue-08, Page No (221-228), July -

2008.

AUTHORS PROFILES:

Dr. N.Sudheer, born in Ongole, Prakasam

Dt., AP. Presently working as a Associate

Professor (CSE) in Siddharth institute of

Engg.& Technology, Puttur and completed

Ph.D.(CSE), in Aligarh Muslim University,

Aligarh, India. His Research interest includes

Software Engineering and Testing

Methodologies, Published number of

Journals.

Email:nidamanuri.sudheer@gmail.com

Mr. S. HrushiKesava Raju, working as a

Associate Professor in the Dept. of CSE,

SIETK, Narayanavanam Road, Puttur. He is

pursuing Ph.D from Rayalaseema University

in the area “ Development of Data

preprocessing on certain advanced Data

Structures by refining their existing algorithms

for getting improved time complexities”. His

other areas of interest are Data Mining, Data

Structures, and Networks.

E-mail: hkesavaraju@gmail.com

