

 © 2017, IJCSE All Rights Reserved 110

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-5, Issue-8 E-ISSN: 2347-2693

Design of High Performance, Scalable Content-based Publish-Subscribe

System using MPI-CUDA Approach

M.A. Shah
1*

, D.B. Kulkarni
2

1*

Dept. of CSE, Walchand College of Engineering, Sangli (M.S), India
2
Dept. of CSE, Walchand College of Engineering, Sangli (M.S), India

*Corresponding Author: medha.shah@walchandsangli.ac.in Tel.: +919423872296

Available online at: www.ijcseonline.org

Received: 12/Jul/2017 , Revised: 23/Jul/2017, Accepted: 16/Aug/2017, Published: 30/Aug/2017

Abstract— Today Publish-subscribe model is used as communication backbone for various application domains such as IoT,

Social networking, Intrusion detection system and Financial trading. Content-based flavor of Pub-Sub system enables routing

of information from producers to consumers based on contents of the query or depends on subscriptions entered by the user. In

this model, information is disseminated from producers to consumers through a network of brokers. The significant challenge

in content-based Pub-Sub system lies in an efficient matching of an event against a large number of subscribers on a single

message broker. To provide high throughput service guarantee to the subscriber of Pub-Sub system we propose a novel hybrid

model for parallel event processing using MPI-CUDA approach. This approach combines message passing interface (MPI) and

CUDA, a parallel computing platform and programming model, invented by NVIDIA. Results are compared with CCM (Cuda

Content Matching Algorithm), a high performance, and parallel content matching algorithm. Approximately 1.77X speedup is

observed in matching latency. This approach is suitable for use in event processing of large data intensive applications where

the rate of arrival of the event is high.

Keywords— Matching Latency, MPI-CUDA, High performance, parallel event processing.

I. INTRODUCTION

Events are everywhere. New sources of events like social

feeds, IoT devices, RFID tags, cameras, mobile devices,

internet services, web sites and data repositories generate

events at an enormous rate. The amount of data is growing

exponentially. Every day at least 2.5 quintillion bytes of data

get produced. The growth in the size of data is exponential.

Many applications want to exploit these events in real time.

Many distributed applications use Pub-Sub communication

paradigm as communication backbone. In Pub-Sub system,

Subscribers receive total or subset of the total messages

published by one or more publisher. Here receivers declare

their interest in the particular event in the form of

subscription. The publisher publishes the information of

interest as message or notification. Content-based Pub-Sub

delivers published messages to the interested subscribers

through event notification system. In content-based Pub-Sub

system, event matching plays a critical role. Matching of an

event against a large number of subscribers is carried out on

a single message broker. To minimize matching latency and

to deliver high throughput are the two fundamental goals of

the Pub-Sub system. As various parallel architectures and

frameworks are easily available at a reduced cost now,

parallel and scalable content-based matching algorithms are

to be designed and deployed to achieve high throughput.

In this paper, we present research contributions. There are

recent studies on the development of a high-performance

content-based system using GPU [1]. As an example, a Cuda

content matching algorithm proposed in [1] achieves low

matching latency and provides a speedup of 148.7 compared

with SFF, a sequential counting algorithm. Previous work [1]

commonly assumes that all subscriptions can fit into the

memory of single GPU. But the performance of existing

matching algorithms degrades for a lot of subscriptions and

events. But best of our knowledge, 32-64 GB is a typical

size for the system memory, whereas a single GPGPU has

between 4 and 12 GB device memory. When dealing with

data-intensive applications, the size of the device memory

may thus become a limiting factor. As all current generation

machines equipped with multiple GPU cards, we address this

memory problem by using Multi-GPU and MPI-CUDA

approach. Workload gets distributed among available GPUs

and hence it also solves the problem of overloading of broker

for large data sets of subscriptions. Here we only present the

http://www.sciencedirect.com/science/article/pii/S0743731516000174#br000035

 International Journal of Computer Sciences and Engineering Vol.5(8), Aug 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 111

MPI-CUDA approach of parallel event processing.

This paper is organized as follows. Section II describes some

related work in the area of traditional as well as the high-

performance content-based Pub-Sub system. Section III

presents data model typically assumed for same. Section IV

presents the MPI-CUDA approach of developing high-

performance Pub-Sub system. Section V shows experimental

setup and results of the proposed approach.

II. LITERATURE SURVEY

We first review related work on traditional distributed

content based Pub-Sub systems, followed by recent work in

the area of high-performance Pub-Sub systems.

A. General Pub-Sub Research

Earlier work related to Pub-Sub system has relied on

networks of brokers also called dispatchers, which are

dedicated machines, arranged in hierarchical or tree based

topology, perform the various operations including (1)

Subscription management for users and other brokers (2)

matching of incoming publications against stored

subscriptions (3) delivering notifications to subscribers.

Several Pub-Sub systems (e.g., SIENA [2], Gryphon [3],

PADRES [4], HERMES [5]) proposed earlier follow a

content-based addressing scheme for subscriptions. All these

systems make use of an application-level network of brokers

that does the task of matching.

B. Event processing algorithms in Pub -Sub Systems

Matching algorithms are categorized into counting-based [6,

7, 8] and tree-based [9, 10, 11] algorithms. These algorithms

are further classified as key based and non-key based. The

work proposed in [12] is key-based, where for every

expression a set of predicates are selected as an identifier.

Non-key based approaches are discussed in [6, 10, 8]. In

counting based approach, an aim is to minimize predicate

evaluations by constructing inverted index over unique

predicates results in rigid clustering. In [7] propagation, a

key based method was proposed while [8] discussed k-index,

a non-key based method. Likewise, tree-based methods are

designed to reduce predicate evaluations and to recursively

divide the search space by eliminating subscriptions on

encountering unsatisfied predicates. The most prominent

tree-based method, Gryphon, is a static, non-key based

algorithm [9]. BE-Tree [14, 15] is a novel tree-based

approach, which also employs keys, which outperform

existing work [6, 9, 7, and 8]. The latest improvement of

counting based algorithms is k- index [8]. This algorithm

scales well for thousands of dimensions and supports

equality predicates as well as non-equality predicates. K-

index is static and does not support dynamic insertion and

deletion. BE-Tree is distinguished from k-index in many

aspects. BE-Tree is dynamic and encourages richer predicate

operators (e.g. range operators), and adjusts to workload

changes. However, BE-Tree poses some limitations on

attribute values. These values should be discrete in nature

and their range is to be pre-specified. Additionally, BE-tree

[14, 15] uses a clustering policy that becomes ineffective in

certain cases. PUBSUB [13], which is a heterogeneous

system, enable the users to select data structure best suited

for each attribute by keeping track of the buckets in an

attribute structure. Because of PUBSUB’s heterogeneity in

data structures for each attribute, PUBSUB [13] permits all

attribute data types.

C. High-performance Pub-Sub systems

The idea of parallel matching has been recently addressed in

a few research papers. In [16], the authors exploit multi core

CPUs both to speed up the processing of a single event and

to parallelize the processing of different events using threads.

However, the processing delays and throughput reported

seems to be much worse than those obtained by our Multi-

GPU approach, due to the use of limited threads available for

processing. Parallelization of the matching process using ad-

hoc (FPGA) hardware is presented in [17]. The author in [1]

described a new Pub-Sub content-based matching algorithm

designed to run efficiently both on multi-core CPUs and

CUDA GPGPUs. The algorithm takes a substantial amount

of time for processing large numbers of subscriptions, filters,

interfaces. The efforts are taken to deploy the Pub-Sub

system on storm [18] architecture for fast matching using

local as well as a distributed cluster. Resource utilization

should be appropriate for better performance. Storm Pub-Sub

system approximately produces 2200 event/s on a distributed

cluster. As compared to our Multi-GPU approach this

throughput is low. Stream Hub [19] is a novel Pub-Sub

deployed on a cluster of 384 cores. This Pub-Sub is able to

register and filter a large number of publications against

stored subscriptions resulting nearly 400 K notifications/s.

Deadline aware algorithm [20] is designed to maintain

Quality of Service in Pub-Sub is modified, originally

mentioned in [21]. In modified smart dispatch algorithm, the

number of failures decreases with the increase in a number of

cores. This paper uses the approach of parallelism using

multithreading, so limited scalability is achieved. Our aim is

to make high performance and scalable Pub-Sub system by

processing events in parallel.

 International Journal of Computer Sciences and Engineering Vol.5(8), Aug 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 112

III. DATA MODEL

Here we illustrate what we mean by the event, filter, and

predicate. An event is defined as a set of typed attributes.

Each attribute in an event has a name and has a type and a

value. For example, string class=travel/airlines/offer; date

starts=Jun; date expires= Aug; string origin=LA; string

destination= AUS; string carrier=United is an event. The

event is also defined as an attribute value pair. A Filter is a

conjunction of attribute constraints. Each attribute constraint

has a name, a type, an operator, and a value. A constraint

defines an elementary condition over an event. For example

string class >*travel/airlines; date starts<Jul; date

expires>Jul; string origin=LA; string destination= AUS is a

valid filter matching the event of the previous example.

So a filter matches an event if all the attribute constraints in a

filter are satisfied by the attributes in an event. A predicate is

defined as a disjunction of filters. A Predicate matches an

event if, at least one of its filter matches an event.

IV. MPI-CUDA APPROACH

This algorithm harnesses the power of MPI and CUDA

distributed parallel programming model. MPI is a

standardized API for communication between different

processes. Generally, CUDA programming is used for

parallel computing on a single computer or node. The basic

idea of the distributed parallel programming model is to use

MPI+CUDA to realize two-level parallel computing. MPI

programming model helps to achieve a coarse-grained

parallel computing between the computational nodes of the

cluster. CUDA programming model helps to achieve a GPU-

accelerated fine-grained parallel computing in each

computational node. Here our aim is to scale content-based

Pub-Sub system on multi node cluster and to achieve high

throughput. The Structure of MPI+CUDA Programming is

shown in Figure 1.

Figure 1. The MPI + CUDA Based Parallel Computing Program Model

A. MPI-CUDA Framework.

Here we propose two level task hierarchies. The proposed

algorithm will use MPI for distributing subscriptions and

events among available processes in the cluster and utilize

the GPU for running a content matching algorithm. Figure 2.

depicts the event dispatcher framework that processes events

in parallel. The master process gets notified about a number

of worker nodes available in the cluster. The master process

sends the complete set of subscriptions to each process for

matching. Assignment of a process to GPU is one to one.

The master process sends the individual event (i.e. separate

event for each process) to slave process. Slave process runs

the matching algorithms on GPU and sends back the

matching results to master process. The framework does the

task of load balancing. As individual worker process sends

the results to master process, immediately it receives a new

event for processing. In this approach, we used non-blocking

MPI subroutines for load balancing. Pseudocode of MPI-

CUDA algorithm is presented in section C.

Figure 2. Event Dispatcher Framework

This approach uses CCM presented in [1] as a base

algorithm. In the following section, CCM algorithm is

explained in brief.

B. CCM Algorithm

CCM is parallel content matching algorithm designed to run

on GPU. This is based on counting algorithm [22],

prominently used for matching in Pub-Sub systems. The

algorithm has three phases: a filter selection phase, a

constraint selection phase, and a constraint evaluation and

counting phase [1]. In the first phase, the set of filters is

partitioned based on their attributes’ names. In the second

phase, for each attribute ‘a’, in the event, ‘e’, the set of

constraints (part of the filters) having the same name as ‘a’ is

 International Journal of Computer Sciences and Engineering Vol.5(8), Aug 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 113

selected. Evaluation of selected constraints is carried out in

the third phase using the value of each attribute ‘a’. For each

satisfied constraint ‘c’, the counter associated with filter ‘f’ is

increased. When all the constraints of the filter are satisfied,

a filter matches an even ‘e’ and so satisfies the predicate ‘p’

to which it belongs. When this process is completed, an event

can be forwarded to the interface exposing predicate p.

CCM algorithm evaluates multiple constraints in the filters

simultaneously, by using GPGPU cores. The algorithm

maintains following data structures for storage of events and

subscriptions. Here onwards we refer CPU as host process.

Host process maps each distinct attribute name to a single bit

of small bit vector called NameVector (NVe). It also creates

Filters and Constraints tables, to organize the constraints of

the filters into five data structures namely ConstrOp,

ConstrVal, ConstrFilterId, ConstrBF, and NumConstr [1],

according to constraint name. Host process builds data

structures named Filters and Interface [1] to maintain

information about filter-size, filter-count, and interface-Id to

which the filter belongs. An Interface is an array, indicates

matched interfaces by setting the corresponding index of the

array to one. For each event, host process builds the table

Input. It includes one row for each attribute in event e. For

each attribute ‘a’ in event, ‘e’, each row of the input table

stores the value of ‘a’, its type, the number of constraints

having the same name as ‘a’, and the pointers (in the GPGPU

memory) to the rows of Filters and Constraint table that are

relevant for a. All these data structures are transferred to the

GPGPU for processing an event. CCM launches a kernel

named evalConstraint, which uses thousands of GPGPU

threads to evaluate constraints in parallel. Each thread

evaluates a single attribute ‘a’ of e against a single constraint

c. The results of the computation (i.e., the Interfaces array)

are copied back to the host memory and the Filters Count and

Interfaces structures are reset for processing of the next

event.

C. Algorithm 1: MPI-CUDA

For master process:

Transfer Filters and Constraints data to all processes.

 While all events are not processed

 Receive matched interfaces from `x' process

 Send an incoming event to `x' process.

 End While

 For slave process:

 Receive Filters and Constraints data from master

process

 Copy received data to memory of every GPGPU

asynchronously

 While (True)

 Send a dummy array with no interfaces matched.

 Receive event from master process

 If number of attributes in event equals zero

 Break

 Else

 Process event by calling kernel of GPU

evalConstraint<<<NUM_BLOCKS_NUM_THREADS>>>

 Send matched interfaces to master process

 End If End while.

V. EVALUATION

Here we want to compare our work with state-of-the-art [1]

CUDA content matching algorithm to understand the real

benefits in parallelizing the matching process using MPI-

CUDA approach.

A. Experimental setup

For validation of MPI-CUDA algorithm, MPI-CUDA

framework has been setup. For this approach, Beowulf

cluster of the two nodes is formed. A configuration of an

individual node is described below. As each node is equipped

with 2 GPUs, event processing is carried out by all 4 GPUs

independently. Beowulf is a multi-node cluster used

generally for parallel computations. This cluster usually

consists of one server node and one or more client nodes

connected via Ethernet or some other network. Beowulf

cluster is formed as directed in [23].

Table 1: Default Scenario

A Configuration of the node used to form a cluster is as

follows. Core i7-2600 PC, with four cores running at 3.2

GHz, and 16 GB of DDR3 Ram. The Two GPGPUs were a

NVIDIA Quadro K600 with 1 GB of DDR3 Ram. We used

the GCC compiler, version 4.7, and the CUDA runtime 7.5

for 64 bit Linux.

 International Journal of Computer Sciences and Engineering Vol.5(8), Aug 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 114

B. Latency of Matching

To evaluate the latency of pure matching, default scenario

mentioned in [1] is used whose parameters are listed in Table

1, and used it as a starting point to build a number of

different experiments, by changing the various parameters

one by one and measuring how this impacts the performance

of CCM and MPI-CUDA algorithm.

Default scenario: Table 2 shows the processing times

measured by the algorithms under analysis in the default

scenario.
Table 2: Processing Time in Default Scenario

Processing Time in the Default Scenario:

CCM MPI+CUDA

0.25245 ms 0.1535 ms

Under this load, if we consider all algorithms, CCM requires

0.25245ms and MPI-CUDA require 0.1535ms, which is a

substantial improvement over CCM.

Number of Attributes: Figure 3 shows how performance

changes with a number of attributes per event. Higher

matching time is required by both the algorithms with an

increase in a number of attributes. CCM processes attributes

of events, in parallel using GPU. As MPI-CUDA algorithm

is based on CCM, it also exhibits similar performance. MPI-

CUDA exhibits 1.65X speedup compared to single GPU. But

as a number of attributes go on increasing MPI-CUDA

exhibits 1.82X speedup. This indicates that MPI-CUDA

approach works well for a large number of attributes in

events. Eventually, this speedup achieved by MPI-CUDA is

low due to more communication overhead.

Figure 3. Number of Attributes Per Event.

Number of Events: Figure 4 presents the performance of

algorithms in the context of matching time with an increase

in the number of events. As this approach focuses on the

parallel event processing using a cluster, its performance is

validated for a large number of events. Default scenario

considered for experiments mentioned in [1] processes 1000

events. As the system under consideration is high-

performance event processing system, we expect the events

between 1 Lakh to 5 Lakh. The Figure 4 indicates that MPI-

CUDA approach requires less time as compared to CCM.

Here it is observed that MPI-CUDA approach is suitable for

event processing systems where the rate of arrival of an event

is a high and large number of events is to be processed by the

Pub-Sub system.

Figure 4. Number of Events for Processing

Number of Constraints: Figure 5 represents the performance

of algorithms with a varying number of constraints per filter.

The complexity of matching increases with increase in the

number of constraints. CCM require more time with an

increase in the number of constraints. MPI-CUDA approach

works well because parallel processing of events and hence

total matching time is improved.

Figure 5 . Number of Constraints per filter

C. Final Consideration

We draw some general conclusions from the vast majority of

experimentation and observation. Parallel, scalable and high-

performance Pub-Sub system can be designed by extending

single GPU based CCM algorithm. Parallel event processing

is a complete solution for building event-driven applications,

 International Journal of Computer Sciences and Engineering Vol.5(8), Aug 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 115

where a rate of arrival of the event is high. Inherent

parallelism is involved in the matching process, so it is

possible to extend it to multilevel and hybrid parallelism.

 We present some remark on the use of multiple GPUs easily

available in modern computer architecture and its effective

use by CUDA programming. It is possible to achieve high

throughput for data intensive application using MPI-CUDA

cluster. Due to more processing power, the faster runtime is

achieved. MPI-CUDA approach scales across the cluster of

computing nodes and so well suited for a processing of large

number of events, but communication overhead is the

bottleneck in the system. With the increase in the number of

attributes from 1 to 10 an average speedup of 1.77X over

CCM is observed. Speedup of 2X w.r.t CCM in average

matching latency is observed for 500K events. With the

increase in the number of constraints from 1 to 20 an average

speedup of 1.77X w.r.t CCM in processing time is observed.

ACKNOWLEDGMENT

We sincerely thank Alessandro Margara, and Gianpaolo

Cugola for providing code (CCM) for modification as well as

allow us to compare results of MPI-CUDA approach. Also,

we thank authors who provided data set for experimentation.

This work is supported by Walchand College of Engineering,

Sangli

REFERENCES

[1] Alessandro Margara, Gianpaolo Cugola “High-Performance

Publish-Subscribe Matching Using Parallel Hardware”, IEEE

Transactions on Parallel and Distributed Systems Volume.25,

Issue.1,January 2014

[2] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and

evaluation of a wide-area event notification service”, ACM TCS,

2001

[3] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D.

Chandra, “Matching events in a content-based subscription

system”, In PODC, 1999 and evaluation of a wide-area event

notification service. ACM TCS, 2001.

[4] H.-A. Jacobsen, A. Cheung, G. Lia, B. Maniymaran, V.

Muthusamy, and R. S. Kazemzadeh, “The PADRES

publish/subscribe system”, Handbook of Research on Adv. Dist.

Event-Based Sys. Pub. /Sub. and Message Filtering Tech., 2009.

[5] Peter R. Pietzuch, “Hermes: A scalable event-based middleware”,

Technical Report University of GANBRIDGG Computer

Laboratory.

[6] T. Yan and H. Garcia-Molina, “Index structures for selective

dissemination of information under the Boolean model”, ACM

TODS,1994.

[7] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D.

Shasha, “Filtering algorithms and implementation for fast pub/sub

systems”, SIGMOD, 2001.

[8] S. Whang, C. Brower, J. Shanmugasundaram, S. Vassilvitskii, E.

Veer, R. Yerneni, and H. Garcia-Molina, “Indexing Boolean

expressions”, In VLDB’09.

[9] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D.

Chandra, “Matching events in a content-based subscription

system”, In PODC, 1999.

[10] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith, “Efficient

filtering in publish-subscribe systems using binary decision

diagrams”, In ICSE, 2001.

[11] G. Li, S. Hou, and H.-A. Jacobsen, “A unified approach to

routing, covering and merging in publish/subscribe systems based

on modified binary decision diagrams”, In ICDCS,2003.

[12] G. Cugola and G. Picco, “REDS: A Reconfigurable Dispatching

System”, In SEM, pages 9-16, Portland, 2006. ACM Press.

[13] Tania Banerjee Mishra, Sartaj Sahni, “PUBSUB: An Efficient

Publish/Subscribe System”, IEEE Transactions on

Computers Volume. 64, Issue.4, 2014.

[14] Mohammad Sadoghi, Hans-Arno Jacobsen, “Analysis and

Optimization for Boolean Expression Indexing ACM Transactions

on Database Systems”, Vol. 38, No. 2, Article 8, 2013.

[15] M. Sadoghi and H.-A. Jacobsen, “BE-Tree An Index Structure to

Efficiently Match Boolean Expressions over High-dimensional

Discrete Space”, SIGMOD, 2011.

[16] A. Farroukh, E. Ferzli, N. Tajuddin, and H.-A. Jacobsen, “Parallel

Event Processing for Content-Based Publish/Subscribe Systems”,

(DEBS ’09), pp.8:1-8:4, 2009.

[17] K.H. Tsoi, I. Papagiannis, M. Migliavacca, W. Luk, and P

Pietzuch, “Accelerating Publish/Subscribe Matching on

Reconfigurable Supercomputing Platforms”, Proc. Many-Core and

Reconfigurable Supercomputing Conf., 2010.

[18] Medha A. Shah, D.B.Kulkarni, “Storm Pub-Sub: High

Performance, Scalable Content Based Event Matching System

Using Storm”, In IPDPS,W’ 2015.

[19] Raphael Barazzutti, Pascal Felber, “Streamhub: A Massively

Parallel Architecture for High-Performance Content-Based

Publish/Subscribe”, DEBS, 2013, Arlington, Texas, USA.

[20] Medha Shah, D.B.Kulkarni, “Enabling Qos Support for Multi-

Core Message Broker in Publish/Subscribe System”, Advance

Computing Conference (IACC), 2014 IEEE International

conference.

[21] Zhaoran Wang, Xiaotao Chang, “Pub/Sub on Stream: A Multi-

Core Based Message Broker with Qos Support”, DEBS, 2012,

Berlin, Germany July 2012.Forman, G. 2003. An extensive

empirical study of feature selection metrics for text classification.

J. Mach. Learn. Res. 3 (Mar. 2003), 1289-1305.

[22] A. Carzaniga and A.L. Wolf, “Forwarding in a Content-Based

Network,” Proc. SIGCOMM, pp. 163-174, 2003.

[23] https://www.linux.com/blog/building-beowulf-cluster-just-13-

steps

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7056411
https://www.linux.com/blog/building-beowulf-cluster-just-13-steps
https://www.linux.com/blog/building-beowulf-cluster-just-13-steps

