Scse International Journal of Computer Sciences and Engineering Open Access المجاز

Review Paper

Volume-5, Issue-9

E-ISSN: 2347-2693

A Study of Cloud Computing Based on Virtualization and Security Threats

Amanpreet Kaur¹*, Dr.Sawtantar Singh Khurmi²

^{1*}Dept. of CSE, DBU, Mandi Gobindgarh, India ²Dept. of CSE, DBU, Mandi Gobindgarh, India

**Corresponding Author: sawtantar@gmail.com*

Available online at: www.ijcseonline.org

Received: 22/Aug/2017, Revised: 08/Sep/2017, Accepted: 19/Sep/2017, Published: 30/Sep/2017

Abstract- Cloud computing is an emerging technology based on the network that provides access to the data from server. It Cloud computing is an emerging technology based on the network that provides access to the data from server. It illustrates an extremely scalable computing asset offered as an external service Paid by Internet method. In cloud computing, mainly we have focused on virtualization, energy efficiency and security. In this paper, we conducted a survey of cloud computing which is a framework that uses different services, IaaS, PaaS, SaaS and HaaS. A comparison for the same is also explained. The concept of virtualization is also discussed following Bare metal hypervisor, Hosted hypervisor and VMM (Virtual machine migration). Different security threats have been mentioned being considered for cloud services. For the calculation of energy consumption, cloud computing uses energy efficiency concept. Work done by various authors in cloud computing has been discussed with the research gap as well.

Keywords- Cloud computing, Virtualization, service model, Virtual machine migration, security threats and energy efficiency

I. CONTEXT

In the early days, mainframe computers were used having large sizewith limited resources like power, CPU and memory. Because of less availability of the resources, the users are also limited. The concept of cloud computing was used by mainframe computers initially at 1920s, where all the users usually accessed data stored on the server at any time anywhere. No hard drives or special system is required, only account of the user is basically required [1].

The paper is divided into seven sections. With the continuation of the context, the concept of cloud computing has been explained. Virtualization is explained with its types, namely, bare metal hypervisor, hosted hypervisor and VMM. The threats in cloud computing are drawn in tabular form in section 4. The concept of energy efficiency in cloud computing is explained in section 5. Various authors has done their work in this field, so a glance of existing technique is explained in section 6. According, the crux of the paper is defined in section 7 as conclusion.

II. CLOUD COMPUTING

Cloud computing is a distributed computing paradigm, in which the computing resources like virtualized physical machine that host applications, shared storage devices, backup server etc through internet. Cloud computing typically results in an increasing number of data centres, including power costs, cooling, and carbon peak power consumption.

Fig. 1.Cloud Computing Environment

The basic technology of cloud computing environment is virtualization. To establish a variety of strategies, such as virtual machine migration, virtual machine and server consolidation, energy-efficient computing is required [2].

Examples of cloud computing are, yahoo, Google, Amazon etc. A user only requires internet connection and an android phone to send the emails. All the emails managed by the cloud service providers usually stores in cloud. The cloud service models are listed below [3-6]:

Table 1 is defining the services offered by cloud computing, namely, SaaS, IaaS and PaaS. The description is based on the basis of users, availability of users, reason of use, service provider.

Table 1.Service model of cloud computing

Service	SAAS	PAAS	IAAS
Definition	It is known as	It is known as	It is known as
	Software as a	a Platform as	infrastructure
	service in	a service.	as a service.
	which third	This service	This is used
	party	provides a	to deliver
	provider	platform to	hardware
	makes the	allow	component
	applications	developers to	like storage
	to be	build	and server to
	available to	applications	users.
	the users over	and services	
	internet.	over the	
		internet.	
Users	Business user	Developer	System
			manager
Availability	Email, office	Services and	Virtual
of services	automation,	application	machines,
	website	test.	operating
	testing,		system,
	virtual		network,
	desktop		storage,
			backup
			services.
Reason of	For	Create an	G Provide
use	completing	application	platform for
	business task	for users	service and
			application
			test and
			deployment
			integration.
Service	Google apps,	Amazon,	Rackspace,
provider	saleforce.com	Microsoft	Amazon.

III. VIRTUALIZATION

Virtualization means to partition the computer resources into many different executable machines with the help of hardware and software. It allows a number of virtual machines to execute on a single machine. It allows the servers that used more power to create more servers with less powers and thus reducing the overall cost of the space. A virtual machine manager is used to monitor a program that enables multiple OS (operating system) that has been shared on a single host. Virtual machine or Hypervisor is of two types named as Bare Metal hypervisor and Hosted Hypervisor that are explained below [7].

Bare metal hypervisor

This hypervisor is installed on the hardware itself and controls the available resources. Hyper V and VMware are the example of bare metal hypervisor.

VMware ESX, Microsoft Hyper-V, Citrix XenServer

Hosted Hypervisor

This is installed on the operating system and OS has a control over it. VMware player, Virtual box and Xen are the example of Hosted hypervisor.

VMware Workstation, Microsoft Virtual PC, Sun VirtualBox, QEMU, KVM

Fig.4. Hosted hypervisor

Virtual machine Migration

Virtual machine migration is the process to transferring the different VMs with their jobs or tasks from one physical machine to another physical machine within same or

International Journal of Computer Sciences and Engineering

different server. Thus, after migration, the execution of jobs by different VMs does not get affected [8].

IV. SECURITY THREATS AND ATTACKS

There are some threats that considered for cloud service users are listed in table below:

Table 2.	Security	Threats	and	Attacks	for	cloud	service	users
			[9-	-11]				

Threats	Description
Responsibility Ambiguity	As the services to the users
	are provided through internet
	thus conceptual conflict may
	occur due to lack of
	responsibility among the
	cloud service users.
Lack of Governance	As we know that all the
	service models will perform
	different responsibilities thus
	the governance will mainly
	affected by the cloud service
	model.
Loss of trust	Due to the black box feature
	of the cloud service, it
	becomes difficult for a cloud
	service user to maintain his
	service provider trust level.
	This is due to the fact that the
	provider's security level is not
	in formalized manner.
Service provider lock in	This happed due to the lack of
	tool that has to convert the
	virtual machine to a standard
	format
Unsecure cloud service user	attack on cloud like phishing,
access	fraud are available. To
	amplify the impact of these
	attacks password are used
	usually.
Data loss and leakage	Encryption key loss will cause
	a serious problem to the users.

V. ENERGY EFFICIENCY IN CLOUD COMPUTING

To determine the amount of energy consumed by the data centres, mainly two parameters are used that are accepted internationally. These metrics are named as Power usages effectiveness and Data centre infrastructure efficiency. Both are defined below [12, 13]:

$$P_{e} = \frac{\text{Total available power}}{\text{Ports eqiped power}} \qquad (1)$$
$$D_{c} = \frac{\text{Ports equipment power}}{\text{Total available power}} \times 100 \qquad (2)$$

VI. RELATED WORK

This section explains the existing work in the field of cloud computing in the tabular form. The explanation is given for the work being proposed by the authors with the research gap.

Table 2. Comparison of existing work

Author	Proposed work	Research Gap
Abdul Razaque	Task Scheduling	High execution
[15]	based on the	time due to less
	carbon footprint in	flexibility and
	Cloud Computing	reliability.
Teena Mathew	Analysis of various	Computation
[16]	Task Scheduling	complexity
	Algorithms in	increases because
	Cloud Computing	every server was
	environment	treated
		individually.
Hamid Arabnejad	Low-time	There is no any
[17]	complexity	concept of the
	budget-deadline	dynamic
	constrained	concurrent DAG
	workflow	scheduling
	scheduling for	problem is
	heterogeneous	proposed so that
	resources	the complexity is
		not acceptable.
Jia Yu and	A Budget	To solve the QoS
Rajkumar Buyya	Constrained	constraints such as
[18]	Scheduling of	reliability and
	Workflow	security no
	Applications on	optimization has
	effectiveness Grids	been used.
	by Genetic	
0. 11 [00]	Algorithms	F 1 '
Qie He [20]	Hybridization of	For solving a
	particle swarm	constrained
	optimization with a	optimization
	reasibility-based	problems HPSO is
	rule for constrained	not appreciable so
	optimization	that the weakness
		of penalty function
		anhon comonto
Loomi Maana [21]	Coat Effective CA	There is a hig issue
Jasraj Meena [21]	for Workflow	of shutdown time
	Scheduling in	of VMs and due to
	Cloud in Deadling	the general
	Constraint	execution
	Constraint	workflow cost is
		affected Due to
		the absence of
		optimal schedule
		plan for a real
		cloud environment.

		the computational cost is more and there is a chance of improvisation in the optimal
Alexander A	Workflow	Eor providing
Visheratin [22]	scheduling	better solution in
	algorithms for	the starting point
	hard-deadline	heuristic algorithm
	constrained cloud	was absent.
	environments	
Anton Beloglazov	Energy-aware	The proposed
[23]	resource allocation	system consumed
	heuristics for	more energy and
	effecient	thus can not be
	management of	used on large scale
	data centers for	environment.
	Cloud Computing	Difficult to run on
		large-scale and at
		large-scale energy
		consumption is
		more. There is no
		any concept of the
		generic resource
		manager.
Weihong Chen	Efficient Task	The problem of
[24]	Scheduling for	proposed work is
	Budget	only applicable for
	Constrained	the homogeneous
	Parallel	cloud environment.
	Applications on	
	Heterogeneous	
	Cloud Computing	
	Systems	

VII. CONCLUSION

The main aim of cloud computing is to provide a flexible and efficient platform to the clients to share their files of data in an efficient way. Different users share the available resources in an effective way. In this paper, we have discussed the architecture and the various service provider of cloud computing. The concept of virtualization along with the challenges issues of cloud computing has been discussed in detail. Instead of the several restrictions and the need of better ways to process, cloud computing is becoming a very attractive paradigm, especially for large businesses.

REFERENCES

- Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., & Epema, D. (2009, October). A performance analysis of EC2 cloud computing services for scientific computing. In International Conference on Cloud Computing (pp. 115-131). Springer, Berlin, Heidelberg.
- [2]. Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., ... & Zaharia, M. (2010). A view of cloud computing. Communications of the ACM, 53(4), 50-58.

© 2017, IJCSE All Rights Reserved

Vol.5(9), Sep 2017, E-ISSN: 2347-2693

- [3]. Qian, L., Luo, Z., Du, Y., & Guo, L. (2009). *Cloud computing: An overview*. Cloud computing, 626-631.
- [4]. Subashini, S., & Kavitha, V. (2011). A survey on security issues in service delivery models of cloud computing. Journal of network and computer applications, 34(1), 1-11.
- [5]. Alshammari, A., Alhaidari, S., Alharbi, A., & Zohdy, M. (2017, June). Security Threats and Challenges in Cloud Computing. In Cyber Security and Cloud Computing (CSCloud), 2017 IEEE 4th International Conference on (pp. 46-51). IEEE.
- [6]. Wei, Y., & Blake, M. B. (2010). Service-oriented computing and cloud computing: Challenges and opportunities. IEEE Internet Computing, 14(6), 72-75.
- [7]. Tsai, W. T., Sun, X., & Balasooriya, J. (2010, April). Serviceoriented cloud computing architecture. In Information Technology: New Generations (ITNG), 2010 Seventh International Conference on (pp. 684-689). IEEE
- [8]. Lombardi, F., & Di Pietro, R. (2011). Secure virtualization for cloud computing. Journal of Network and Computer Applications, 34(4), 1113-1122.
- [9]. Jain, R., & Paul, S. (2013). Network virtualization and software defined networking for cloud computing: a survey. IEEE Communications Magazine, 51(11), 24-31.
- [10]. Shaikh, F. B., & Haider, S. (2011, December). Security threats in cloud computing. In Internet technology and secured transactions (ICITST), 2011 international conference for (pp. 214-219). IEEE.
- [11]. Kajal, N., & Ikram, N. (2015, May). Security threats in cloud computing. In Computing, Communication & Automation (ICCCA), 2015 International Conference on (pp. 691-694). IEEE.
- [12]. Jain, R., & Paul, S. (2013). Network virtualization and software defined networking for cloud computing: a survey. IEEE Communications Magazine, 51(11), 24-31..
- [13]. Shivlal Mewada, Arti Sharivastava, Pradeep Sharma, N Purohit and S.S. Gautam, "An Performance Analysis of Encryption Algorithm in Cloud Computing", International Journal of Computer Sciences and Engineering, Vol.3, Issue.2, pp.83-89, 2015.
- [14]. Cao, Y., Song, F., Liu, Q., Huang, M., Wang, H., & You, I. (2017). A LDDoS-aware Energy-efficient Multipathing Scheme for Mobile Cloud Computing Systems. IEEE Access.
- [15]. Razaque, A., Vennapusa, N. R., Soni, N., & Janapati, G. S. (2016, April). *Task scheduling in cloud computing. In Long Island Systems*, Applications and Technology Conference (LISAT), 2016 IEEE (pp. 1-5). IEEE.
- [16]. Mathew, T., Sekaran, K. C., & Jose, J. (2014, September). Study and analysis of various task scheduling algorithms in the cloud computing environment. In Advances in Computing, Communications and Informatics (ICACCI, 2014 International Conference on (pp. 658-664). IEEE.
- [17]. Arabnejad, H., Barbosa, J. G., & Prodan, R. (2016). Low-time complexity budget-deadline constrained workflow scheduling on heterogeneous resources. Future Generation Computer Systems, 55, 29-40.
- [18]. Yu, J., & Buyya, R. (2006, June). A budget constrained scheduling of workflow applications on utility grids using genetic algorithms. In Workflows in Support of Large-Scale Science, 2006. WORKS'06. Workshop on (pp. 1-10). IEEE.
- [19]. Ting, T. O., Rao, M. V. C., & Loo, C. K. (2006). A novel approach for unit commitment problem via an effective hybrid particle swarm optimization. IEEE Transactions on Power Systems, 21(1), 411-418.

International Journal of Computer Sciences and Engineering

- [20]. He, Q., & Wang, L. (2007). A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Applied mathematics and computation, 186(2), 1407-1422.
- [21]. Meena, J., Kumar, M., & Vardhan, M. (2016). Cost Effective Genetic Algorithm for Workflow Scheduling in Cloud Under Deadline Constraint. IEEE Access, 4, 5065-5082.
- [22]. Visheratin, A. A., Melnik, M., & Nasonov, D. (2016). Workflow scheduling algorithms for hard-deadline constrained cloud environments. Procedia Computer Science, 80, 2098-2106.
- [23]. Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future generation computer systems, 28(5), 755-768.
- [24]. Chen, W., Xie, G., Li, R., Bai, Y., Fan, C., & Li, K. (2017). Efficient task scheduling for budget constrained parallel applications on heterogeneous cloud computing systems. Future Generation Computer Systems, 74, 1-11.