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Abstract— Computationally speaking, there are a few ways to tackle problems of rule-based permutations and iterations. This 

paper seeks to explore two algorithms and their possible application in the field of bioinformatics and biochemical engineering. 

We believe that accurately predicting RNA secondary structure formations can only be achieved by extensive analysis of 

specific RNA folds that have already been documented to occur in nature and others like them that have the same Amino acid 

sequence structure and similar minimal free energies. This paper focuses on algorithms to extract every single RNA sequence 

that fits a given amino acid sequence. We concern ourselves mainly with the computation intensive issue of the outputting 

various permutations of given protein sequences and their respective minimal free energies. 

 Results: We present a way to computationally improve analysis of secondary structure minimization. Using C++, Sequence 

permutations of amino acids are extracted to be analyzed in terms of minimum free energies. ViennaRNA-2.1.6 is used to 

facilitate our computation of the RNA fold and the corresponding minimal free energy. The Odometer Weighted Counter 

(OWC) approach comes in second with its critical length of six amino acids and a computations time of 68 seconds. The 

Vector Permutation Mapping (VPM) approach comes in as the more desirable approach with a critical length of 10, and a 

computation time of 26896 seconds. All tests were made on critical path length of sequences. 

An output of importance to our paper is the minimal free energy of each RNA sequence that the ViennaRNA RNAfold 

function processes. Analysis of the resulting minimal free energies in comparison to already documented RNA strings in nature 

is the key to more effective secondary structure prediction.  
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I. INTRODUCTION  

Deoxyribonucleic acid (DNA) is a molecule that holds all 

genetic instructions that are necessary for an organism's 

specific growth and development. The genetic information 

found in DNA is what is responsible for how organisms look, 

function and propagate.  It is usually found in nature as 

double strands winding in the shape of a double helix. DNA is 

perhaps the most important molecular structure in cells 

because it holds all information about the organism. In protein 

synthesis it is too risky to have DNA travel outside to active 

sites to instruct on how proteins should be synthesized. 

Damage to DNA will cause issues in later generations and 

avoiding that risk is what brings us to RNA [1]. RNA stands 

for Ribonucleic acid and is a major contributing agent in 

coding, decoding and translation of genes. It is largely 

responsible for decoding and transporting genetic information 

to facilitate the synthesis of proteins at targeted areas [1].  

RNA is made up of nucleotides that are assembled in a form a 

chain that we will henceforth be referring to as its sequence. 

Below, we see a sample RNA sequence from [2] which folds 

into the graphical representation seen in Fig 1.RNA is usually 

found in nature to be folded onto itself instead of bonding 

with other strands like DNA does. Understanding and 

accurately predicting how RNA folds on to itself (secondary 

structure) is the key to major breakthroughs in medicine. 

Many viruses encode their genetic information in RNA 

structures therefore unlocking the secrets behind RNA folding 

and protein synthesis will mean a way to better understand 

viral micro-organisms and how to manipulate and treat them 

[3,4]. Naturally occurring RNA folds are not easily predicted 

but there is a method that is used to measure the possibility 

[5]. 
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Fig. 1. Sample RNA secondary structure folded from 

GCUCAGUAUGAGAAGAACCGC [2] 

The likelihood of a particular RNA occurring in nature is 

termed its minimal free energy. It makes it possible to 

quantify and therefore measure how stable a particular RNA 

secondary structure is [6]. That in itself does not guarantee 

that said sequence will occur in nature. Ideally, being able to 

accurately predict protein formation and RNA folding will 

help scientists to make big advancements in biochemical 

engineering. Scientist have been studying DNA and RNA 

sequences for years, trying to find the next big breakthrough 

or a way to fully understand how they occur in the hopes of 

one day being able to predict with a higher level of accuracy, 

their formation and occurrence in nature even hopefully 

manipulate it. The key to unlocking these secrets of nature we 

believe lies in the minimal free energy of the RNA sequence 

and its fold [7]. Every RNA sequence can be represented in 

terms of amino acids and this means, with the number of 

possible codon replacements for each amino acid, an amino 

acid sequence can be rewritten in many different ways that 

still fall under the amino sequence rule.   

    It is our belief that can only be achieved by extensive 

analysis of specific RNA folds that have already been 

documented to occur in nature and others like them that have 

the same Amino acid sequence structure and similar minimal 

free energies.   

Table 1 Odometer Weighted Counter Pseudo Code 

  
Predicting a secondary structure can also be made more 

accurate by comparing structures common to multiple 

sequences. The accuracy of structure prediction is 

significantly improved by predicting a secondary structure 

common to multiple sequences. 

 We propose that secondary structure prediction accuracy 

can be improved by amino acid permutation analysis. Given 

an amino acid sequence (preferably of a RNA sequence with 

a documented or confirmed secondary structure), analysis of 

its secondary structure in comparison to other similar 

structures will uncover patterns. Even more accurate, will be 

structures that fall under same categorized amino acids and 

have similar MFE. Either by exclusion or inclusion, the study 

of similar sequences will help scientists better understand and 

predict folding more accurately. This theory may further be 

improved by the application of folding kinetics. In this paper, 

we focus on determination by free energy minimization. This 

cannot be done without making available every RNA 

sequence the fits the amino acid rule. This paper tackles the 

computation intensive aspect of extracting the many sequence 

possibilities. [7]  

 Section I contains the introduction of biological 

terminology and background , Section II contain the related 

work of Jun et al. and Hajiaghayi et al, Section III contains 

two algorithms developed to solve our permutation problem, 

Section IV contains the results and discussion of experiments 

carried out on each of the algorithms and Section V concludes 

research work with future directions.  

 

II. RELATED WORK  

Jun et al. in their attempt to develop a method to adjust the 

expression level of certain proteins without making a change 

to the amino acid sequence, made a few strides in the 

computation we seek to improve [8]. Theirs is somewhat 

limiting in the sense that to optimize the algorithm for the 

particular task at hand, they removed certain codons they 

deemed less preferred or not often used. After this, every 

possible combination of the sequence of amino acids of a 

targeted protein is calculated. We do not seek to optimize our 

algorithm in the same way because its our belief that to 

accurately predict protein synthesis and offer a truly complete 

library for analysis, every codon in the amino acid sequence 

(more frequently and less frequently used alike) has to be 

present. With such computationally intense tasks like this 

every resource counts. A lot would be dependent on the kind 

of CPU and accompanying memory that is present [9]. 

Commonly used free energy minimization tools for predicting 

RNA folds are based on dynamic programming algorithms. 

These algorithms are basically able to analyze all possible 

secondary structures for a given sequence without actually 

generating structures [10, 11]. 

In [11], M. Hajiaghyi recognized the need for larger datasets 

in the pursuit of more reliable measures of RNA structure 

prediction in algorithms. Caution is required when using 
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average accuracies on certain classes due to the limited size of 

available datasets. Datasets like S-Full with a compilation of 

3245 RNA sequences, MT  with S Ribosomal RNA, Group I 

intron, Group II intron, Ribonuclease P RNA, Signal 

Recognition RNA and Transfer RNA and lastly, MA a subset 

of the S-Full that are in the RNA classes included in MT. In 

our experiments, we were able to generate databases of over 

32GB worth of RNA sequences in raw data. The equivalent 

of millions of RNA strings [11]. 

III. METHODOLOGY 

Our aim is to return every possible permutation that fits the 

rule of a given amino acid sequence. The goal is to find the 

RNA strings that are most likely to occur in nature. This is 

achieved by running every output that matches the amino acid 

sequence through Vienna’s RNAfold function [12] to 

determine the minimum free energy of each sequence. 

 

Odometer Weighted Counter 

The idea behind the approach is to start from the smallest 

weighted unit (the rightmost unit) and work our way 

gradually to the leftmost unit after exhausting every possible 

permutation to the right. Starting from the leftmost unit, we 

apply weights in descending order. Just like how centimeters 

run into meters which then run into kilometers and so on. The 

idea behind it is such that the smaller the weight of the units 

the more flags for execution they get and they end up having 

to make more turns than those with higher weights.  In figure 

3, we can tell how the lower-weighted units or unit wheels 

have to be exhausted before their immediate left unit can 

make a step. At any point in time, the visible area, the area 

easily seen refers to the current value as far as the sequence is 

concerned. 

 

Fig. 2.  Implementation of the Odometer concept 

 

A recursive function is a function that calls itself in its 

implementation. In most cases it’s a function that calls itself 

however many times needed to complete a set task. Recursive 

calls usually require a base condition, an exit if you may, so 

as not to cause a crush or go on endlessly. In this algorithm 

we use two partially recursive calls. They are so called 

because they are not like your usual recursive function. 

Instead of repetitively calling themselves over and over, they 

occasionally (depending on what conditions are met) call each 

other [13]. These two functions, leftCall and rightCall work 

hand in hand to act as one large recursive call. On one hand 

the rightCall function takes in 4 arguments which include a 

pointer to an array of objects, pointer to a specific object of a 

class, the size input and a pointer to the counter for current 

object flagged active.  

 

A typical call of rightCall would result in a few checks to 

seek a go ahead for execution after which all temp values of 

each amino acid object in the array will be printed. In the 

event that all codons of the particular object are exhausted 

leftCall will be called. The function leftCall on the other hand 

after making its increment, flags the last object in the array for 

execution unless its codons has been exhausted in which case 

it calls itself on the immediate left object. 

Fig. 3.  Diagram showing program workflow 
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The task at hand is computationally complex and resource 

consuming. There are concerns of various complications and 

limitations (relative to the type of hardware present in the 

system) when it comes to memory usage due to the large 

number of function calls associated with long input sequences 

or even short sequences that contain a high amino acids with 

the max number of codons. 

 

Using this approach we placed the amino acid classes in an 

object array in the order of the sequence rule. We load the 

array with class objects much like how the wheels are loaded 

onto the beam in fig 3. Each amino acid object contains all the 

necessary information about itself that help in tracking and 

querying. Each object contains: name of said amino acid, the 

number of codons it houses and each codon name. 

 Applying that to the odometer concept, we place the 

array of codons of the respective amino acids on the unit 

spaces allocated to each amino acid.  The idea is to make each 

unit moves one step only after the object at its immediate 

right has exhausted every codon it contains (exhausted here 

mean it has been displayed). This approach ensures that we 

find the permutations in an organized and orderly manner and 

when the leftmost unit has exhausted all its codons, the 

program terminates.  

Not all amino acids have the same number of codons 

however they all range from one to six codons per amino acid 

so number of steps or rotations may vary. So the number of 

rotations vary relative to the number of codons of the current 

unit (amino acid) and number of cycles or revolutions depend 

on the number of units to the left of the current unit. The 

equation below sums up the expression and definition of 

number of revolutions (ΔR) required at any index on the 

amino object array to reach the terminal state of the program. 

   

                                                                                              

 

By definition, the number of revolutions is the product of the 

number of codons of every amino acid with a higher weight 

than the current unit. This is represented by ILC. The function 

ILC like factorial also requires a base case at index 0. 

 

                                                                         

 

                                                                                            
  

 

Vector Permutation Mapping 

This algorithm is based on a depth weighted recursion system. 

A typical permutation problem like this is tackled by C++ by 

exhaustively searching through the depth of the vector 

starting from the leftmost element in the vector. Given a 

sample vector {A, B, C], weights are allocated to each vector 

element according to their frequency. If A's weight is 3, it 

implies that it appears three times in the sequence, Applying 

that, the C++11 built in algorithm maps and produces all 

possibly permutation of a specified rule, in this case an amino 

acid sequence 

 
Table 2. Vector Weighted Permutation Pseudo Code 

Vector Weighted Permutation Pseudo Code 

Create a map library for amino acids and respective 

codons; 

For(outputString: translate(input) mapping) 

{ 

Temp=”./RNAfold” + outputString; 

System(temp); 

} 

End of program. 

 

 Underneath, the vector permutation takes an amino acid 

vector and in the same concept of applying weights, the 

different codons are applied to each and then the mapping 

takes care of the rest. 

 Due to the nature of the algorithm, every possible 

scenario has to be considered, anticipated and coded.  It is 

important to note that the function-call loop can only be 

terminated by the leftCall function. The algorithm is such that 

only two conditions have to be fulfilled to terminate, first that 

the amino object flagged as 'current' is the first in the array 

and second that it exhausted its codons. 

By way of Optimization, a couple of major modifications 

were made to improve the overall efficiency of the program. 

In preliminary tests, all functions were making copies of and 

referring to the copies of amino acids. This caused problems 

with a build-up of large amounts of variables in the memory 

and an inefficient way of tracking program progress. The use 

of pointers later proved to be invaluable because changes 

were made directly to the original copies. 

The use of a 2-dimensional array to store the amino acid 

library and populate the requested string proved to be very 

limiting because if led to the use of multiple depth nested 

loops that created unnecessary overheads. This led to the 

necessity to use another data structure in its place. Classes and 

objects turned out to be the solution since a class hold 

different types of data in one structural container. 

 

IV. RESULTS AND DISCUSSION 

Experimentation and testing involved the use of what we 

termed critical lengths of Amino acid sequences. This means 

that only amino acids with the maximum number of six 

codons were used in our test amino acid sequences. This way 

test results are more standard and prudent. 

It is important to note however that a sample critical length 

string “RLS” will output 216 different sequences which is 
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equivalent the number of output permutations of amino string 

“MIFAIWI” or longer if we keep adding amino acids with 

only one codon. It’s a form of compressed standard of amino 

acid expression. It therefore performed exceptionally well in 

comparison to Vector Permutation Mapping (VPM) and the 

original C++ implementation of the Odometer Weighted 

counter (OWC). All tests were made on critical length 

sequences.   

All experiments were made on an Intel Core i7-

6700CPU@3.4GHz x 8 processor, running Ubuntu 15.10(64-

bit) with 32GB RAM. 

 Overall, it is quite visible that the VWP algorithm is the 

superior algorithm in this comparison. In terms of speed and 

computation power, it comes in ahead of the OWC algorithm 

[13] 

 
Table 3. Odometer Weighted Counter Vector and Permutation Mapping 

Comparison 

 

Storage of resulting information was an issue that we still 

struggle to improve on daily. Resulting information comes in 

three main forms, the RNA sequence, the minimal free energy 

of respective string and the graphical representation of the 

secondary structure of the fold. Even though the graphical 

fold structure was not our priority, we still sought to save it 

for review. After various tests, first with .txt file extension 

and then with .csv, it was determined that the sheer size of 

outputs required large amounts of storage. Storage of the 

graphical representation was halted to make way for more 

sequences to be stored. With the switch from .txt to database 

storage and the storage of only critical information, the 

storage issue was overcome. 

 

V. CONCLUSION  

Using CPU and available memory resources alone in 

computing rule-based permutation is difficult and very 

resource consuming. The algorithms themselves have a few 

limitations that cause segmentation faults and core dumps.  

We have succeeded in producing the various permutation 

of amino acids in the form of RNA sequences and their 

corresponding minimal free energies. A quick query of the 

database would show the lowest of the minimum free 

energies and also that of the base RNA sequence. Analysis of 

these similar RNA chains even those that have lower 

minimum free energies than the documented natural 

occurring RNA chains will help make secondary structure 

prediction more accurate. 

The amount of processing power required for 3D rendering 

of new games and this has led to the production of very 

powerful GPUs with high computational potential. Until 

recently the computation potential outside the normal purpose 

of these GPUs has not been tapped.  

We plan to use OpenCL in future computations to calculate 

permutation iterations on Graphic Processing units (GPUs) 

and to eventually introduce FPGA’s to the computation. At 

the time of writing this paper, the OpenCL implementation of 

the OWC algorithm was under test on AMD GPUs. 

OpenCL stands for Open computing language and as the 

name implies, it’s a cross-platform, royalty-free programming 

language standard. It is a programming language that runs on 

CPU’s, GPUs, FPGA’s and other like processors [14,15] 

Field Programmable Gate Arrays are able to be programmed 

to match optimal schematics for a specific computations. It is 

our belief that by using FPGA boards we can cut out 

unwanted pathways and optimize the algorithm and its 

implementation in a more targeted approach 
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