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Abstract— Nowadays, Android Malware is coded so wisely that it has become very difficult to detect them. The static analysis 

of malicious code is not enough for detection of malware as this malware hides its method call in encrypted form or it can 

install the method at runtime. The System Calls tracing is an effective dynamic analysis technique for detecting malware as it 

can analyze the malware at the run time. Moreover, this technique does not require the application code for malware detection. 

Thus, this can detect that Android malware also which are difficult to detect with static analysis of code. The paper presented 

the framework of detecting malicious application from 81 malware families by analysis of dynamic feature System Calls 

Invoked with machine learning algorithms.  
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I.  INTRODUCTION  

The Android has modified Linux 2.6 Kernel at the core. The 

modifications are done for adopting this operating system for 

the mobile devices. The Android Specific Kernel enhancement 

includes power management, shared memory drivers, alarm 

drivers, binders, kernel debugger & logger and low memory 

killers. The Android application takes the services of the kernel 

through the System Calls. Whenever a user requests for services 

like call a phone in user mode through the phone call 

application, the request is forwarded to the Telephone Manager 

Service in the application framework. The Dalvik Virtual 

Machine in Android runtime transforms the user’s request 

passed by the Telephone Manager Service to library calls, which 

results in multiple System Calls to Android Kernel. While 

executing the System Call, there is a switch from user mode to 

kernel mode to perform the sensitive operations. When the 

execution of operations requested by the System Call is 

completed, the control is returned to the user mode. The Kernel 

Invocation calls are sub-grouped into three types of System 

Calls: 1) System Call- used to invoke native operations of the 

kernel. 2) Binder Call- for invocation of the binder drivers in the 

kernel. 3) The Socket Call - allows the read/write/send/receive 

operations of Linux socket. In this research work, all these 

subgroups considered as System Calls during behaviour 

analysis. There are 250 types of System Calls in Android 

Operating system for performing operations like allocating 

resources, performing read/write operations, protecting critical 

data, etc. As discussed, the System Calls are the interface 

between the user and the kernel.  All requests from the 

applications will pass through the System Call Interface before 

its execution through the hardware.  

Thus capturing and analysing the System Calls can give 

information about the behaviour of the application. 

The rest of the article is divided into 5 sections. Section I 

discussed the importance of system call analysis. Section II 

contains the related work of system call analysis for android 

malicious detection. Section III contains the methodology for 

the framework of malicious application detection by 

analyzing the system call features with machine learning 

algorithms. Section IV has discussed the result and Section V 

briefed the conclusion.  

II. RELATED WORK  

Many Researchers used system call features analysis for 

malicious application detection .In their work Schmidt et 

al.[1] proposed intrusion detection system for an android 

device which watches the system activities through process 

list of open files, network traffic, symbol table and system 

call traces of the complete system to find out any 

abnormality in system behavior.  Kolbitsch et al. [2] 

performed an analysis of six malware families Allaple, 

Bagle, Mytob, Agent, and Netsky by finding the correlation 

between them in terms of the System Call.  Wang et al. [3] 

proposed software theft detection system with System Call 

based software birthmark system. Authors addressed the 

problem of software theft where a small part of the software 

is theft for doing malicious activities.  A.lanziet al. [4]  

proposed the malicious application detection system for 
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personal computers based on the analysis of System Call 

invoked by the application, and achieved the detection rate 

of 89 %.  Sanz et al. [5] used machine learning algorithm 

for classification of android applications in several 

categories like games, tools, entertainment etc. Authors 

considered various algorithms such as KNN, SVM, J48, 

Random Forest and Tree Augmented Naïve (TAN), and 

achieved maximum ROC 0.93 with TAN. Tchakount and 

Dayang [6] proposed the System Call based methodology 

for analyzing two malware families, Super History Eraser 

and Task Killer. Sato et al. [7] proposed the method of 

calculating the malignancy score of the android application 

based on the information permission, Intent filter (action), 

Intent filter (category), and Process for classification of 

android applications and have the accuracy of 91.4 %. 

Huang et al. [8] also used machine learning technique for 

classification of Android Application and have a maximum 

accuracy of 81 % with J48. Canfora et al. [9] proposed 

malware detection approach based on the analysis of 

System Call and permission feature, and classified the 

malicious application based on the three metrics. Liu & Liu 

[10] proposed Two-Layered Permission-Based Android 

Malware Detection Scheme using machine learning 

techniques for classification of benign and malicious 

applications. Jeong et al. [11] proposed a malware detection 

technique based on system call and binder analysis. B.R. 

Patel [16] has used classification algorithms for improving 

student performance.  

 

From literature survey it is observed that the maximum 

achieved accuracy with anomaly intrusion detection is 89 % 

by analyzing the malicious application with system call 

feature by considered only few malware families or no 

malware families while malicious application detection. The 

no. of malware families considered is important factor in 

android malicious application detection and need to 

consider more malware families in android malicious 

application detection. The objective of this work is to detect 

malicious application with analysis of system call with 

machine learning algorithms. The dataset of malicious 

application is considered from 81 malware families.  

III. METHODOLOGY 

Data Collection 

The .apk files of Android Application Samples are taken 

from resources Drebin Research Work [12] & Androtracker 

Research Work [13]. The 1060 android applications- 533 

benign applications and 527 malicious applications samples 

from 81 malware families are taken for creating the Dataset.  

The Benign Android Application repository has been 

requested from the research work AndroTracker[13] , the 

Hacking and Countermeasure Research Lab established in 

the Graduate School of Information Security of the Korea 

University, Seoul, Korea.The research work AndroTracker 

has collected 51,179 Benign applications which have been 

collected during the period of January 2013 to August 2013 

by downloading them from the Android market & Google 

Play. The Malicious Application Data have been bagged 

from The Drebin Dataset  [12] that have 5,560 apk files of 

malicious application collected during the period from 

August 2010 to October 2012.  

 

Feature Extraction and Data Creation 

The next phase is dynamic feature “System Calls Invoked”  

extraction of Android Applications for the analysis. This 

feature is extracted with proposed automatic tool AndroData 

[14]. The AndroData tool installs each application 

automatically on the Emulator and extracts the Android 

Permission Requested and System Call Invoked features by 

simulating the android application. The System Calls traces 

and Android permissions Requested are recorded in the text 

files on the emulator. 

 

After the uninstallation of an android application, the text 

files having  Android System Calls Invoked & their frequency 

features of the application is pulled back from the emulator 

and stored on the storage device for creating feature vectors 

of all android applications. For making the feature vector, the 

author  have developed the java program which read the text 

files of each application and copied its System Call Invoked 

attributes in the excel files. While reading the System call 

Invoked feature from the text file, it places the System Call 

Frequency value in the column having the same System Call 

heading and 0 in the mismatched column heading.  

 

After the successful execution of java program, the authors 

have the Dataset in the excel format.  

  

Refining of System Call Invoked Dataset based on 

behavior Analysis 

 

The System Calls Invoked dataset has 82 types of System 

Calls Invoked and their frequency of invocation by the 

Android applications. The rows have the application’s 

package name and columns have different types of System 

Calls invoked and their frequency of invocation by 

applications. Some insignificant System Calls are removed 

from the dataset and the dataset is left with 75 different types 

of System Calls Invoked. To make the dataset more valuable, 

some more attributes are added to the dataset based on the 

behaviour analysis of System Calls invoked [15] by 

applications like no. of System Calls Invoked, no. of System 
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Calls Invoked with frequency more than 100, no. of System 

Calls with frequency more than 1000 which would help the 

machine learning algorithms to identify the behaviour 

patterns of benign and malicious applications more 

accurately during experiments.  

 

Performance Metrics 

 

The performance of the machine learning classifier is measured in 

terms of True Positive (TP), True Negative, False Positive and 

False Negative, represented by confusion matrix . Table 1 shows 

the Confusion Matrix used in the experiments. The True Positive 

is no. of Android Applications correctly classified as Benign 

Applications. True Negatives (TN) is the no. of Android 

Applications correctly classified as Malicious Applications. False 

Positives is the no. of Android Applications mistakenly classified 

as Benign and False Negatives (FN) is the no. of Android 

Applications mistakenly classified as Malicious Applications.  
Table 1. Confusion Matrix 

 

 

 

 

 

 

 

True Positive Rate (TPR) means the proportion of correctly 

identified applications as Benign Applications. False Positive Rate 

(FPR) represents the proportion of Malicious Applications 

incorrectly identified as Benign. Accuracy is the proportion of 

correctly identified applications both Benign and Malicious from 

the total no. of applications. F1–score is also called F–measure 

having the range from 0 to 1 where the best is 1 and the worst is 0. 

A Receiver Operating Characteristic (ROC) curve is a graphical 

plot in which X axis is True Positive Rate and Y axis is False 

Positive Rate which is used for illustrating the performance of a 

binary classifier. ROC curves allow us to evaluate and compare 

the classification algorithms and help us to select the optimal 

classifier. The area under the ROC curve known as AUC, judges 

the performance of a binary classifier. The AUC=1 is considered 

perfect prediction and below 0.6 is considered poor prediction. 

The next section evaluates the different classifiers on the basis of 

above parameters. 

IV. RESULTS AND DISCUSSION 

In this research work, the experiment with System Calls 

Invoked features is performed with two datasets, Dataset 1 

with 1060 Android Applications and Dataset 2 with 260 

Android Applications. The Dataset1 has 527 Benign 

Applications and 533 Malicious Applications. Dataset 2 has 

82 Benign Applications and 178 Malicious Applications. 

Both Datasets have 75 different System Calls Invoked by the 

Android applications. These datasets are used for training 

and testing classifiers such as RBF classifier, Kernel Logistic 

Regression, SMO, KStar, Naïve Bayes, Simple Logistic, 

Random Forest, and SVM. The experiment is executed with 

10 fold cross validation techniques. 

 

Table 2 shows the experiment results with malicious 

applications detection with Dataset1 in which KStar and 

Random Forest are classifiers with good performance as 

compared to others. The Random Forest is the best 

performing classifier with a maximum accuracy of 66% and 

ROC of 0.7. The Random Forest also has minimum False 

Positive Rate of 0.33. Although with the Dataset 1 the 

maximum achieved accuracy is comparatively less as the 

Dataset 1 needs to be refined further. 

Table 2. Experiment Result of Different Classifiers Performance with 

Dataset 1 

Classifier 

ACCU

RACY 

TP 

Rate 

FP 

Rate 

Preci

sion 

Reca

ll 

F-

Meas

ure 

ROC 

Area 

RBF 

Classifier 62.67 0.627 0.369 0.718 0.627 0.585 0.651 

Kernel 

Logistic                      

Regression  

L-0.01 61.9 0.619 0.376 0.716 0.619 0.573 0.676 

SMO 61.6 0.616 0.379 0.756 0.616 0.558 0.619 

KStar 64.5 0.645 0.353 0.675 0.645 0.63 0.662 

Naïve Bayes 60.79 0.608 0.387 0.723 0.608 0.552 0.604 

Simple 

Logistic 61.3 0.613 0.383 0.737 0.613 0.556 0.613 

Random 

Forest 66 0.667 0.33 0.696 0.667 0.655 0.7 

SVM 63.9 0.639 0.358 0.673 0.639 0.621 0.64 

 

 

The Dataset 1 is further refined to form the Dataset 2. Table 

3 represents the different classifiers performance after 

training and testing them with Dataset 2. As it is clearly 

visible from the experimental results the performance of each 

classifier is improved significantly with Dataset 2. The 

performance of Kernel Logistic regression, Simple Logistic 

and Random Forest is better as compared to other classifiers. 

The Random Forest is the best performing Classifier with 

Accuracy of 85% and ROC of 0.922. 

 
Table 3 Experiment Results of Different Classifiers performance with 

Dataset 2 

Confusion Matrix 
Predicted Instances 

Benign Malicious 

Actual Instances 
Benign TP FN 

Malicious FP TN 

Classifier 

Accurac

y 

TP 

 Rate 

FP 

 Rate 

Preci

sion Recall 

F-

Measur

e 

ROC  

Area 

RBF 

Classifier 75.8 0.758 0.256 0.777 0.758 0.763 0.858 

Kernel 

Logistic 

Regression 

L-0.01 81.92 0.819 0.182 0.834 0.819 0.823 0.884 

SMO 78.84 0.788 0.143 0.842 0.788 0.796 0.822 

KStar 80.38 0.804 0.209 0.817 0.804 0.808 0.873 

Naïve 

Bayes 71.92 0.719 0.162 0.822 0.719 0.728 0.833 

Simple 

Logistic 83.84 0.858 0.118 0.876 0.858 0.861 0.926 

Random 

Forest 85 0.85 0.187 0.852 0.85 0.851 0.922 

SVM 76.2 0.762 0.281 0.771 0.762 0.765 0.74 
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V. CONCLUSION 

In Anomaly based intrusion detection system, the behaviour 

of the malicious application is analyzed with machine 

learning algorithms. System call is important dynamic 

features for malicious application detection for anomaly 

based intrusion detection system. The framework presented 

is used System Call Invoked feature for malicious 

applications detection and successful in achieving accuracy 

of 85% and ROC of 0.922 for detection of malicious 

application from 81 malware families with machine learning 

algorithms. Random forest Machine Learning algorithms 

found the promising algorithm for malicious application 

detection with system call invoked feature. Although the 

simple logistic algorithms is also found good algorithm for 

malicious application detection. The accuracy can be further 

improved by the combining the other features like permission 

used, API call etc. with the analysis of system call. 
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