
 

    © 2016, IJCSE All Rights Reserved                                                                                                                                     141 

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering                Open Access 
Research Paper                                    Volume-4,  Issue-9                                                  E-ISSN: 2347-2693 

                 

Tuning a Multi-Million Row Table 

Anmol Sharma 

Available online at: www.ijcseonline.org  

Received: 27/Aug/2016  Revised: 09/Sept/2016    Accepted: 25/Sept/2016  Published: 30/Sep/2016 

Abstract— Every organization faces the issue of slow performance with their database on regular basis. In this scenario, a 
DBA is required to tune the database or find the root cause of the sluggishness. Tuning a database after it has been setup is a 
highly tedious task and requires a lot of expertise, in-depth knowledge of the architecture and underlying functionality. 
So, it’s better to deal with the problem from the starting, i.e. structuring the Database in such a manner, that it yields good 
performance. This will make the database more stable and reduce the effort required to manage the database. 
So, presented below is a method to achieve better performance regardless of the quality of the hardware on which the database 
is hosted. Below method of database structuration made my life easier when I was asked to design the structure of an 
organization’s database from scratch and this entire paper is based on that method. 

 

Note— This method works best if you have a main mega table which needs to be queried again and again, but due to its 

flexibility this method works well in almost every environment. 

Keywords- Database Optimization, Database Structuration, Performance Tuning, Table Structuration.

I. INTRODUCTION 

THIS document describes a procedure that can be used to 
tune a table or an entire database. Emphasis is laid on the 
structure, the way the database stores & uses data & files.  

So, it’s better to lead with an example which will help in 
creating a better understanding of the concept. 

 

Why is Performance tuning required? 

 

• The first question that needs to be answered is, “Is it 
really necessary to tune a table” 

• Well, a table which is queried frequently needs to be 
tuned in such a manner that the retrieval rate is as 
minimal as possible. Favorably in micro seconds. 

• So, a table which provides a slow retrieval rate i.e. in 

multiple seconds or even worse, in minutes, should 

always be considered for tuning. 

 

Sample Data: 

 

Service 

Area 

Code 

Phone 

Numbers 

Preferences Opstype Phone 

Type 

13 98272xxxxx 0 D 2 

12 98279xxxxx 0 D 2 

11 98272xxxxx 0 A 1 

13 98275xxxxx 0 A 4 

Table 1.  Sample Data 

These are just a few lines of sample data, an actual table that 

needs to be tuned will contain millions of rows of similar 

data. 

 

Note— The Sample data used in the test case had approx. 30 

million rows.  

II. PREPARING THE STRUCTURE 

A. Database 

The first thing that is required is obviously a database. 

 

B. Selecting Target Column 

Secondly, a column is required to be selected based on which 
the database will be searched frequently, usually that 
particular column will contain unique values and can be used 
as a primary key. 

This particular column will be used to partition the table and 
for creating an index. 

Based on the sample data, the ‘Phone_numbers’ column is 

used for partitioning and indexing purposes. 

C. Structure 

The structure is highly critical as it will decide how you 

utilize the system resources for storage[1]. 

Here we are going to store each partition in a different 

tablespace. 

 

Note— create partitions in such a manner that all the 

partition holds equivalent amount of data. Create as many 

partitions as required. 

 

Sample Data— In the sample data, 31 partitions were 

created in a manner that all partitions hold a minimum of 

50,000 and a maximum 150,000 rows. 

 



   International Journal of Computer Sciences and Engineering                                Vol.-4(9),  Sep 2016, E-ISSN: 2347-2693 

  © 2016, IJCSE All Rights Reserved                                                                                                                                       142 

D. Creating a Tablespace[2] 

• create tablespace ts1 datafile '/oracle/new/ts1.dbf' size 

50m autoextend on next 50m maxsize 200m; 

 

• create tablespace ts2 datafile '/oracle/new/ts2.dbf' size 

50m autoextend on next 50m maxsize 200m; 

 

E. Creating a Partitioned Table 

• create table table1 (service_area_code number, 

phone_number number, preferences varchar(20), 

opstype varchar(10), phone_type number) partition by 

range (phone_number) (partition p1 values less than 

(7000000000)tablespace ts1, partition p2 values less 

than (7100000000) tablespace ts2, 

        _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

        partition p31 values less than 

        (10000000000) tablespace ts31); 

 

Partition type “RANGE” has been utilized here as it was the 

most suitable for this type of data. Other partitioning 

methods like ‘LIST’, ‘HASH’ and ‘COMPOSITE’ can also 

be used but their suitability will depend on the data which 

will be stored in those partitions. In this case the results 

achieved with composite (range with hash sub-partition) 

were not favorable. Composite partitioning dampened the 

performance by huge margin and it made the execution plan 

even more difficult to analyze. 

 

Note— Adding separate tablespaces and datafiles will surely 

improve performance but to get the most out of your 

Database structure, the datafiles must be distributed among 

various storage media which will further enhance the I/O 

throughput thus improving the overall performance of the 

database. 

F. Adding Datafile 

There are two paths you can take while adding datafiles if 

required: 

 

Adding datafiles to all the tablespaces together: 

 

• Alter tablespace ts1 add datafile '/oracle/new/ts1a.dbf' 

size 50m autoextend on next 50m maxsize 200m; 

 

• Alter tablespace ts2 add datafile '/oracle/new/ts2a.dbf' 

size 50m autoextend on next 50m maxsize 200m; 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

 

• Alter tablespace ts31 add datafile '/oracle/ts31a.dbf' size 

50m autoextend on next 50m maxsize 200m; 

 

Note— Via this method you can simply add datafiles to 

tablespaces as per the requirement[3]. This helps in 

mitigating the error you might receive regarding insufficient 

space during data loading. 

 

Adding datafile to a specific tablespace when required: 

 

• Alter tablespace ts1 add datafile '/oracle/new/ts1a.dbf' 

size 50m autoextend on next 50m maxsize 200m; 

 

Note— Check the database alert-log file for the name of the 

tablespace that requires the datafile. 

 

G. Using Resumable Space Allocation 

  

By default, Oracle database will always be in non-resumable 

mode which may cause an insufficient space error to crash 

the entire data loading process. 

In resumable space allocation mode, rather than crashing, the 

process will stay halted. This will provide a chance to the 

database administrator to solve the problem and let the 

process resume as normal[4]. 

 

Enabling Resumable Space Allocation: 

 

- Alter system enable resumable 

 

- Alter system set resumable_timeout=3600 scope=both; 

 

Now, in this case, the session will wait for an hour before 

throwing an error which provides the user ample time to 

solve the problem. Timing can be altered by changing the 

resumable_timeout parameter[5]. 

 

Here you can either add datafiles to all the tablespaces or you 

can check the alert log file and add the datafiles to a 

particular tablespace as required. 

 

Note— Recommended option is to add datafile to a 

tablespace only when it’s required. It will consume less space 

and your database will only have datafiles that are necessary 

which will reduce the complexity. 

 

III. LODING DATA 

In my case, while loading data, usually it was either in form 
of CSV files or another table from which data needs to be 
transferred to the partitioned table. 

 

Note— This is not important to tuning, the data just needs to 

be inserted, doesn’t matter which method and source is used. 

 

A. Loading via CSV files 

 
Control file: 



   International Journal of Computer Sciences and Engineering                                Vol.-4(9),  Sep 2016, E-ISSN: 2347-2693 

  © 2016, IJCSE All Rights Reserved                                                                                                                                       143 

OPTIONS(DIRECT=TRUE, ROWS=10000000, SKIP=1) 

unrecoverable 

load data 

infile '/oracle/nccp/2082013_0.csv' 

infile '/oracle/nccp/2082013_1.csv' 

insert into table table1 

fields terminated by ',' optionally enclosed by '"' 

(service_area_code,phone_number,preferences,opstype,phone
_type) 

 

Using Sql loader: 

sqlldr scott/tiger control=/oracle/a.ctl log=/oracle/a.log 

sqlldr ‘”/as sysdba”’ control=/oracle/a.ctl log=/oracle/a.log 

 

Note— Using DIRECT clause enables direct loading which is 

quicker than the default method and using SKIP skips the first 

line as you usually have column names as the first line of a 

CSV file[6]. 

 

B. Loading from another table 

 
Inset into table1 select * from table2; 

Note— Specific columns can be loaded instead by inserting 

their names in the insert and select clause. 

 

 

IV. OPTIMIZING 

 

A. Indexing 

As per the sample data, the index needs to be created on the 

phone_number column. A b-tree (default) index is preferred 

as the column contains unique values. 

 

Two Variations in this type of index can be used: 

 

• Un-partitioned Index 

• Partitioned Index 

 

 

Un-partitioned Index: 

 

Create index index1 on tables1(phone_number); 

 

or 

 

A primary key can also be used as it will create an index 

automatically. 

 

 

Partitioned index(Recommended): 

 

Create index index1 on table1(phone_number) LOCAL; 

 

or 

 

Create index index1 on table1(phone_number) global 

partition by range(phone_number) 

(partition p1 values less than (7000000000)tablespace i1, 

partition p2 values less than (7100000000)tablespace i2, 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

partition p31 values less than (10000000000)tablespace i31)); 

 

Note— You can remove the tablespace clause and store the 

entire index in one tablespace or you can diversify the storage 

like the above example and then store it on different storage 

media if available which will further improve the I/O 

throughput and final output performance. 

 

B. Optimizer & Statistics 

 

The first that needs to be checked is the optimizer 
parameter[7]. 

- Show Parameter optimizer 

This command can be used to check the value that the 
parameter currently holds. 

It can contain 4 different values 

- All_Rows 

- First_Rows_10 

- First_Rows_100 

- First_Rows_1000 

In my case the ALL_ROWS worked better than the others. 

- Alter system set Optimizer_mode=First_Rows_10; 

This will change the optimizer mode to rule based 
First_Rows_10. 

Calculating Statistics: 

This is important for the optimizer to perform its function, so 
whenever a change occurs in an important table, stats should 
always be calculated[8]. 

- Exec dbms_stats.gather_table_stats  
(‘USER_NAME’,’TABLE_NAME’); 

 

- Exec dbms_stats.gather_index_stats 
(‘USER_NAME’,’INDEX_NAME’); 

 



   International Journal of Computer Sciences and Engineering                                Vol.-4(9),  Sep 2016, E-ISSN: 2347-2693 

  © 2016, IJCSE All Rights Reserved                                                                                                                                       144 

- Exec dbms_stats.gather_Schema_stats 
(‘SCHEMA_NAME’); 

Note— Calculating stats for the table and index will majorly 
improve performance. 

C. Parallelism: 

Using Parallel SQL will further improve the performance of 
your database sql queries.  

Parallelism creates multiple processes that work on the same 
statement thus using more CPU cycles for the same statement 
which improve query performance majorly[9]. 

- Alter table table1 Parallel 4; 

This will set the queries performed on table1 to be executed 
by 4 processes simultaneously. 

- Select /*+parallel(10) */ * from table1; 

This will improve performance by including 10 parallel 
processes but only for this particular query. 

Note— Parallel hint won’t always work in your favour, so 
judge the performance based on your experience with it, if it 
causes any slowdown consider excluding it.  

Generally parallel processes do improve performance but 

sometimes it can trick the database into thinking that a full 

table scan is cheaper than using an index which will 

obviously cause major performance issues[10]. 

 

D. Execution Plan 

 

Execution plan can be generated via Explain Plan which helps 
in studying the entire plan that the database is going to use 
while executing a specific command[11]. 

You can test the optimizations you have made by explaining 
plans for your query after making some changes. This way the 
best methods of optimizing can be determined. 

- Explain plan for select * from table1; 

- Select * from table (dbms_xplan.display); 

or 

- Set Autotrace on or traceonly (will show only the plan 
not the output). 

V. CONCLUSION 

In this paper I have put forward a method of designing the 
database and restructuring a major table in a much optimized 
manner. 

My research & analysis have proven this method as a major 
asset. Although I would suggest that the example I have used 
should only be considered as a base.  

Increase the size of the data-files slightly if required, 
otherwise this method will definitely provide major 

performance enhancements if you are willing to put in the 
effort to implement it. 

Alongside improving performance, this method will also save 
space and help you organize your database in a much more 
convenient manner. 

I will keep experimenting with my method further and update 
this paper as I learn more ways to improve it further. My 
future work in this stream will cover the following two issues: 

- Enhancing the structure further, if possible 

- Providing recommendations on tuning the database 

internally after this entire setup is complete to further 

enhance performance. 

 

ACKNOWLEDGMENT 

 

I would like to thank all those people who taught and 

inspired me throughout my life based on which today I am 

capable enough to present this paper. 

 

I would also like to thank everyone who gave me the chance 

to work and trusted me enough to let me experiment. 

Without this, I would have never been able to learn what I 

know and succeed in the path that I have chosen for my life 

and career. 

 

REFERENCES 

 
[1] Partitioning in Oracle Database,  

http://www.oracle.com/technetwork/database/enterprise-

edition/partitioning-11g-whitepaper-159443.pdf, Jul 4, 2014 

[2] Create Tablespace, 

https://docs.oracle.com/database/121/SQLRF/statements_7003.htm#S

QLRF01403 Aug 23, 2014 

[3] Managing Tablespace and Datafiles, http://www.oracle-dba-

online.com/tablespaces_and_datafiles.htm Aug 30, 2014 

[4] Managing Resumable Space Allocation, 

http://docs.oracle.com/cd/B28359_01/server.111/b28310/schema002.h

tm#ADMIN11581 Sep 15, 2014 

[5] Resumable Space Allocation, 

http://gavinsoorma.com/2009/06/resumable-space-allocation/ Oct 

1,2014 

[6] SQL Loader Concepts, 

https://docs.oracle.com/cd/B19306_01/server.102/b14215/ldr_concepts

.htm Oct 27, 2014 

[7] The Query Optimizer, 

http://docs.oracle.com/cd/B28359_01/server.111/b28274/optimops.ht

m Dec 20, 2014 

[8] Performance Tuning  Overview, 

http://docs.oracle.com/cd/E11882_01/server.112/e41573/perf_overvie

w.htm#PFGRF025 Jan 24, 2015 

[9] Database Performance Tuning,  

Guidehttps://docs.oracle.com/database/121/TGDBA/toc.htm Feb 25, 

2015 

[10] How to tune your Oracle database's performance, 

http://www.theregister.co.uk/2014/05/06/oracle_database_performance

_workshop/ Mar 2, 2015 

[11] Explain Plan Usage, https://oracle-base.com/articles/8i/explain-plan-

usage Jul 15, 2015 

 



   International Journal of Computer Sciences and Engineering                                Vol.-4(9),  Sep 2016, E-ISSN: 2347-2693 

  © 2016, IJCSE All Rights Reserved                                                                                                                                       145 

 

 
Authors Profile 

Anmol Sharma, a B.Tech graduate from 

Beant College of Engineering & 

Technology, Gurdaspur (143521) has 

worked on multiple institutional and 

organizational  projects which involve 

research and innovation. He is currently 

working at Heuristics Informatics Pvt. 

Ltd. He specializes in database and 

related technologies and holds multiple technical certification 

like Oracle 10g & 12c OCP, Oracle SQL Expert and Oracle 

Exadata Implementation Specialist.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


