

 © 2017, IJCSE All Rights Reserved 10

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-5, Issue-10 E-ISSN: 2347-2693

Minimum Free Energy-Based Amino Acid Sequence Permutation

From Amino Acid

E. Lloyd-Yemoh
1
*, H.B. Shi

2

1*

 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China

2
 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China

*Corresponding Author: elias_lloyd@live.com, Tel.: +8615651725575

Available online at: www.ijcseonline.org

Received: 17/Sep/2017, Revised: 26/Sep/2017, Accepted: 16/Oct/2017, Published: 30/Oct/2017

Abstract— Computationally speaking, there are a few ways to tackle problems of rule-based permutations and iterations. This

paper seeks to explore two algorithms and their possible application in the field of bioinformatics and biochemical engineering.

We believe that accurately predicting RNA secondary structure formations can only be achieved by extensive analysis of

specific RNA folds that have already been documented to occur in nature and others like them that have the same Amino acid

sequence structure and similar minimal free energies. This paper focuses on algorithms to extract every single RNA sequence

that fits a given amino acid sequence. We concern ourselves mainly with the computation intensive issue of the outputting

various permutations of given protein sequences and their respective minimal free energies.

 Results: We present a way to computationally improve analysis of secondary structure minimization. Using C++, Sequence

permutations of amino acids are extracted to be analyzed in terms of minimum free energies. ViennaRNA-2.1.6 is used to

facilitate our computation of the RNA fold and the corresponding minimal free energy. The Odometer Weighted Counter

(OWC) approach comes in second with its critical length of six amino acids and a computations time of 68 seconds. The

Vector Permutation Mapping (VPM) approach comes in as the more desirable approach with a critical length of 10, and a

computation time of 26896 seconds. All tests were made on critical path length of sequences.

An output of importance to our paper is the minimal free energy of each RNA sequence that the ViennaRNA RNAfold

function processes. Analysis of the resulting minimal free energies in comparison to already documented RNA strings in nature

is the key to more effective secondary structure prediction.

Keywords—RNA, minimal free energy, amino acid, folding, ViennaRNA.

I. INTRODUCTION

Deoxyribonucleic acid (DNA) is a molecule that holds all

genetic instructions that are necessary for an organism's

specific growth and development. The genetic information

found in DNA is what is responsible for how organisms look,

function and propagate. It is usually found in nature as

double strands winding in the shape of a double helix. DNA is

perhaps the most important molecular structure in cells

because it holds all information about the organism. In protein

synthesis it is too risky to have DNA travel outside to active

sites to instruct on how proteins should be synthesized.

Damage to DNA will cause issues in later generations and

avoiding that risk is what brings us to RNA [1]. RNA stands

for Ribonucleic acid and is a major contributing agent in

coding, decoding and translation of genes. It is largely

responsible for decoding and transporting genetic information

to facilitate the synthesis of proteins at targeted areas [1].

RNA is made up of nucleotides that are assembled in a form a

chain that we will henceforth be referring to as its sequence.

Below, we see a sample RNA sequence from [2] which folds

into the graphical representation seen in Fig 1.RNA is usually

found in nature to be folded onto itself instead of bonding

with other strands like DNA does. Understanding and

accurately predicting how RNA folds on to itself (secondary

structure) is the key to major breakthroughs in medicine.

Many viruses encode their genetic information in RNA

structures therefore unlocking the secrets behind RNA folding

and protein synthesis will mean a way to better understand

viral micro-organisms and how to manipulate and treat them

[3,4]. Naturally occurring RNA folds are not easily predicted

but there is a method that is used to measure the possibility

[5].

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 11

Fig. 1. Sample RNA secondary structure folded from

GCUCAGUAUGAGAAGAACCGC [2]

The likelihood of a particular RNA occurring in nature is

termed its minimal free energy. It makes it possible to

quantify and therefore measure how stable a particular RNA

secondary structure is [6]. That in itself does not guarantee

that said sequence will occur in nature. Ideally, being able to

accurately predict protein formation and RNA folding will

help scientists to make big advancements in biochemical

engineering. Scientist have been studying DNA and RNA

sequences for years, trying to find the next big breakthrough

or a way to fully understand how they occur in the hopes of

one day being able to predict with a higher level of accuracy,

their formation and occurrence in nature even hopefully

manipulate it. The key to unlocking these secrets of nature we

believe lies in the minimal free energy of the RNA sequence

and its fold [7]. Every RNA sequence can be represented in

terms of amino acids and this means, with the number of

possible codon replacements for each amino acid, an amino

acid sequence can be rewritten in many different ways that

still fall under the amino sequence rule.

 It is our belief that can only be achieved by extensive

analysis of specific RNA folds that have already been

documented to occur in nature and others like them that have

the same Amino acid sequence structure and similar minimal

free energies.

Table 1 Odometer Weighted Counter Pseudo Code

Predicting a secondary structure can also be made more

accurate by comparing structures common to multiple

sequences. The accuracy of structure prediction is

significantly improved by predicting a secondary structure

common to multiple sequences.

 We propose that secondary structure prediction accuracy

can be improved by amino acid permutation analysis. Given

an amino acid sequence (preferably of a RNA sequence with

a documented or confirmed secondary structure), analysis of

its secondary structure in comparison to other similar

structures will uncover patterns. Even more accurate, will be

structures that fall under same categorized amino acids and

have similar MFE. Either by exclusion or inclusion, the study

of similar sequences will help scientists better understand and

predict folding more accurately. This theory may further be

improved by the application of folding kinetics. In this paper,

we focus on determination by free energy minimization. This

cannot be done without making available every RNA

sequence the fits the amino acid rule. This paper tackles the

computation intensive aspect of extracting the many sequence

possibilities. [7]

 Section I contains the introduction of biological

terminology and background , Section II contain the related

work of Jun et al. and Hajiaghayi et al, Section III contains

two algorithms developed to solve our permutation problem,

Section IV contains the results and discussion of experiments

carried out on each of the algorithms and Section V concludes

research work with future directions.

II. RELATED WORK

Jun et al. in their attempt to develop a method to adjust the

expression level of certain proteins without making a change

to the amino acid sequence, made a few strides in the

computation we seek to improve [8]. Theirs is somewhat

limiting in the sense that to optimize the algorithm for the

particular task at hand, they removed certain codons they

deemed less preferred or not often used. After this, every

possible combination of the sequence of amino acids of a

targeted protein is calculated. We do not seek to optimize our

algorithm in the same way because its our belief that to

accurately predict protein synthesis and offer a truly complete

library for analysis, every codon in the amino acid sequence

(more frequently and less frequently used alike) has to be

present. With such computationally intense tasks like this

every resource counts. A lot would be dependent on the kind

of CPU and accompanying memory that is present [9].

Commonly used free energy minimization tools for predicting

RNA folds are based on dynamic programming algorithms.

These algorithms are basically able to analyze all possible

secondary structures for a given sequence without actually

generating structures [10, 11].

In [11], M. Hajiaghyi recognized the need for larger datasets

in the pursuit of more reliable measures of RNA structure

prediction in algorithms. Caution is required when using

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 12

average accuracies on certain classes due to the limited size of

available datasets. Datasets like S-Full with a compilation of

3245 RNA sequences, MT with S Ribosomal RNA, Group I

intron, Group II intron, Ribonuclease P RNA, Signal

Recognition RNA and Transfer RNA and lastly, MA a subset

of the S-Full that are in the RNA classes included in MT. In

our experiments, we were able to generate databases of over

32GB worth of RNA sequences in raw data. The equivalent

of millions of RNA strings [11].

III. METHODOLOGY

Our aim is to return every possible permutation that fits the

rule of a given amino acid sequence. The goal is to find the

RNA strings that are most likely to occur in nature. This is

achieved by running every output that matches the amino acid

sequence through Vienna’s RNAfold function [12] to

determine the minimum free energy of each sequence.

Odometer Weighted Counter

The idea behind the approach is to start from the smallest

weighted unit (the rightmost unit) and work our way

gradually to the leftmost unit after exhausting every possible

permutation to the right. Starting from the leftmost unit, we

apply weights in descending order. Just like how centimeters

run into meters which then run into kilometers and so on. The

idea behind it is such that the smaller the weight of the units

the more flags for execution they get and they end up having

to make more turns than those with higher weights. In figure

3, we can tell how the lower-weighted units or unit wheels

have to be exhausted before their immediate left unit can

make a step. At any point in time, the visible area, the area

easily seen refers to the current value as far as the sequence is

concerned.

Fig. 2. Implementation of the Odometer concept

A recursive function is a function that calls itself in its

implementation. In most cases it’s a function that calls itself

however many times needed to complete a set task. Recursive

calls usually require a base condition, an exit if you may, so

as not to cause a crush or go on endlessly. In this algorithm

we use two partially recursive calls. They are so called

because they are not like your usual recursive function.

Instead of repetitively calling themselves over and over, they

occasionally (depending on what conditions are met) call each

other [13]. These two functions, leftCall and rightCall work

hand in hand to act as one large recursive call. On one hand

the rightCall function takes in 4 arguments which include a

pointer to an array of objects, pointer to a specific object of a

class, the size input and a pointer to the counter for current

object flagged active.

A typical call of rightCall would result in a few checks to

seek a go ahead for execution after which all temp values of

each amino acid object in the array will be printed. In the

event that all codons of the particular object are exhausted

leftCall will be called. The function leftCall on the other hand

after making its increment, flags the last object in the array for

execution unless its codons has been exhausted in which case

it calls itself on the immediate left object.

Fig. 3. Diagram showing program workflow

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 13

The task at hand is computationally complex and resource

consuming. There are concerns of various complications and

limitations (relative to the type of hardware present in the

system) when it comes to memory usage due to the large

number of function calls associated with long input sequences

or even short sequences that contain a high amino acids with

the max number of codons.

Using this approach we placed the amino acid classes in an

object array in the order of the sequence rule. We load the

array with class objects much like how the wheels are loaded

onto the beam in fig 3. Each amino acid object contains all the

necessary information about itself that help in tracking and

querying. Each object contains: name of said amino acid, the

number of codons it houses and each codon name.

 Applying that to the odometer concept, we place the

array of codons of the respective amino acids on the unit

spaces allocated to each amino acid. The idea is to make each

unit moves one step only after the object at its immediate

right has exhausted every codon it contains (exhausted here

mean it has been displayed). This approach ensures that we

find the permutations in an organized and orderly manner and

when the leftmost unit has exhausted all its codons, the

program terminates.

Not all amino acids have the same number of codons

however they all range from one to six codons per amino acid

so number of steps or rotations may vary. So the number of

rotations vary relative to the number of codons of the current

unit (amino acid) and number of cycles or revolutions depend

on the number of units to the left of the current unit. The

equation below sums up the expression and definition of

number of revolutions (ΔR) required at any index on the

amino object array to reach the terminal state of the program.

By definition, the number of revolutions is the product of the

number of codons of every amino acid with a higher weight

than the current unit. This is represented by ILC. The function

ILC like factorial also requires a base case at index 0.

Vector Permutation Mapping

This algorithm is based on a depth weighted recursion system.

A typical permutation problem like this is tackled by C++ by

exhaustively searching through the depth of the vector

starting from the leftmost element in the vector. Given a

sample vector {A, B, C], weights are allocated to each vector

element according to their frequency. If A's weight is 3, it

implies that it appears three times in the sequence, Applying

that, the C++11 built in algorithm maps and produces all

possibly permutation of a specified rule, in this case an amino

acid sequence

Table 2. Vector Weighted Permutation Pseudo Code

Vector Weighted Permutation Pseudo Code

Create a map library for amino acids and respective

codons;

For(outputString: translate(input) mapping)

{

Temp=”./RNAfold” + outputString;

System(temp);

}

End of program.

 Underneath, the vector permutation takes an amino acid

vector and in the same concept of applying weights, the

different codons are applied to each and then the mapping

takes care of the rest.

 Due to the nature of the algorithm, every possible

scenario has to be considered, anticipated and coded. It is

important to note that the function-call loop can only be

terminated by the leftCall function. The algorithm is such that

only two conditions have to be fulfilled to terminate, first that

the amino object flagged as 'current' is the first in the array

and second that it exhausted its codons.

By way of Optimization, a couple of major modifications

were made to improve the overall efficiency of the program.

In preliminary tests, all functions were making copies of and

referring to the copies of amino acids. This caused problems

with a build-up of large amounts of variables in the memory

and an inefficient way of tracking program progress. The use

of pointers later proved to be invaluable because changes

were made directly to the original copies.

The use of a 2-dimensional array to store the amino acid

library and populate the requested string proved to be very

limiting because if led to the use of multiple depth nested

loops that created unnecessary overheads. This led to the

necessity to use another data structure in its place. Classes and

objects turned out to be the solution since a class hold

different types of data in one structural container.

IV. RESULTS AND DISCUSSION

Experimentation and testing involved the use of what we

termed critical lengths of Amino acid sequences. This means

that only amino acids with the maximum number of six

codons were used in our test amino acid sequences. This way

test results are more standard and prudent.

It is important to note however that a sample critical length

string “RLS” will output 216 different sequences which is

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 14

equivalent the number of output permutations of amino string

“MIFAIWI” or longer if we keep adding amino acids with

only one codon. It’s a form of compressed standard of amino

acid expression. It therefore performed exceptionally well in

comparison to Vector Permutation Mapping (VPM) and the

original C++ implementation of the Odometer Weighted

counter (OWC). All tests were made on critical length

sequences.

All experiments were made on an Intel Core i7-

6700CPU@3.4GHz x 8 processor, running Ubuntu 15.10(64-

bit) with 32GB RAM.

 Overall, it is quite visible that the VWP algorithm is the

superior algorithm in this comparison. In terms of speed and

computation power, it comes in ahead of the OWC algorithm

[13]

Table 3. Odometer Weighted Counter Vector and Permutation Mapping

Comparison

Storage of resulting information was an issue that we still

struggle to improve on daily. Resulting information comes in

three main forms, the RNA sequence, the minimal free energy

of respective string and the graphical representation of the

secondary structure of the fold. Even though the graphical

fold structure was not our priority, we still sought to save it

for review. After various tests, first with .txt file extension

and then with .csv, it was determined that the sheer size of

outputs required large amounts of storage. Storage of the

graphical representation was halted to make way for more

sequences to be stored. With the switch from .txt to database

storage and the storage of only critical information, the

storage issue was overcome.

V. CONCLUSION

Using CPU and available memory resources alone in

computing rule-based permutation is difficult and very

resource consuming. The algorithms themselves have a few

limitations that cause segmentation faults and core dumps.

We have succeeded in producing the various permutation

of amino acids in the form of RNA sequences and their

corresponding minimal free energies. A quick query of the

database would show the lowest of the minimum free

energies and also that of the base RNA sequence. Analysis of

these similar RNA chains even those that have lower

minimum free energies than the documented natural

occurring RNA chains will help make secondary structure

prediction more accurate.

The amount of processing power required for 3D rendering

of new games and this has led to the production of very

powerful GPUs with high computational potential. Until

recently the computation potential outside the normal purpose

of these GPUs has not been tapped.

We plan to use OpenCL in future computations to calculate

permutation iterations on Graphic Processing units (GPUs)

and to eventually introduce FPGA’s to the computation. At

the time of writing this paper, the OpenCL implementation of

the OWC algorithm was under test on AMD GPUs.

OpenCL stands for Open computing language and as the

name implies, it’s a cross-platform, royalty-free programming

language standard. It is a programming language that runs on

CPU’s, GPUs, FPGA’s and other like processors [14,15]

Field Programmable Gate Arrays are able to be programmed

to match optimal schematics for a specific computations. It is

our belief that by using FPGA boards we can cut out

unwanted pathways and optimize the algorithm and its

implementation in a more targeted approach

ACKNOWLEDGMENT

This research was supported by the College of computer

Science, Nanjing University of Aeronautics and Astronautics,

Mr. and Mrs. Lloyd-Yemoh and the expertise of Justice

Adeenze-Kangah (senior programmer and database expert).

REFERENCES

[1] RF Gesteland, TR Cech, JF Atkins, “The RNA World, edn 3”, Cold
Spring Harbor Laboratory Press, 2005.

[2] J. Li, J. Zhang, J. Wang, W Li, Wang , “Structure Prediction of RNA
Loops with a Probabilistic Approach”, PLoS Comput Biol 12(8):
e1005032. doi:10.1371/journal.pcbi.1005032 N,2016

[3] G.M Cooper; R.E Hausman. “The Cell A Molecular Approach (3rd
ed.)”, Sinauer. pp. 261–76, 297, 339–44. ISBN 0-87893-214-3,2004

[4] H Lodish, A Berk, S L Zipursky, P. Matsudaira, D. Baltimore, J,.
Darnell, “Molecular Cell Biology. 4th edition”.W. H. Freeman; 2000.

[5] J. S. Mattick; M. J. Gagen, "The evolution of controlled multitasked
gene networks: the role of introns and other noncoding RNAs in the
development of complex organisms", Mol. Biol. Evol. 18(9): 1611–30.
doi: 10.1093 / oxfordjournals.molbev.a003951, September, 2001

[6] D. H. Mathews, “Predicting a set of minimal free energy RNA
secondary structures common to two sequences”, Vol. 21 no. 10, pages
2246–2253, 2005.

[7] S. Chen, “RNA folding: conformational statistics, folding kinetics, and
ion electrostatics”, Annu. Rev. Biophys. 37:199–214, 2008

[8] J. Yin， H. Tian, L.Bao, X. Dai. X. Gao, W.Yao, “An alternative
method of enhancing the expression level of heterologous protein in
Escherichia coli”,Biochemical and Biophysical Research
Communications 455 (2014) 198–204, 2014

[9] S. R Eddy: “How do RNA folding algorithms work?”, Nat Biotechnol
22:1457-1458,2004

http://www.whfreeman.com/

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 15

[10] D. H. Mathews, M Zuker, “Predictive methods using RNA sequences
in Bioinformatics: A Practical Guide to the Analysis of Genes and
Proteins”, edn 3. Edited by Baxevenis A, Oullette F, John.Wiley and
Sons:143-170, 2004

[11] Hajiaghayi et al., “Analysis of energy-based algorithms for RNA
secondary structure prediction”. BMC Bioinformatics 13:22, 2012

[12] R. Lorenz, S. H. Bernhart, C. H. Siederdissen, H. Tafer, C. Flamm,
P.F. Stadler,I.L. Hofacker, “ViennaRNA Package 2.0, Algorithms”
Mol. Biol. 6, 2011

[13] J. S. Mattick. "The hidden genetic program of complex organisms".
Scientific American. 291 (4): 60–7. PMID 15487671.
doi:10.1038/scientificamerican1004-60, October 2004

[14] Khronos OpenCL Working Group,Aaftab Munshi."The OpenCL
Specification".Version: 1.2. Revision: 19,2011

[15] Matthew Scarpino, “OpenCL in Action”, Manning Publications ISBN
9781617290176,2012

Authors Profile

Mr. E. Lloyd-Yemoh ,a Ghanaian national, pursed
Bachelor of Engineering in Science and
Technology (Software Engineering and
Management) from Nanjing University of
Aeronotics and Astronautics in year 2013. He is
currently pursuing a Masters in Computer Science
and Engineering at the prior mentioned
institution. His main research work focuses on
Algorithm development and Optimization by leveraging parallel
computing. He has 3 years of Research Experience.

Mr Huibin Shi obtained Master of Software Engineering and PhD in
Compter Science respectively in year 2002 and
2006 from the University of York, UK. He is
currently working as Associate Professor in
College of Computer Science and Technology,
Nanjing University of Aeronautics and
Astronautics, Nanjing, China since 2009. He has
co-published more than 20 research papers in
reputed domestic and international journals and conferences. His
main research work focuses on GPU/FPGA Accelerated Computing
Bioinformatics, Cryptography Algorithms, Big Data Analytics,
Reliable Embedded System, Dynamic Partial Reconfigurable
System, Computer Architecture, IoT and Computational
Intelligence based Intelligent manufacturing, Compiling
technology.

