

 © 2017, IJCSE All Rights Reserved 105

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-5, Issue-11 E-ISSN: 2347-2693

Android System Call Analysis for Malicious Application Detection

Sapna Malik

Dept. of Computer Science and Engineering, Maharaja Surajmal Institution of Technology, New Delhi, India

*Corresponding Author: sapnadhankhar@gmail.com, Tel.: +919711116044

Available online at: www.ijcseonline.org

Received: 13/Oct/2017, Revised: 27/Oct/2017, Accepted: 19/Nov/2017, Published: 30/Nov/2017

Abstract— Nowadays, Android Malware is coded so wisely that it has become very difficult to detect them. The static analysis

of malicious code is not enough for detection of malware as this malware hides its method call in encrypted form or it can

install the method at runtime. The System Calls tracing is an effective dynamic analysis technique for detecting malware as it

can analyze the malware at the run time. Moreover, this technique does not require the application code for malware detection.

Thus, this can detect that Android malware also which are difficult to detect with static analysis of code. The paper presented

the framework of detecting malicious application from 81 malware families by analysis of dynamic feature System Calls

Invoked with machine learning algorithms.

Keywords—System Call,Malicious application detection,malware families

I. INTRODUCTION

The Android has modified Linux 2.6 Kernel at the core. The

modifications are done for adopting this operating system for

the mobile devices. The Android Specific Kernel enhancement

includes power management, shared memory drivers, alarm

drivers, binders, kernel debugger & logger and low memory

killers. The Android application takes the services of the kernel

through the System Calls. Whenever a user requests for services

like call a phone in user mode through the phone call

application, the request is forwarded to the Telephone Manager

Service in the application framework. The Dalvik Virtual

Machine in Android runtime transforms the user’s request

passed by the Telephone Manager Service to library calls, which

results in multiple System Calls to Android Kernel. While

executing the System Call, there is a switch from user mode to

kernel mode to perform the sensitive operations. When the

execution of operations requested by the System Call is

completed, the control is returned to the user mode. The Kernel

Invocation calls are sub-grouped into three types of System

Calls: 1) System Call- used to invoke native operations of the

kernel. 2) Binder Call- for invocation of the binder drivers in the

kernel. 3) The Socket Call - allows the read/write/send/receive

operations of Linux socket. In this research work, all these

subgroups considered as System Calls during behaviour

analysis. There are 250 types of System Calls in Android

Operating system for performing operations like allocating

resources, performing read/write operations, protecting critical

data, etc. As discussed, the System Calls are the interface

between the user and the kernel. All requests from the

applications will pass through the System Call Interface before

its execution through the hardware.

Thus capturing and analysing the System Calls can give

information about the behaviour of the application.

The rest of the article is divided into 5 sections. Section I

discussed the importance of system call analysis. Section II

contains the related work of system call analysis for android

malicious detection. Section III contains the methodology for

the framework of malicious application detection by

analyzing the system call features with machine learning

algorithms. Section IV has discussed the result and Section V

briefed the conclusion.

II. RELATED WORK

Many Researchers used system call features analysis for

malicious application detection .In their work Schmidt et

al.[1] proposed intrusion detection system for an android

device which watches the system activities through process

list of open files, network traffic, symbol table and system

call traces of the complete system to find out any

abnormality in system behavior. Kolbitsch et al. [2]

performed an analysis of six malware families Allaple,

Bagle, Mytob, Agent, and Netsky by finding the correlation

between them in terms of the System Call. Wang et al. [3]

proposed software theft detection system with System Call

based software birthmark system. Authors addressed the

problem of software theft where a small part of the software

is theft for doing malicious activities. A.lanziet al. [4]

proposed the malicious application detection system for

 International Journal of Computer Sciences and Engineering Vol.5(11), Nov 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 106

personal computers based on the analysis of System Call

invoked by the application, and achieved the detection rate

of 89 %. Sanz et al. [5] used machine learning algorithm

for classification of android applications in several

categories like games, tools, entertainment etc. Authors

considered various algorithms such as KNN, SVM, J48,

Random Forest and Tree Augmented Naïve (TAN), and

achieved maximum ROC 0.93 with TAN. Tchakount and

Dayang [6] proposed the System Call based methodology

for analyzing two malware families, Super History Eraser

and Task Killer. Sato et al. [7] proposed the method of

calculating the malignancy score of the android application

based on the information permission, Intent filter (action),

Intent filter (category), and Process for classification of

android applications and have the accuracy of 91.4 %.

Huang et al. [8] also used machine learning technique for

classification of Android Application and have a maximum

accuracy of 81 % with J48. Canfora et al. [9] proposed

malware detection approach based on the analysis of

System Call and permission feature, and classified the

malicious application based on the three metrics. Liu & Liu

[10] proposed Two-Layered Permission-Based Android

Malware Detection Scheme using machine learning

techniques for classification of benign and malicious

applications. Jeong et al. [11] proposed a malware detection

technique based on system call and binder analysis. B.R.

Patel [16] has used classification algorithms for improving

student performance.

From literature survey it is observed that the maximum

achieved accuracy with anomaly intrusion detection is 89 %

by analyzing the malicious application with system call

feature by considered only few malware families or no

malware families while malicious application detection. The

no. of malware families considered is important factor in

android malicious application detection and need to

consider more malware families in android malicious

application detection. The objective of this work is to detect

malicious application with analysis of system call with

machine learning algorithms. The dataset of malicious

application is considered from 81 malware families.

III. METHODOLOGY

Data Collection

The .apk files of Android Application Samples are taken

from resources Drebin Research Work [12] & Androtracker

Research Work [13]. The 1060 android applications- 533

benign applications and 527 malicious applications samples

from 81 malware families are taken for creating the Dataset.

The Benign Android Application repository has been

requested from the research work AndroTracker[13] , the

Hacking and Countermeasure Research Lab established in

the Graduate School of Information Security of the Korea

University, Seoul, Korea.The research work AndroTracker

has collected 51,179 Benign applications which have been

collected during the period of January 2013 to August 2013

by downloading them from the Android market & Google

Play. The Malicious Application Data have been bagged

from The Drebin Dataset [12] that have 5,560 apk files of

malicious application collected during the period from

August 2010 to October 2012.

Feature Extraction and Data Creation

The next phase is dynamic feature “System Calls Invoked”

extraction of Android Applications for the analysis. This

feature is extracted with proposed automatic tool AndroData

[14]. The AndroData tool installs each application

automatically on the Emulator and extracts the Android

Permission Requested and System Call Invoked features by

simulating the android application. The System Calls traces

and Android permissions Requested are recorded in the text

files on the emulator.

After the uninstallation of an android application, the text

files having Android System Calls Invoked & their frequency

features of the application is pulled back from the emulator

and stored on the storage device for creating feature vectors

of all android applications. For making the feature vector, the

author have developed the java program which read the text

files of each application and copied its System Call Invoked

attributes in the excel files. While reading the System call

Invoked feature from the text file, it places the System Call

Frequency value in the column having the same System Call

heading and 0 in the mismatched column heading.

After the successful execution of java program, the authors

have the Dataset in the excel format.

Refining of System Call Invoked Dataset based on

behavior Analysis

The System Calls Invoked dataset has 82 types of System

Calls Invoked and their frequency of invocation by the

Android applications. The rows have the application’s

package name and columns have different types of System

Calls invoked and their frequency of invocation by

applications. Some insignificant System Calls are removed

from the dataset and the dataset is left with 75 different types

of System Calls Invoked. To make the dataset more valuable,

some more attributes are added to the dataset based on the

behaviour analysis of System Calls invoked [15] by

applications like no. of System Calls Invoked, no. of System

 International Journal of Computer Sciences and Engineering Vol.5(11), Nov 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 107

Calls Invoked with frequency more than 100, no. of System

Calls with frequency more than 1000 which would help the

machine learning algorithms to identify the behaviour

patterns of benign and malicious applications more

accurately during experiments.

Performance Metrics

The performance of the machine learning classifier is measured in

terms of True Positive (TP), True Negative, False Positive and

False Negative, represented by confusion matrix . Table 1 shows

the Confusion Matrix used in the experiments. The True Positive

is no. of Android Applications correctly classified as Benign

Applications. True Negatives (TN) is the no. of Android

Applications correctly classified as Malicious Applications. False

Positives is the no. of Android Applications mistakenly classified

as Benign and False Negatives (FN) is the no. of Android

Applications mistakenly classified as Malicious Applications.
Table 1. Confusion Matrix

True Positive Rate (TPR) means the proportion of correctly

identified applications as Benign Applications. False Positive Rate

(FPR) represents the proportion of Malicious Applications

incorrectly identified as Benign. Accuracy is the proportion of

correctly identified applications both Benign and Malicious from

the total no. of applications. F1–score is also called F–measure

having the range from 0 to 1 where the best is 1 and the worst is 0.

A Receiver Operating Characteristic (ROC) curve is a graphical

plot in which X axis is True Positive Rate and Y axis is False

Positive Rate which is used for illustrating the performance of a

binary classifier. ROC curves allow us to evaluate and compare

the classification algorithms and help us to select the optimal

classifier. The area under the ROC curve known as AUC, judges

the performance of a binary classifier. The AUC=1 is considered

perfect prediction and below 0.6 is considered poor prediction.

The next section evaluates the different classifiers on the basis of

above parameters.

IV. RESULTS AND DISCUSSION

In this research work, the experiment with System Calls

Invoked features is performed with two datasets, Dataset 1

with 1060 Android Applications and Dataset 2 with 260

Android Applications. The Dataset1 has 527 Benign

Applications and 533 Malicious Applications. Dataset 2 has

82 Benign Applications and 178 Malicious Applications.

Both Datasets have 75 different System Calls Invoked by the

Android applications. These datasets are used for training

and testing classifiers such as RBF classifier, Kernel Logistic

Regression, SMO, KStar, Naïve Bayes, Simple Logistic,

Random Forest, and SVM. The experiment is executed with

10 fold cross validation techniques.

Table 2 shows the experiment results with malicious

applications detection with Dataset1 in which KStar and

Random Forest are classifiers with good performance as

compared to others. The Random Forest is the best

performing classifier with a maximum accuracy of 66% and

ROC of 0.7. The Random Forest also has minimum False

Positive Rate of 0.33. Although with the Dataset 1 the

maximum achieved accuracy is comparatively less as the

Dataset 1 needs to be refined further.

Table 2. Experiment Result of Different Classifiers Performance with

Dataset 1

Classifier

ACCU

RACY

TP

Rate

FP

Rate

Preci

sion

Reca

ll

F-

Meas

ure

ROC

Area

RBF

Classifier 62.67 0.627 0.369 0.718 0.627 0.585 0.651

Kernel

Logistic

Regression

L-0.01 61.9 0.619 0.376 0.716 0.619 0.573 0.676

SMO 61.6 0.616 0.379 0.756 0.616 0.558 0.619

KStar 64.5 0.645 0.353 0.675 0.645 0.63 0.662

Naïve Bayes 60.79 0.608 0.387 0.723 0.608 0.552 0.604

Simple

Logistic 61.3 0.613 0.383 0.737 0.613 0.556 0.613

Random

Forest 66 0.667 0.33 0.696 0.667 0.655 0.7

SVM 63.9 0.639 0.358 0.673 0.639 0.621 0.64

The Dataset 1 is further refined to form the Dataset 2. Table

3 represents the different classifiers performance after

training and testing them with Dataset 2. As it is clearly

visible from the experimental results the performance of each

classifier is improved significantly with Dataset 2. The

performance of Kernel Logistic regression, Simple Logistic

and Random Forest is better as compared to other classifiers.

The Random Forest is the best performing Classifier with

Accuracy of 85% and ROC of 0.922.

Table 3 Experiment Results of Different Classifiers performance with

Dataset 2

Confusion Matrix
Predicted Instances

Benign Malicious

Actual Instances
Benign TP FN

Malicious FP TN

Classifier

Accurac

y

TP

 Rate

FP

 Rate

Preci

sion Recall

F-

Measur

e

ROC

Area

RBF

Classifier 75.8 0.758 0.256 0.777 0.758 0.763 0.858

Kernel

Logistic

Regression

L-0.01 81.92 0.819 0.182 0.834 0.819 0.823 0.884

SMO 78.84 0.788 0.143 0.842 0.788 0.796 0.822

KStar 80.38 0.804 0.209 0.817 0.804 0.808 0.873

Naïve

Bayes 71.92 0.719 0.162 0.822 0.719 0.728 0.833

Simple

Logistic 83.84 0.858 0.118 0.876 0.858 0.861 0.926

Random

Forest 85 0.85 0.187 0.852 0.85 0.851 0.922

SVM 76.2 0.762 0.281 0.771 0.762 0.765 0.74

 International Journal of Computer Sciences and Engineering Vol.5(11), Nov 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 108

V. CONCLUSION

In Anomaly based intrusion detection system, the behaviour

of the malicious application is analyzed with machine

learning algorithms. System call is important dynamic

features for malicious application detection for anomaly

based intrusion detection system. The framework presented

is used System Call Invoked feature for malicious

applications detection and successful in achieving accuracy

of 85% and ROC of 0.922 for detection of malicious

application from 81 malware families with machine learning

algorithms. Random forest Machine Learning algorithms

found the promising algorithm for malicious application

detection with system call invoked feature. Although the

simple logistic algorithms is also found good algorithm for

malicious application detection. The accuracy can be further

improved by the combining the other features like permission

used, API call etc. with the analysis of system call.

REFERENCES

[1] Schmidt, Aubrey-Derrick, Hans-Gunther Schmidt, Jan Clausen,

Kamer A. Yuksel, Osman Kiraz, Ahmet Camtepe, and Sahin

Albayrak. "Enhancing security of linux-based android devices." In

Proceedings of 15th International Linux Kongress, pp. 1-16. 2008.

[2] Kolbitsch, Clemens, Paolo Milani Comparetti, Christopher

Kruegel, Engin Kirda, Xiao-yong Zhou, and XiaoFeng Wang.

"Effective and Efficient Malware Detection at the End Host." In

USENIX security symposium, pp. 351-366. 2009.

[3] Wang, Xinran, Yoon-Chan Jhi, Sencun Zhu, and Peng Liu.

"Detecting software theft via system call based birthmarks." In

Computer Security Applications Conference, 2009. ACSAC'09.

Annual, pp. 149-158. IEEE, 2009.

[4] Lanzi, Andrea, Davide Balzarotti, Christopher Kruegel, Mihai

Christodorescu, and Engin Kirda. "Accessminer: using system-

centric models for malware protection." In Proceedings of the 17th

ACM conference on Computer and communications security, pp.

399-412. ACM, 2010.

[5] Sanz, Borja, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero,

and Pablo Garcia Bringas. "On the automatic categorisation of

android applications." In Consumer Communications and

Networking Conference (CCNC), 2012 IEEE, pp. 149-153. IEEE,

2012.

[6] E.Tchakount, P.Dayang .”System calls analysis of malware on

android”. International Journal of Science and Technology. Vol. 2

issue 9,2013

[7] Sato, Ryo, Daiki Chiba, and Shigeki Goto. "Detecting Android

malware by analyzing manifest files." Proceedings of the Asia-

Pacific Advanced Network 36 (2013): 23-31.

[8] Huang, Chun-Ying, Yi-Ting Tsai, and Chung-Han Hsu.

"Performance evaluation on permission-based detection for

android malware." In Advances in Intelligent Systems and

Applications-Volume 2, pp. 111-120. Springer, Berlin, Heidelberg,

2013.

[9] Canfora, Gerardo, Francesco Mercaldo, and Corrado Aaron

Visaggio. "A classifier of malicious android applications." In

Availability, Reliability and Security (ARES), 2013 Eighth

International Conference on, pp. 607-614. IEEE, 2013.

[10] Liu, Xing, and Jiqiang Liu. "A two-layered permission-based

Android malware detection scheme." In Mobile cloud computing,

services, and engineering (mobilecloud), 2014 2nd ieee

international conference on, pp. 142-148. IEEE, 2014.

[11] Jeong, Youn-sik, Hwan-taek Lee, Seong-je Cho, Sangchul Han,

and Minkyu Park. "A kernel-based monitoring approach for

analyzing malicious behavior on android." In Proceedings of the

29th Annual ACM Symposium on Applied Computing, pp. 1737-

1738. ACM, 2014.

[12] Arp, Daniel, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon,

Konrad Rieck, and C. E. R. T. Siemens. "DREBIN: Effective and

Explainable Detection of Android Malware in Your Pocket." In

NDSS. 2014.

[13] Kang, Hyunjae, Jae-wook Jang, Aziz Mohaisen, and Huy Kang

Kim. " Comparative analysis of classification algorithm in EDM

for improving student performance." International Journal of

Distributed Sensor Networks (2015).

[14] S.Malik and K. Khatter. "AndroData: A Tool for Static & Dynamic

Feature Extraction of Android Apps." International Journal of

Applied Engineering Research,Vol. 10, issue 94, 2015.

[15] S.Malik and K. Khatter. "System Call Analysis of Android

Malware Families." Indian Journal of Science and

Technology,Vol. 9, issue 21 ,2016.

[16] B.R. Patel, "Comparative analysis of classification algorithm in

EDM for improving student performance", International Journal of

Computer Sciences and Engineering, Vol.5, Issue.10, pp.171-175,

2017.

Authors Profile

Ms. Sapna Malik, pursed Bachelor of
Engineering from M.D.University,Rohtak in
2004, Master of Technology from GGSIPU
University,Delhi in 2009 and Ph.D. from
Ansal University,Gurgaon. She is currently
working as Assistant Professor in Department
of Computer Science & Engineering
,MSIT,Delhi,India since 2006. She is life time
member of ISTE. She has published more
than 20 research papers in reputed international journals including
Thomson Reuters (ESCI & Scopus) and conferences including
IEEE and it’s also available online. Her main research work focuses
on Mobile Security, Cryptography Algorithms, Network Security,
Cloud Security and Privacy, Big Data Analytics, Data Mining, and
Computational Intelligence based education. She has 11 years of
teaching experience and 4 years of Research Experience.

