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Abstract—Poom Kuman, [Poom Kuman , Nguyen van Dung, A generalization of Ciric Fixed Point theorems, Filomat 29:7 

(2015), 1549-1556] has established the  generalized version of the result by Ciric [ L. B. Ciric, A generalization of Banach’s 

contraction principle, Proc. Amer. Math. Soc. 45 (1974) 267-273.]. By considering the most general form of quasi-contraction 

viz. n-quasi contraction, the authors have established the existence of unique fixed point in T- orbitally complete spaces in 

this paper.  
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I. INTRODUCTION 

Ciric generalized the Banach’s contraction principle  

[1] by defining the quasi-contraction  map in 1974 and  

proved Ciric Fixed Point theorem. In 2008, Berinde [2] 

defined ciric-type almost contractions in metric spaces and 

established existence of fixed point. Lakshmikantham et al 

in 2009 [3] proved coupled fixed point theorem for 

nonlinear contraction considering partially ordered metric 

space. In 2017, Poom Kuman [4] defined generalized 

quasi-contraction by adding the factors viz. { (     ) 
 (      )  (     )  (      )} in quasi-ciric 

contraction [1] and proved the generalized result of Ciric 

[1].  
In the present paper, we have defined more general quasi 

contraction by adding  

  (     )  (      )  (     )  (      ) 

 in generalized quasi contraction due to Poom Kuman [4] 

and established  the existence of Fixed Point  in  T - 

Orbitally complete Metric Space. Further, for any positive 

integer n, we have defined the most extended form of 

generalized quasi-contraction named as n -quasi 

contraction dark by considering the condition:   

 (     )
        {  (   )  (    )  (    )   

 

                          (    )  (    )  (     )   

                          (     )  (      )  (      )    

                          (      )  (     )  (      )  

                          (      )      (     )  

                          (      )  (     )  (      )}. 

It is interesting to note that for n = 1 our 

definition turns out to be the quasi-contraction due to 

Ciric. Also n = 2 gives the contraction introduced by Poom 

Kuman [4]. 

II. PRELIMINARIES  
 
In order to prove the main result of the paper, we need the 

following definitions and notions.    

Let (X, d) be the metric space and E, F be any two subsets 

of X then  

 (   )     { (   )         } 

 (   )     { (   )         } 

 ( )     { (   )       }     
 

Definition 1[5]. Let       be a map on metric space 

(X, d). For each      and for any positive integer n, 

denote   (   )  {           }  and 

                (    )  {             }  
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The set   (    ) is called the orbit of T at x and the 

metric space X is called T- Orbitally complete if every 

Cauchy sequence in   (    )  is convergent in X. 

Example 1: Let (R, d) be metric space with respect to 

usual metric d, and          ( )  
 

 
 . Then orbit of T 

is    (    )  {   
 

 
   

 

    }  and it may be verified 

easily that R is T-Orbitally complete. 

Definition 2[1] : Let       be a mapping on metric 

space (X, d). The mapping T is said to be a quasi-

contraction if there exists    [   ) such that for all 

        
 (     )          {  (   )  (    )  

                             (    )  (    )  (    )}. 
 

Example 2: Let (E, d) be metric space with respect to 

usual metric d, where E = [   ) and   

                   [   )  [   )  ( )  
 

 
.  

 It is clear that T satisfies quasi-contraction condition. 

 

Definition 3 [4]: Let       be a mapping on metric 

space (X, d). The mapping T is said to be a generalized 

quasi-contraction if there exists  

   [   )  such that for all         
 (     )          {  (   )  (    )  

                                  (    )  (    )  (    )   
                                  (     )  (      )  
                                   (     )  (      )}  
Example 3: Let (E, d) be metric space with respect to 

usual metric d, where E = [   ) and    

  [   )  [   )   ( )  
 

 
 . Then T satisfies 

generalized quasi contraction condition. 

Referring the definition 3, we now introduce the 

generalized form of quasi-contraction due to Poom Kuman 

[4]. 

 

 Definition 4: Let       be a mapping on metric space 

(X, d).  The mapping T is said to be a 

 3-quasi contraction if there exists    [   ) such that 

for all         
 (     )          {  (   )  (    )              

                             (    )  (    )  (    )    
                             (     )  (      )  (     )  
                             (      )  (     )  (      )  
                             (     )  (      )}. 
Example 4: Let (R, d) be metric space with respect to 

usual metric d, and          ( )  
 

 
. 

T is a 3-quasi contraction map. 

 

Definition 5: Let       be a mapping on metric space 

(X, d).  The mapping T is said to be a 

 n-quasi contraction  if there exists    [   ) such that 

for all        and     , 

 

 (     )
        {  (   )  (    )  (    )   

 

                          (    )  (    )  (     )   

                          (     )  (      )  (      )    

                          (      )  (     )  (      )  

                          (      )      (     )  

                          (      )  (     )  (      )}. 

Example 5: Let (E, d) be metric space with respect to 

usual metric d, where E = [   ) and  

   [   )  [   )   ( )  
 

 
 .  

Then T satisfies n-quasi contraction condition. 

 

III. MAIN RESULT 
In this section, we state one of the two main results of this 

paper. 

 

Theorem 1: Let (X, d) be the metric space and       

be a 3-quasi contraction map (cf. Definition 4). Also X is 

T- orbitally complete. Then T has a unique fixed point 

         
Proof.  We first establish the existence of a fixed point 

under the map T. 

  

For each      and           and         
where      

 

Consider 

 (       )    (             )                              
                   {  (           )    

                 (             )  (             )  
                 (             )  (             )      
                 (             )  (              )  
                 (             )  (              )  
                 (              )  (               )  

                (              )  (               )} 

 
        {  (           )                    

                 (          )  (          )  
                 (          )  (          )      
                 (           )  (         )  
                 (           )  (         )  
                 (            )  (          )  

                (            )  (          )} 
                                  [  (   )  

Where, 

 [  (   )     { (       )        }.  
Since             ( )      such that    

            (     ( ) )   [  (   )                         (1)                                                                                                                                                                                                      

Now,    (     ( ) )   (    )   (      ( ) ) 
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                                     (    )     [  (   )  

                                      (    )     (     ( ) ) 
It implies that     

(   ) (     ( ) )   (    )                                                               

                (     ( ) )  
 

(   )
 (    ) 

Using (1), we get 

 [  (   )   (     ( ) )  
 

(   )
 (    )       (2)                        

For all       and      it follows from 3-quasi 

contraction condition on T and (2) that                                      

                     

 (       )   (                  )  

                           [  (           )  

                           (       
 
     (     )     ) 

                          (        
 

     (     )
  

     ) 

                        (        
 

     (     )  
     ) 

                         [  ( 
          )  

                                     

                         [  (          )     (       )  
  

   
  (    ) 

Since                                        

   

{   }  is a Cauchy sequence in X. Since X is  

T- Orbitally complete,        such that  

                         

                                                                     (3)                                                                               

We now show that    is a fixed point. 

  

  (      )   (        )   (         ) 

  (      )   (        ) 

                  +       { (      )  (         )  
                                (      )     (       )  
                                (         )  (        )  
                                (         )  (         )  
                                (           )  (         )  
                                (           )  (        )  
                                (         )} 
As       using (3), we get 

 (      )       { (      )} 
Which is possible if                   

   (      )    

                                                   

Hence, it assures the existence of a fixed point     . 

Claim:    is unique. 

Let if possible         be two fixed points of T. 

 

 (     )      (       )                                   
    (       )          {  (     )  (      )    
                             (      )  (      )  (      )  
                             (       )  (        )  
                             (       )  (        )  
                             (       )  (        )  

         (     )               

 Thus, finally, we conclude uniqueness of     . 

 

Theorem 2: Let (X, d) be a metric space,        be a 

map satisfying the following conditions  

a). X is T- Orbitally complete 

b).  (     )         {  (   )  (    )   (    ) 

                          (    )  (    )  (     )   

                         (      )  (     )  (      )   

                          (     )  (      )  (     )   

                          (      )      (     )  

                          (      )  (     )  (      )}. 

Then T has a unique fixed point          

Proof:  In order to prove this tresult, we need the method 

of mathematical induction.   

For n = 1, condition (b) turns out to be quasi contraction 

defined by Ciric [1] and also the existence and uniqueness 

of fixed points has been  established already.  Hence, the 

result holds for n = 1 which is famous Ciric fixed point 

theorem. 

Consider, T has a unique fixed point in X for n = p, then 

we have to show that T has a unique fixed point in X for n 

= p+1. We first establish the existence of a fixed point for 

n = p+1. 

Assuming the condition  

 

 (     )
        {  (   )  (    )  (    )   

 

                          (    )  (    )  (     )   

                          (     )  (      )  (      )    

                          (      )  (     )  (      )  

                          (      )      (     )  

                          (      )  (     )  (      )}. 

and the existence of unique fixed point for n = p is given. 

If  T be a map satisfying 

 (     )
        {  (   )  (    )  (    )   

 

                          (    )  (    )  (     )   

                          (     )  (      )  (      )    

                          (      )  (     )  (      )  

                          (      )      (     )  

                          (      )  (     )  (      )  

                         (       )  (        )  
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                           (       )  (        )}. 

Suppose max lies in 

           {  (   )  (    )  (    )   
 

                          (    )  (    )  (     )   

                          (     )  (      )  (      )    

                          (      )  (     )  (      )  

                          (      )      (     )  

                          (      )  (     )  (      )}. 

then by the given condition T has a unique fixed point. 

Suppose max lies between from 

{ (       )  (         )  (       )  (        )} 
 

 (      )   (      )   (       )                      
 

                 (      )        { (           )  
                    (          )  (        )  
                      (         )}                                     (4) 

Where                    
Since                                  .                                                                                     

As      in equation (4), we get     
               (      )    (      )  
 

              (      )               
Hence, T has a fixed point.  

Let if possible         be two fixed points of T. 

 

   (     )   (       )    

   (       )          {  (     )  (      )        
                                   (      )  (      )  (      )  
                               (       )  (        )   
                               (       )  (        )        
                               (       )  (        )  
                                (       )  (        )} 
 (     )              Thus, finally, T has a unique 

fixed point. 

 

IV. CONCLUSION 

The existence and uniqueness of a unique fixed point in T-

Orbitally complete space has been established with the 

most light form of contraction map viz. n-quasi contraction 

which a significant contribution. This result also extend the 

domain of Poom Kuman Result. 
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