

 © 2016, IJCSE All Rights Reserved 116

 International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-4, Issue-3 E-ISSN: 2347-2693

Mapreduce- A Fabric Clustered Approach to Equilibrate the Load

Deepti Sharma
1*

 and Vijay B. Aggarwal
2

1*
Dept. of Information Technology, Jagan Institute of Management Studies, GGSIPU, Rohini, Delhi, India

2. DIT, JIMS, Rohini, Delhi, India

www.ijcseonline.org

Received: Feb/26/2016 Revised: Mar/04/2016 Accepted: Mar/19/2016 Published: Mar/31/2016

Abstract- In recent years, load balancing is the challenging task which affects the performance in allotting the resources on

homogeneous and heterogeneous cluster computing environment. This research proposes an enhancement in ACCS (Adaptively

Circulates job among all servers by taking account of both Client activity and System load) policies by incorporating Map

Reduce to overcome the problem in balancing the workload for resources. This technique provides simplicity and flexibility for

data partitioning, localization and processing jobs as indicated by their present sizes and ranks the servers based on their loads

by giving high priority to the smaller jobs. Map Reduce emphasizes more on high throughput of data on low-latency of job

execution in a cluster to accomplish huge execution advantages. Trace driven simulations demonstrate the viability and

robustness of Map Reduce under numerous different situations.
Keywords: Load Balancing, Map Reduce, Web Server Clusters, AdaptLoad, ACCS

I. INTRODUCTION

Cluster computing is the next generation computing in the

field of distributed and parallel processing. Various load

balancing approaches such as Join Shortest Queue (JSQ)

policy in [1] and Locality Aware Request Distribution

(LARD) [2] are broadly executed in real system because

of their simplicity and effectiveness. The execution

advantages of these strategies are reduced when

workloads are highly variable and transiently related. The

illustrations of these frameworks incorporate High

Performance Computing (HPC) that endeavors data

frameworks, cloud computing and large scale cluster

servers[3].

The best fit descending algorithm in ordering the agents is

used to avoid the backing problems but it lags in

balancing the load when the resource leakage increases

[4]. In such cases multi-server cluster uses a front-end

dispatcher for dispatching the incoming jobs to the back-

end servers. Such a front-end dispatcher works using the

First-Come First-Serve (FCFS) queuing order [5] and [6].

Join Shortest Queue (JSQ) has been an optimal solution

for a cluster with homogeneous servers when there is no

prior knowledge about the job size. JSQ also gives

optimal result when the job sizes are exponentially

distributed [7]. The optimality of JSQ rapidly vanishes

when the job service times is highly variable and

substantially tailed.

The proposed load balancing technique inculcated in

ACCS (Adaptively Circulates the job among all servers

by taking account of Client activity and System load) is

using Map Reduce. Map Reduce is a programming model

proposed to process a large number of datasets in a

cluster. To achieve simplicity and effectiveness in load

balancing, Map Reduce handles all parallel and

distributed computing issues in ACCS to overcome the

computational overhead.

Section 2 gives a review of load balancing in web server

clusters framework. Section 3 presents the proposed load

balancing technique Map Reduced ACCS which aims at

parallelizing the jobs distribution among all servers by

taking account of both client activity and system load.

Section 4 depicts the trace driven simulations to evaluate

the performance of the proposed strategy. Conclusions

and future work are summarized in Section 5.

II. REVIEW ON LOAD BALANCING

The size based polices previously used to balance load in

a web cluster framework accomplishes the goal of

minimum job response time and job slow down [8] and

[9]. The AdaptLoad approach created in enhancing

average job response time and average job slow down for

distributing similar sized jobs to the same server [10].

The principle target of load balancing is Maximizing

Utilization of Resources (Like CPU), Minimizing

Response Time, Minimize Inter Processor

Communication Overhead and keeps the load balanced.

Load balancing is the methodology of reassigning the

aggregate loads to the individual hubs of the collective

framework to make the best response time and also great

 International Journal of Computer Sciences and Engineering Vol.-4(3), PP(116-123) Mar 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 117

use of the resources are detailed in [11]. In [12] framed

on-line load balancing using Greedy strikes back. It

concentrated on the on-line load balancing issue on

account of temporary tasks with limited task and no pre-

emption. The load sharing issue among heterogeneous

cluster frameworks considers time-offering, and the PCs

in these cluster have distinctive CPU powers and memory

limits.

Dynamic load balancing in [14] have the capability of

performing better than static techniques, they are

unavoidably more intricate. Load balancing was found to

decrease essentially the mean and standard deviation of

job reaction times, particularly under overwhelming on

unequal workload. This methodology decreased the

waiting time by significant measure of time.In [15]

proposed the queuing management and load balancing for

the on demand connectivity sharing. Their primary

objective was to model the effect of the visitor client's

vicinity on the home- user for distinctive extents of traffic

demand. In light of that, they restricted the guest user’s

packet arriving rate (k2) to a value that has irrelevant

effect on the home-user.

III. PROPOSED METHODOLOGY

In the proposed methodology a new technique Map

Reduce is implemented in addition to the above load

balancing mechanism, aiming to inherit the effectiveness

of ACCS and to overcome the limitations of both adapt

load and ACCS policies. The main significance of Map

Reduce is that it gives equal priority to both the short and

long jobs.

A. Map Reduce Framework

The processing takes a set of data key and value sets

combined and produces a set of output key and value sets.

The calculation includes two fundamental operations:

Map and Reduce. The Map operation takes the input pair

which was composed by the client and produces a set of

intermediate key and value sets. The Map Reduce library

cluster combines it altogether which are connected with

the same intermediate key and pass the data’s to the

reduce function. The reduce function acknowledges with

an intermediate key along with set of qualities for that

key. It also consolidates the result with the qualities to

structure a conceivably smaller set of qualities. Typically

just an output value of 0 or 1 is delivered in one reduce

invocation. The intermediate values are supplied to the

client's through an iterator based on reduce capacity (a

protest that permits a developer to navigate through all

the components of an accumulation paying little mind to

its particular usage). This permits the client to handle

arrangements of values substantial and it would be

impossible to fit in the memory. The frame work of the

Map Reduce function is shown in Figure 1.

B. Map Reduce Algorithm

The Description of the Map Reduce algorithm in load

balancing is discussed below:

1. The web clusters can be divided into n number

of chunks depending upon the amount of data

and processing capacity of individual unit.

2. Next, it is passed to the mapper functions. Map

(key = K1, value = V1); for each Ki∈ P do;

foreachVi = (V1 , V2 , …, aVn), Where Kp ,

ar∈Vi ∧ar ≠ as∀ 1 ≤ r, s ≤ Kc. Here, P =

partition of work; kc = minimum number of

common keys

3. Once all the clusters are iteratedthe output is

processed simultaneously at the same time,

which embraces the parallel processing of data.

4. After shuffling the output, Kb is a kc-

combination from Vi and then sorted with the

aggregate values.

5. Finally, reducers combine them all to get a

consolidated output. Reduce (key = Ki , value =

Vi); for each key Kb do; foreach v in the list of

valueslogic.

This algorithm embraces scalability as depending on the

size of the input data, it keeps on increasing the number

of the parallel processing units.

 International Journal of Computer Sciences and Engineering Vol.-4(3), PP(116-123) Mar 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 118

Figure-1 Map Reduce Framework

C. Map Reduce on ACCS Policies

ACCS occasionally positions all servers which are

focused around their present system loads, e.g., server

use or weighted line lengths and continues sending the

approaching jobs of comparable sizes to a server with

the same ranking rather than the same server which may

be over-burden by the past arrived jobs. The working

procedure of the Map Reduce algorithm is shown below

a 1 b 2

K1 V1 K2V2 K3 V3 K4 V4 K5V5 K6V6

Map Map Map Map

a 1 b 1 a 1 b 1 a 1 b 1 a 1 b 1

Combine Combine Combine Combine

a 5 c 2 b 7 c 8 c 9

Partition Partition Partition Partition

Shuffle and sort: Aggregate values by keys

c 2 9 8 b 2 7 a 1 5

Reduce Reduce Reduce

r3 s3 r2 s2 r1 s1

 International Journal of Computer Sciences and Engineering Vol.-4(3), PP(116-123) Mar 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 119

Figure-2 ACCS load balancing using Map Reduce

1. Initially the web server splits the process with clusters.

The priority list of web servers, W'={W1′ ……. WN′}; and

the clusters of c = c1, c2…cn-1.

2. Cluster sizzle boundaries: [(0,c1),[c1,c2)…..cn-1,] α];

clusters the job; then Sort all N servers in increasing

order and update priority list W';

3. Cluster boundaries are updated such that work is

equally distributed into N areas;

4. Map, separate out clusters to be processed to balance

load. Then the reducer analyzes the cluster data.

5. For each arriving job the job size ∈ [ci-1, ci) direct this

job to the server Wi.

The instruction progressively changes the

cluster sizzle the boundaries C which is processed by

using Map Reduce technique to solve the load balancing

problem. So now the ACCS will circulates the job

equally to all its serverswith reference to the account of

both client activity and system load, Map Reduce helps

in enhancing the performance by overcoming critical and

computational overhead and also in balancing the load in

the web server clusters.

D. The Execution Framework

The Map Reduce functions are distributed across web

server clusters automatically by splitting the input data

into a set of mapper M. The inputs are processed in

parallel on different machines. Now the Reduce

functions are distributed by partitioning the intermediate

key/values into R pieces using a partitioning function

(e.g hash (key) mod R). The number of partitions R and

the partition functions are specified by the client. The

working procedure of Map Reduce operation used for

implementation is shown in Figure 3.

1. The Map Reduce library in the web cluster splits the

input files initially into M pieces generally 16 megabytes

Shuffling

Aggregating

Scalable

Cluster n

Web server Parallel process

Cluster 1 Cluster 2

Mapper 1 Mapper 2 Mapper n

Pattern 1 Pattern 2 Pattern n

Reducer 1 Reducer 2 Reducer n

Pattern 1=x

Pattern 2=y

.

.
Pattern n=n

Splitting

Mapping

Reducing

 International Journal of Computer Sciences and Engineering Vol.-4(3), PP(116-123) Mar 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 120

to 64 megabytes (MB) per piece. Then it starts up many

copies of the program on the cluster.

2. Among the copies a single copy is considered as the

master and the rest are considered as workers. The work

was assigned by the master to the workers. There are M

map tasks and R reduce tasks that are ready to assign.

The master picks idle workers and assigns a map task or

a reduce task to that worker.

3. The loaded worker assigned for a map task reads the

contents of the corresponding input split. It parses the

key/value pairs out of the input data and passes each pair

to the user-defined Map function. The intermediate

key/value pairs produced by the Map function are stored

in the memory.

Figure-3 Execution framework of Map Reduce

4. Periodically, the buffered pairs are written on the

localdisk which, partitioned into R regions by the

partitioningfunction. The locations of these buffered

pairs onthe local disk are forwarded back to the

responsible location of the master, in order to reduce the

workers.

5. When a reduced worker is notified by the master

along with its locations, it uses Remote Procedure Calls

(RPC) to read the buffered data from the local disks of

the map workers. When a reduce worker has read all its

intermediate data, it sorts it by the intermediate key to all

occurrences of the same key can be grouped together.

The sorting is needed because typically many different

keys map to the same reduce task. If the amount of

cluster data is too large to fit in memory, an external sort

is used.

6. The reduce worker iterates over the sorted

intermediate data and for each unique intermediate key

encountered, it passes the key and the corresponding set

of intermediate values to the user's Reduce function. The

Assign

Reduce(2)

Assign Map

Fork(1)
Fork(1)

Web Server Cluster

Master

Fork(1)

Worker Worker

Output file

Worker
Worker

Splits

Worker
Output file

 International Journal of Computer Sciences and Engineering Vol.-4(3), PP(116-123) Mar 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 121

output of the Reduce function is appended to a final

output file for these reduce partition.

7. When all map task and reduce task are

completed, the master wakes up the web cluster. At this

point, the Map Reduce call in the user program returns

back to the user code. After successful completion, the

output of the Map Reduce execution is available in the R

output files. Typically, it is able to deal with input that is

partitioned into multiple files.

IV. RESULTS AND DISCUSSIONS

The viability and robustness of ACCS using Map

Reduce technique is discussed in this section. Different

load balancing calculations are executed by a load

dispatcher which is in charge of distributing the entries

to one of N servers. For all simulations, the details of job

incorporate job entry times and job sizes, which are

created, focused around the defined appropriations. The

used processing rates of the N servers is µp=1.

A. Performance improvement of Map Reduce

The job inter-arrival times are exponentially distributed

with mean λ
-1

 =0.7.The job sizes (i.e., the service

process) are drawn from a MMPP Markov-Modulated

Poisson Process (full form) (2) with the mean equal to µ -

1
=1, Squared Coefficient of Variation equal to SCV =20,

and Autocorrelation Function (ACF) at lag 1 equal to

0.5. Therefore, high variability and temporal dependence

are injected into the workload, i.e., the service process.

Also, consider N = 4 for homogeneous server nodes in

the cluster such that the average utilization levels at each

server node are ρ= 50%. The mean job response times

(i.e., the summation of waiting times in the queue and

service times) and the mean job slow down are measured

the individual performance, where T= µ
-1

(1+2CV) is

used for the job size classification.

Let us classify the total number of jobs based on 4

categories like Small jobs (50 – 150 jobs), Medium

small (150 - 250), Medium large (250 - 350) and Large

jobs (350 - 500). Let N be the number of jobs. The

performance is calculated based on [16] four measures

like response time, workload, delay and number of jobs.

The Map Reduce ACCS allocates the resources based on

job sizes and it gives equal priority to the smallest jobs.

The response time for small jobs is high when compared

with the larger jobs. The system response time for map

reduce ACCS outperforms with 58% and 66% is slow

compared with the performance of ACCS and Adapt

Load. The observation under Map Reduce in ACCS is

that about 99.4% of jobs experience faster response

times and maximum jobs have smallest slowdowns.

Such performance for system response time is shown in

Figure 4.

Figure-4 System Response Time

B. Sensitivity to Job slow down

The job slowdown of data taken is calculated in

successive 60 seconds interval. Map Reduce ACCS has

less slowdown performance under various network

sizes.The number of servers in a cluster are N =4, 16 and

32. Also, keep other parameters same such as the job

arrival rates, in order to maintain the 50% utilization

level on each server. As a result, Map Reduce in the

ACCS is the best policy with a clear improvement under

0

500

1000

1500

2000

2500

Small job Medium small

Job

Medium large

job

Large job

AdaptLoad

ACCS

MapReduce ACCS

Response Time (ms)

Job Size

 International Journal of Computer Sciences and Engineering Vol.-4(3), PP(116-123) Mar 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 122

three different network sizes. The robustness of Map

Reduce under different experimental parameter settings

is evaluated using job slowdown in Figure5. Map

Reduce achieves the best performance (i.e., fastest

response times and smallest slowdown).ACCS improves

the performance by around 50%. As the load increases to

80%, the performance improvement under ACCS

becomes more visible and significant. Furthermore, such

a long tail becomes shorter and finally disappears as the

system becomes heavy loaded.

Figure-5 Job slowdown

V. CONCLUSION

The proposed load balancing technique, ACCS Policies

on Map Reduce outperforms in dispersing the work in

the framework by making note of both client activity and

system load. It improves general framework execution

by acquiring the viability of ACCS. Utilizing trace

driven simulations on engineered and genuine acquires

the adequacy of ACCS and size-based strategies and

then overcome their impediments which brings about

critical execution and computational overhead. Map

Reduce can rapidly adjust to the workload changes by

checking client activity and system load. Extensive

experimental results show that Map Reduce essentially

enhances system performance, e.g., job response time

and job slowdowns, under heavy tailed and temporal

dependent workloads additionally overcoming

computational overhead. Later on, refine new load

adjusting calculation such that it can accommodate

toward oneself its parameters (e.g., the window size) to

transient workload conditions. In future the proposed

framework on heterogeneous servers is expected that the

usage of ACCS along with Map Reduce will give a

straightforward yet successful methodology for asset

designation in extensive web server cluster process.

REFERENCES

[1] Gupta, V., Balter, M. H., Sigman, K., & Whitt, W. (2007).

Analysis of join-the-shortest-queue routing for web server

farms. Performance Evaluation,64(9), 1062-1081.

[2] Pai. V. S., Aron, M., Banga, G., Svendsen, M., Druschel,

P., Zwaenepoel, W., & Nahum, E. (1998, October).

Locality-aware request distribution in cluster-based

network servers.InACM Sigplan Notices (Vol. 33, No. 11,

pp. 205-216).ACM.

[3]Teo, Y. M., &Ayani, R. (2001). Comparison of load

balancing strategies on cluster-based web

servers. Simulation, 77(5-6), 185-195.

[4]Alonso-Calvo, R., Crespo, J., Garc’ia-Remesal, M.,

Anguita, A., &Maojo, V. (2010). On distributing load in

cloud computing: A real application for very-large image

datasets. Procedia Computer Science, 1(1), 2669-2677.

[5]Feng, H., Misra, V., & Rubenstein, D. (2005). Optimal

state-free, size-aware dispatching for heterogeneous M/G/-

type systems. Performance evaluation,62(1), 475-492.

[6]Harchol-Balter, M., & Downey, A. B. (1997). Exploiting

process lifetime distributions for dynamic load

balancing. ACM Transactions on Computer Systems

(TOCS), 15(3), 253-285.

[7]Winston, W. (1977). Optimality of the shortest line

discipline. Journal of Applied Probability, 181-189.

[8]Bonomi, F. (1990). On job assignment for a parallel system

of processor sharing queues. Computers, IEEE

Transactions on, 39(7), 858-869.

[9]Bachmat, E., &Sarfati, H. (2010). Analysis of SITA

policies. Performance Evaluation, 67(2), 102-120.

[10]Riska, A., Sun, W., Smirni, E., &Ciardo, G. (2002).

ADAPTLOAD: effective balancing in clustered web

servers under transient load conditions. InDistributed

Computing Systems, 2002.Proceedings. 22nd International

Conference on (pp. 104-111). IEEE.

4.5
4

3.5
3

3.8 3.7 3.8 3.9
4.5

4.0

2
2.5

4
4.8

3.3

Large job Medium large job Medium small job Small job Overall

AdaptLoad ACCS MapReduce ACCS

 International Journal of Computer Sciences and Engineering Vol.-4(3), PP(116-123) Mar 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 123

[11]Luis, A., &Azer, B. (2000). Load balancing a cluster of

web servers. InProceedings of IEEE International

Performance, Computing, and Communications

Conference (IPCCC‟ 00), ISBN: 0-7803-5979-

[12]Crescenzi, P., Gambosi, G., Nicosia, G., Penna, P., &

Unger, W. (2007). On-line load balancing made simple:

Greedy strikes back. Journal of Discrete Algorithms, 5(1),

162-175.

[13]Niu, Y., Chen, H., Hsu, F., Wang, Y. M., & Ma, M. (2007,

February). A Quantitative Study of Forum Spamming

Using Context-based Analysis.InNDSS.

[14]Garg, A. (2015). A Framework to Optimize Load

Balancing to Improve the Performance of Distributed

Systems. International Journal of Computer

Applications, 122(15).

[15]Psaras, I., &Mamatas, L. (2011). On demand connectivity

sharing: Queuing management and load balancing for user-

provided networks. Computer Networks, 55(2), 399-414.

[16] Gupta, R. K., & Ahmad, J. (2014). Dynamic Load

Balancing By Scheduling In Computational Grid

System. Computer Engineering and Intelligent

Systems, 5(6), 39-45.

[17] Ungureanu, V., Melamed, B., &Katehakis, M. (2008).

Effective load balancing for cluster-based servers

employing job preemption. Performance Evaluation, 65(8),

606-622.

Author Profile

Ms. Deepti Sharma is an Asst. Professor in Department of

Computer Science at Jagan Institute of Management

Studies, Rohini, Delhi. She is MPhil, MCA and pursuing her

PhD in Computer Science from IGNOU. She has more than

12 years of teaching experience. Her research areas include

“Load Balancing in Heterogeneous Web Server Clusters”,

Big Data Analytics, Distributed Systems and Mobile Banking

on which papers have been published in National and

International conferences and journals. Various seminars,

workshops and AICTE sponsored FDP have been attended.

Dr. V.B. Aggarwal was awarded Ph.D Degree by University

of Illinois in USA in 1973 for his research work in the

areas of Super Computers, Array Processors, Cray XMP

and Data Base Management Systems. He has been

faculty member of Computer Science Deptt at Colorado

State University and University of Vermont in USA. Dr. V.B.

Aggarwal has been Head & Professor of Computer Science

at University of Delhi and Professor at Dept of Electrical

Engg and Computer Science at University of Oklahoma,

USA. Currently he is Dean (Infotech), DIT, JIMS, Rohini,

Delhi. In 2001 Dr. V.B. Aggarwal was elected to the

prestigious office of Chairman, Delhi Chapter, Computer

Society of India. He has been associated as a computer

subject Expert with NCERT, CBSE, AICTE and Sikkim Govt

Technical Education Department. Presently he has been

nominated as Computer Subject Expert in Academic

Council of Guru Govind Singh Indraprastha University in

Delhi. Prof. V.B. Aggarwal has authored more than 20

Computer Publications which are very popular among the

students of schools, Colleges and Institutes.

