

 © 2016, IJCSE All Rights Reserved 95

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-4, Issue-04 E-ISSN: 2347-2693

Scenario-based Evaluation of Software Architecture Styles from the

Security Viewpoint

Gholamreza Shahmohammadi

Department of Information Technology, Olum Entezami Amin University, Iran

www.ijcseonline.org

Received: Mar/16/2016 Revised: Mar/28/2016 Accepted: Apr/19/2016 Published: Apr/30/ 2016

Abstract— By increasing the use of distributed systems and increasing software attacks, software security is considered

very important and treated as an active research area. Security is usually taken into account after design and

implementation of the system, whereas like other quality attributes, it must be considered from the beginning of the

process of building software, such as architectural design. Considering 1) the long-term effects of design stage decisions

on final software product, 2) one of the important design decisions, is selection of suitable software architecture style,

and 3) the quantitative impact of software architecture style on quality attributes, especially security, has not been

investigated, the aim of this research is quantification of the impact of architectural styles on security quality attribute.

This study aims at evaluating the software architectural styles from the viewpoint of the security quality attribute based

on scenario-based evaluation method. In this study, by presenting security scenarios, the architectural styles are

evaluated from the perspective of security. Then architectural styles are ranked based on the results of the evaluation

and importance of scenarios using Analytical Hierarchy Process, in terms of supporting software security. The most

important contribution of this paper is to propose an approach to select the software architecture style in which

security attribute plays a major role.

Keywords- Security; Scenario-based Evaluation; Software Architecture Styles

I. INTRODUCTION
Software security is one of the software quality attributes that

due to the expanded distribution in the systems and networks

and potential attacks to the system, is very important. Because

of the importance of software security in systems, especially

web systems, we need to consider security aspects from the

very beginning in the requirements engineering process. As

our modern society is critically dependent on software

systems, the importance of software security is constantly

growing [1, 2]. Software vulnerabilities, arising from

deficiencies in the design or implementation of the software

(e.g., due to the increase in complexity) are one of the main

reasons for security incidents [2]. Security is usually

considered after design and implementation of the system,

whereas like other quality attributes, it must be considered

from the beginning of the process of building software, such

as architectural design [3]. Decisions made in the design

phase have profound impact on the final software product.

One of the most important decisions of design stage is the

selection of software architecture style. Functionality or

software tasks may be achieved using any of a number of

possible structures. Therefore, software architecture styles

(SASs) are selected based on amount of their support from

quality attributes [4]. Software architecture is the very first

step in the software lifecycle in which the non-functional

requirements (NFR) are addressed [5]. For this reason, many

researchers have been done in this regard [6,7,8,9,10,11].

Regarding the expansion of disruption in systems and the

widespread use of distributed software systems, one of the

main considerations in choosing the software architecture

style, is the amount of support from software security. Since

quantitative impacts of SASs on quality attributes have not

been studied yet [12], their applications are not systematic

[13]. In other words, present use of styles in design is based

on intuition of software developers. One of the methods of

software architecture evaluation is scenario-based approach.

Scenario-based techniques provide one of the most general

and effective approaches for evaluating software architecture.

In this method, architecture is evaluated based on the

scenarios [5]. Quality attribute scenarios or briefly scenarios

are a means to describe the quality attributes [5]. Scenario is

sequence of actions that occur as a result of interaction with

the software or in other words, is an event that may occur on

the software lifecycle. With the occurrence of this event, the

software should be consistent with it.

In this paper, software architecture styles are evaluated from
the viewpoint of security quality attribute based on security
scenarios. In other words, we use from scenario-based
evaluation method, to evaluate software architecture styles.
By the available information from software architecture
styles, there is possibility of this evaluation. After evaluating
architectural styles based on scenarios, software architecture

 *Corresponding Author: Gholamreza Shahmohammadi

 E-mail: shah_mohammadi@yahoo.co.uk

 Department of Information Technology, Olum Entezami Amin University

 International Journal of Computer Sciences and Engineering Vol.-4(4), PP(95-101) April 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 96

styles are ranked according to the priority of scenarios,
evaluation results and using analytic hierarchy process
(AHP). Author is evaluated software architecture style from
the viewpoint of reliability and maintainability [14, 15]. This
research is a movement to quantification of the impact of
software architecture styles on the quality attributes.

This paper is structured as follows: in Section 2, software
architecture styles are discussed. In Section 3 the scenario-
based evaluation and Section 4 scenario-based evaluation of
architectural styles from the viewpoint of security attributes
are offered. Section 5 presents the conclusions.

II. SOFTWARE ARCHITECTURE STYLES

Software architecture styles present models for solving the

problem of designing the software architecture in a way that

each model describes its components, responsibilities of the

components and the way they cooperate [16]. Shaw and her

colleague [17] introduce seven styles. Buschmann et al [16]

have also described the pattern in different levels. In the

following eight architecture styles are briefly introduced.

Repository style (RPS). In this style, there are two types of

components: a central storage and a set of components that

store, retrieve and update information on the repository [17].

Blackboard style (BKB). The components of this style are

Blackboard, experts (knowledge resources), and the control.

The control component in a loop, checks the blackboard

status, evaluates knowledge resource, and activates one of

them for the execution [17].

Pipe and filter (P/F). This style is composed of a set of

computational components. Each component acts as a filter

and has a number of inputs and outputs. The output of each

component is the input of the next component [17].

Layered style (LYD). In this style, the emphasis is on

different abstraction level in the software. The layered style

organized hierarchically. Each layer provides a service for its

above layer and uses its lower layer [17].

Implicit Invocation (I/I). Implicit invocation style is an

event-driven style based on broadcast concepts and

announces the occurrence of the event instead of

directly invoking a function. Interested components relate a

function to an event. With the occurrence of an event,

software invokes all registered functions [17]. Components

of this style are: (1) event publishers, (2) components that are

interested in events, and (3) dispatcher that invokes

interested components in response to an event occurrence.

Client/Server(C/S). The components of this style are clients

and servers. Clients should be aware of the name and

services presented by servers [17].

Broker style (BRK). Client, servers, broker, client side

proxy and server side proxy are the components of this

style. Broker is responsible for coordinating the relationship

between clients and servers. Servers register themselves

with the broker, and make their services available to

clients through method interfaces. Clients access services of

servers by sending requests via the broker. Locating

appropriate servers, forwarding the request to it and

return the results to the client are the responsibilities of the

broker [16].

Object-Oriented (OO). In this style, data presentations and

the related operations encapsulated in an object. Objects are

the components of this style and they interact through

invoking the functions [5].

III. SCENARIO-BASED EVALUATION METHOD

In this method, software architecture is evaluated based on a

number of scenarios. Scenario, a means for assessing the

software quality attributes [5]. The scenario is a sequence of

actions that occur as a result of interaction with software or in

other words an event that may occur in the software life cycle.

In the case of occurrence of this event, the software must be

compatible with it. Evaluation of impact of Scenarios will

show the software flexibility. Scenario-based evaluation

methods such as SAAM and ATAM methods have been

proposed.

IV. SCENARIO-BASED EVALUATION OF ARCHITECTURAL

STYLES FROM SECURITY VIEWPOINT

In this section, the scenarios will be used to evaluate the

architectural styles instead of software architecture. In this

method, first security scenarios are prepared for evaluating

architectural styles and then each of these scenarios are

applied to architectural styles. Then style resistance against

security scenarios is evaluated. Then final ranks of

architectural styles are determined based on results of the

evaluation and the importance of scenarios, using AHP

method. Various stages of this method are shown in “Fig. 1”.

A. Providing sufficient number of scenarios

We use stimulus portion of security scenario to select security

scenarios. In the stimulus portion of security quality attribute

general scenario, attack is defined as :1) unauthorized attempts

to access to system data, 2) unauthorized attempts to access to

system services, 3) unauthorized attempts to change or delete

data and 4) reduce availability of system services. So we use

the scenarios of 1) unauthorized attempt to access system data,

2) unauthorized attempt to gain access to system services, 3)

unauthorized attempt to delete or change data, and 4) attempt to

reduce availability of system services, to evaluate architectural

styles.

 International Journal of Computer Sciences and Engineering Vol.-4(4), PP(95-101) April 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 97

Figure 1. The process of evaluating and ranking architectural styles

B. Resistance Evaluation of architectural styles against

security scenarios

At this stage, the effect of each selected security scenario on

architectural styles will be evaluated.

1)Scenario of Unauthorized Attempt to Access the System Data

In applying this scenario to architectural styles, the styles are

checked based on the amount of their protection of the data. In

other words, the effective components in access to the

repository data in style are checked. Components through which

requests of create / delete / modify / read information from their

canal passes and receiving requests regarding the legality

request are checked [18]. Considering the foregoing,

architectural styles are evaluated based on this scenario.

Repository style. In this style, all system data are in

repository components. Repository component is solely

responsible for the protection and maintenance of data and

preventing unauthorized access to data and provides access

to data according to the user level.

Blackboard Style. In this style, all of system data are

maintained in the Blackboard component and any access to

the data in blackboard is licensed by control component.

Pipe and filter style. In this style, there is not repository

certain component and all of the system data is distributed

among components of style. So, in this style, there is no

control for the system data.

Layered style. In this style, all of system data is located in

repository component. Repository component is at the lowest

level. To achieve repository the total layers should be passed.

So through various layers there is the possibility to control

access to repository data.

Implicit invocation style. In this style, by occurrence of

event, distributer component calls interested in the event

component. So if there is a repository component, interested

in the event component can access data in the repository only

by licensed distributor component.

Client/server style. In this style, all of system data is located in

repository component, and any access request to the repository

data is checked by server and is licensed by this component.

Since the server is includes n / 2 component in average, in

practice, there are the possibility of n / 2 controls.

Broker style. In this style, all of data are contained in

repository component and repository is accessed through the

server and broker components. But all requests for access to

data repository are checked and the access authorization is

issued by the server. Since the server contains n / 2 component,

in practice, there is the possibility of n / 2 controls.

Object-Oriented style. In this style, objects are divided into

three categories, borderline, entities, and control. In sequence

diagram, control objects control access to the data repository.

Thus, in any use case, the number of effective components for

accessing to the data repository is 1.

Table 1 shows the evaluation results of software architecture

styles in terms of resistance to unauthorized achieve data

repository, or the number of components that prevents

unauthorized access to the data repository is of style.

2)Scenario of Unauthorized Attempt to Access System Services

In applying this scenario to architectural styles, styles are

evaluated from a perspective. The perspective clarifies that in

the case of an unauthorized attempt to gain access to system

services, how many defense layers each style has to prevent

unauthorized attempt. The architectural styles are evaluated

according to this scenario.

TABLE 1. STYLE FROM VIEWPOINT OF ACCESSING REPOSITORY DATA

Number of

Components

Symbol Style Row

1 RPS Repository 1

1 BKB Blackboard 2

0 P/F Pipe and filter 3

n-2 LYD Layered 4

1 I/I Implicit invocation 5

n/2 C/S Client/server 6

n/2 BRK Broker 7

1 OO Object-oriented 8

 International Journal of Computer Sciences and Engineering Vol.-4(4), PP(95-101) April 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 98

Repository style. In this style, each independent component

offers specific service using available data in the repository.

Thus accessing to system services is possible through

independent components and there is a layer to protect the

services that is the independent component.

Blackboard style. The services of this style are problem-

solving and for solving the problem knowledge resources are

activated by the control components and access to

Blackboard. So only control components to prevent any

access to the system services.

Pipe and filter style. In this style, there is no control of

checking request of system services and by any service

request; system services can be easily achieved.

Layered style. In this style, all the layers except the

repository are involved in providing services and each

service request system can be controlled by all the layers that

their number will be n-1.

Implicit invocation style. In this style, after the occurrence

of event and activation of component interested in the event,

a special service will be provided. So, to have access to the

service, there must be access to component interested in the

current event.

Client/server style. In this style, each request is checked by

server component and any unauthorized request is rejected.

So, there are n / 2 components that control access to system

services.

Broker style. In this style, any service request is checked by

server and unauthorized request is rejected. As a result, there

are n / 2 components that control access to system services.

Object-oriented style. In this style, in each use case just an

object is the role of the server and checks service requests

and rejects illegal requests.

Table 2 shows the results of the styles evaluation based on

the scenario of unauthorized attempts to access system

services or in other words, the number of effective

components in the access to system services.

TABLE 2. STYLES IN TERMS OF EFFECTIVE COMPONENTS IN THE

ACCESS TO SYSTEM SERVICES

Number of Components Symbol Style Row

1 RPS Repository 1

1 BKB Blackboard 2

0 P/F Pipe and filter 3

n-1 LYD Layered 4

1 I/I Implicit invocation 5

n/2 C/S Client/server 6

n/2 BRK Broker 7

1 OO Object-oriented 8

3)Scenario of Unauthorized Attempt to Delete or Modify system

data

Results of applying this scenario are according to applying

scenario of unauthorized attempts to access system data,

accordingly to Table 1.

4) Scenario of Attempt to Reduce Availability of System

Services

Availability (ability of systems to provide service to authorized

users), is one of the aspects of security. Software system

availability has reverse relationship to critical components of

the system architectural style, the components whose failure

prevents them from service delivery to authorized users. As the

number of critical components of architectural style increases,

the availability of the outcome system software reduces.

By applying this scenario to architectural styles, styles are

evaluated in terms of the number of critical components.

Repository style. In this style, repository components and

independent components interacting with the repository in a

use case are critical components. So the number of critical

component of this style is two.

Blackboard style. In this style, the blackboard component,

knowledge resource and control component interacting with the

blackboard in each use case are critical components. So number

of critical components of this style is 3.

Pipe and filters style. In this style, the entire components are

critical. So critical component of the style is equal to n.

Layered style. In this style, all components are critical and the

number of critical component of style is equal to n.

Implicit invocation style. In this style, distributor component

and independent component affecting in use case are crucial.

So number of critical components of this style is two.

Client/ server style. In this style, n / 2 server component and

repository are critical. So the number of critical component of

this style is (n / 2) +1.

Broker style. In this style, in addition to n / 2 components of

the server, the client proxy, broker, server side proxy, the

server and repository components are critical components. So

the number of critical component of this style is equal to (n / 2)

+4.

Object-oriented style. All objects in the sequence diagram

are critical. But since there are multiple use case per system.

On average, failure of a use case, the system works with

lower throughput. Regarding the reliability evaluation of

architectural styles [19], the number of classes in use cases is

common and the 20 percentage of classes was common in

use cases based on experience in the production of software

systems.

Table 3 shows evaluation results of architectural styles based

 International Journal of Computer Sciences and Engineering Vol.-4(4), PP(95-101) April 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 99

on the scenario of effort to reduce availability of system

services. In other words, it shows the number of critical

components of each style.

C. Determining the relative importance of security

scenarios

Frequency scenario of unauthorized attempts to access

system data is equal to frequency of scenario of unauthorized

attempts to gain access to system services and the frequency

of occurrence of these two scenarios are more than the

scenario of unauthorized attempts to delete or change the

system data. Frequency of scenario of unauthorized attempts

for deleting or modifying system data as well as more

frequent scenario of an attempt to reduce availability of

system services. Considering these cases and forming the

scenarios paired comparison and the calculation of AHP

method, the relative importance of each scenario is obtained

and shown in Table 4.

TABLE 3. NUMBER OF CRITICAL COMPONENTS OF ARCHITECTURAL

STYLES

Number of

Critical

Components

Critical components Symbol

2 Repository component and a component RPS

3 Control and blackboard components BKB

N All filters P/F

N All Layers LYD

2 Component distributor and independent

component

I/I

 (n/2)+1 n / 2 server components and Repository

component

C/S

(n/2)+4 Client Side Proxy, Broker, Server Side

Proxy, n / 2 server components and

repository component

BRK

20%nt Objects in Sequence Diagram OO

TABLE 4. THE RELATIVE IMPORTANCE OF SCENARIOS

Relative

Importance
Scenario

0.39 Unauthorized attempt to access the system data(S1)

0.39 Unauthorized attempt to access system services(S2)

0.13 Unauthorized attempt to delete or modify system

data(S3)

0.08 Attempt to reduce availability of system services(S4)

D. Determining final rank of software architecture styles

“Fig. 2” shows Hierarchical structure of SASs ranking. The

objective of styles ranking, which appeared to be at the top,

is to choose the best style from the perspective of security.

The lowest level is architectural styles and there are security

scenarios in the middle.

To determine the final rank of architectural styles, the

relative rank of architectural styles must be calculated in

terms of security scenarios. For this purpose, according to

scenario-based evaluations styles, paired comparison table of

styles are formed based on four security scenarios and styles

relative rank are calculated by AHP method using Expert

choice Software.

The effect of software size on styles ranking is taken into

account in the computations. In object-oriented style, the

number of objects (NO) and in other styles the number of

components (N) correspond the software size. So in the

evaluation done in this section, the number of styles

components are considered as 3, 4, 5, 6, 7, 8 and 9 and the

number of classes in object-oriented style is considered

accordingly as 21, 28, 35 ,42 ,49, 56 and 63.

The final Rank of architectural styles, were calculated

regarding 1) the relative importance of security scenarios, 2)

the relative rank of architectural styles for security scenarios

and 3) different sizes of software (values N and NO) by AHP

method using Expert choice software. Table 5 shows the

final rank of software architectural styles for different sizes

of software.

The results show that considering security scenarios,

layered(LYD) style have maximum support and pipe and

filter(P/F) style have minimum support for security quality

attribute. Client/server(C/S), broker(BRK), repository(RPS),

implicit invocation(I/I), blackboard(BKB) and object-

oriented(OO) styles respectively are second to seventh

positions in this evaluation.

With the increasing of software size, the rank of some styles

such as Pipe and Filter (P/F) and blackboard (I/I) are

decreased, and the rank of some styles such as layered

(LYD) are increased.

Figure 2. Hierarchical structure of SASs ranking from the viewpoint of

security software

 International Journal of Computer Sciences and Engineering Vol.-4(4), PP(95-101) April 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 100

TABLE 5. SOFTWARE ARCHITECTURE STYLE RANKING

N=9 N=8 N=7 N=6 N=5 N=4 N=3 Symbol

NO=63 NO=56 NO=49 NO=42 NO=35 NO=28 NO=21

78 81 86 91 99 108 125 RPS

70 74 78 84 92 105 119 BKB

19 19 20 21 22 22 23 P/F

307 295 280 262 238 203 153 LYD

78 82 86 91 99 109 125 I/I

198 196 193 19 186 180 170 C/S

194 192 189 185 181 174 167 BRK

57 61 67 75 84 98 117 OO

\
Related Research

• Software architecture styles were evaluated from the

viewpoint of reliability [14]. In this research, using

reliability block diagram (RBD), reliability formulas of

software architectural styles were extracted. To evaluate the

effect of software size (number of components) on the

reliability of software architecture styles, by changing the

size software and based on architecture styles relation, the

reliability values of architectural styles are computed.

• Architectural styles were evaluated from the viewpoint of

maintainability [15]. In this research, architectural styles

were evaluated from the viewpoint of maintainability,

according to metrics of coupling, complexity and cohesion,

and were ranked using analytic hierarchy process. In

calculations of this method, the effect of the software size is

considered in ranking of architectural styles.

But so far, Evaluation of architectural styles from the

perspective of security has not been conducted.

V. CONCLUSIONS

In this paper, after reviewing software architecture styles and

software architecture scenario-based evaluation method, due
to the lack of studies on quantitative impacts of architectural

styles on quality attributes specifically security, architectural

styles effect on the software security were evaluated based

on scenario. Finally, the final ranks of architectural styles

were calculated regarding 1) the relative importance of

security scenarios and 2) the relative rank of architectural

styles for security scenarios, using AHP method. The results

show that considering security scenarios, layered (LYD)

style have maximum support and pipe and filter (P/F) style

have minimum support for security quality attribute.

Client/server(C/S), broker (BRK), repository (RPS), implicit

invocation(I/I), blackboard(BKB) and object-oriented(OO)

styles respectively are second to seventh positions in this

evaluation.

The effect of software size on SASs ranking is taken into

account in the computations. With the increasing of software

size, the rank of some styles such as Pipe and Filter (P/F) and

blackboard (I/I) are decreased, and the rank of some styles

such as layered (LYD) are increased.

The most important outcome of this research is to quantify

the impact of software architecture styles on security quality

attribute based on scenarios.

REFERENCES

[1] P. T. Devanabu and S. Stubblebine, Software engineering for

security: a roadmap”, in ICSE ’00: Proceedings of the

Conference on the Future of Software Engineering. ACM,

2000, pp. 227–239.

[2] J. Juerjens, Secure Systems Development with UML, Springer,

2005.

[3] D.G. Rosado, E. Fernández-Medina, and M. Piattini,

Comparison of Security Patterns, International Journal of

Computer Science and Network Security, Vol. 6. Issue 2B. pp.

139-146, 2006.

[4] Len. Bass, Paul. Clements P, Rick. Kazman, 2003, “Software

Architecture in Practice”, Addison-Wesley

Professional Publisher ,Second Edition, 2003, Addison-

Wesley, ISBN: 0321154959

[5] Len. Bass, Paul. Clements, and Rick. Kazman, “Software

Architecture in Practice”, Pearson Education Publisher, Third

Edition, 2013, ISBN: 9332502307

[6] F.Losavio, et al, ISO Quality Standards for Measuring

Architectures, The Journal of System and Software 72, Page

No. 209-223, Elsevier, 2004.

[7] M. AlSharif, et al, "ding the Complexity of Software

Architecture", ACM Southeast Regional Conference, Proc. of

the 42nd annual southeast regional conference, Huntsville,

Alabama, 2004.

[8] S. Jingqiu and H. Behrouz, “Development of an Intelligent

System for Architecture Design and Analysis”, Canadian

Electrical and Computer Engineering, Conference, pp. 539-

542, 2004.

[9] H. Koh, S. Kung, and J.Park, “The Method to Choose

Architectural Approaches in the Software Architecture Design

Phase”, ICITA (1), pp. 103-106, 2005.

[10] H. Reza, D. Jurgens, J. White, J. Anderson, and J. Peterson,

“An architectural design selection tool based on design tactics,

scenarios and nonfunctional requirements”, Electro

Information Technology, 2005 IEEE Int. Conf. , pp: , 2005.

[11] G. Zayaraz, and P. Thambidurai, “Software Architecture
Selection Framework Based on Quality Attributes”, Annual
IEEE INDICON, pp. 167– 170, December 11-13, 2005,
ISBN:0-7803-9503-4

[12] N.B. Harrison and P. Avgerinos, “Leveraging Architecture
Patterns to Satisfy Quality Attributes”, 1th European Conf. on
Software Architecture Springer, pp (263-270), ECSA 2007
Madrid, Spain, September 24-26,

[13] P. Avgeriou, U. Zdun, “Architectural patterns revisited: a
pattern language”, Proc. of 10th European Conf. on Pattern
Languages of Programs, pp.1-39, 2005 , Butterworth-
Heinemann,

 International Journal of Computer Sciences and Engineering Vol.-4(4), PP(95-101) April 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 101

[14] G.R.Shahmohammadi, “Reliability Evaluation of Software
Architecture Styles”, 5-th International Conference on Parallel,
Distributed Computing Technologies and Applications
(PDCTA-2016), pp. 117-129, January 2th-3th,,2016, ISBN:
978-1-921987-45-8.

[15] G.R.Shahmohammadi, 2014, “Evaluation of the Software
Architecture Styles from Maintainability
Viewpoint”, International Conference on Foundations of
Computer Science & Technology, Zurich, Switzerland, pp.
183-197, January 2th-4th , 2014.

[16] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M.
Stal, “Pattern-Oriented Software Architecture: A System of
Patterns”, Vol. 1, Wiley, 1996, ISBN: 978-0-471-95869-7.

[17] M. Shaw, D. Garlan, 1996, “Software Architecture:

Perspectives Discipline on an Emerging”, Prentice Hall.

[18] K. Jiwnani and M. Zelkowitz, 2002, “Maintaining Software
with a Security Perspective”, Proc. of the International
Conference on Software Maintenance, pp. 194 – 203, ISBN: 0-
7695-1819-2

[19] Gholamreza. Shahmohammadi, and Saeed. Jalili, “Scenario-

Based Quantitative Evaluation of Software Architecture Style

from Maintainability Viewpoint”, 14st Annual of CSI

Computer Conference (CSICC 2009), Iran, Amirkabir

University, 2009.

Author Profile

Mr Gholamreza Shahmohammadi
received his Ph.D. degree from Tarbiat
Modares University (TMU, Tehran, Iran)
in 2009 and his M.Sc. degree in
Computer Engineering from TMU in
2001. Since 2010, He has been Assistant
Professor at the Department of
Information Technology, Olum Entezami
Amin University (Tehran, Iran). His main research interests
are Software Engineering, Software Architecture, Software
Metrics, Software Cost Estimation and Software Security .

