Sum Divisor Cordial Labeling of Ring Sum of a Graph With Star Graph

D.G. Adalja ${ }^{1 \text { T }}$, G. V. ghodasara ${ }^{2}$
${ }^{1 *}$ Dept. of Mathematics, Marwadi Education Foundation, Rajkot, Gujarat, India
${ }^{2}$ Dept of Mathematics, H. \& H. B. Kotak Institute of Science, , Rajkot, Gujarat, India
*Corresponding Author: divya:adalja@marwadieducation:edu:in, Tel.: +91-99787-62168
Available online at: www.ijcseonline.org

Accepted: 19/Jun/2018, Published: 30/Jun/2018

Abstract

A sum divisor cordial labeling of a graph G with vertex set V is a bijection f from V to $\{1,2, \ldots|V|\}$ such that an edge $u v$ is assigned the label 1 if 2 divides $f(u)+f(v)$ and 0 otherwise, then number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1 . A graph with a sum divisor cordial labeling is called a sum divisor cordial graph. In this paper, we have derived sum divisor cordial labeling of ringsum of some graphs with star graph $\mathrm{K}_{1, \mathrm{n}}$.

Keywords- Sum divisor cordial labeling, ringsum of two graphs AMS Subject classi cation number: 05C78.

I. INTRODUCTION

By a graph, we mean a simple, finite, undirected graph. For terms and notations related to graph theory which are not defined here, we refer to Gross and Yellen[5] and for standard terminology and notations related to number theory we refer to Burton[2]. In this paper we discuss sum divisor cordial graph with a certain graph operation namely ring sum of graphs
Remark 1.1. Throughout this paper $|V(\mathrm{G})|$ and f denote the cardinality of vertex set and edge set of graph G respectively.

1.1 Definitions

Varatharajan et al. introduced the concept of divisor cordial labelling of a graph.
Definition 1.1 (Varatharajan et al.[8]). Let $G=(V, E)$ be a simple graph and $f: V(G) \rightarrow\{1,2, \ldots,|V(G)|\}$ be a bijection. For each edge $\mathrm{e}=u v$, assign the label 1 if $f(u) \mid f(v)$ or $f(v) \mid f(u)$ and the label 0 otherwise. The function f is called a divisor cordial labeling if $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. A graph which admits a divisor cordial labeling is called a divisor cordial graph.

A Lourdusamy, F. Patrick and J. Shiama introduced the concept of sum divisor cordial labeling of graphs.

Definition 1.2 (Lourdusamy et al.[6]). Let $G=(V, E)$ be a simple graph and $f: V(G) \rightarrow\{1,2, \ldots,|V(G)|\} \quad$ be a bijection. For each edge edge $\mathrm{e}=\mathrm{uv}$, assign the label 1 if $f\left(\mathrm{u}_{1}\right)=1$ and the label 0 otherwise. The function f is called a sum divisor cordial labeling if $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. A graph which admits a sum divisor cordial labeling is called a sum divisor cordial graph.

The divisor cordial and sum divisor cordial labeling of various types of graphs are presented in $[6,7,8,9]$.

Definition 1.3 (Gallian[3]). Ring sum of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is denoted by $G_{1} \oplus$ G_{2}, where $G_{1} \oplus G_{2}=\left(V_{1} \cup V_{2},\left(E_{1} \cup E_{2}\right)-\left(E_{1} \cap\right.\right.$ $\left.\mathrm{E}_{2}\right)$).

Remark 1.2. Throughout this paper we consider the ring sum of a graph G with star graph $K_{1, n}$ by considering any one vertex of G and the apex vertex of $K_{1, n}$ as a common vertex

II. SUM DIVISOR CORDIAL LABELING OF RINGSUM

OF GRAPHS WITH STAR GRAPH

Theorem 2.1. $\mathrm{C}_{\mathrm{n}} \oplus \mathrm{K}_{1, \mathrm{n}}$ is a sum divisor cordial graph for all n .

Proof. Let $V\left(C_{n} \oplus K_{1, n}\right)=V_{1} \cup V_{2}$, where $V_{1}=V\left(C_{n}\right)$ $=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V_{2}=V\left(K_{1, n}\right)=\left\{v=u_{1}, v_{1}, v_{2}, \ldots\right.$.,$\left.v_{n}\right\}$. Here $v_{1}, v_{2}, \ldots, v_{n}$ are pendant vertices and v is the apex vertex of $K_{1, n}$.
$\left|V\left(C_{n} \oplus K_{1, n}\right)\right|=\left|E\left(C_{n} \oplus K_{1, n}\right)\right|=2 n$.
We define labeling $f: V\left(C_{n} \oplus K_{1, n}\right) \rightarrow\{1,2,3, \ldots$,
$\left.\left|V\left(C_{n} \oplus K_{1, n}\right)\right|\right\}$ as follows.
$f\left(u_{i}\right)=2 i-1 ; \quad l \leq i \leq n$,
$f\left(v_{j}\right)=2 j ; \quad 1 \leq j \leq n$,
According to this pattern the vertices are labeled such that for any edge $e=u_{i} u_{i+1}$ in C_{n},
$f\left(u_{i}\right) \mid f\left(u_{i+1}\right), \quad 1 \leq i \leq n$.
Also
$f(v)$ does not divides $f\left(v_{j}\right) 1 \leq j \leq n$
Hence $e_{f}(0)=\mathrm{n}+1, e_{f}(1)=\mathrm{n}+2$.
Example 2.1. Sum divisor cordial labeling of the graph $C_{5} \oplus K_{1,5}$ is shown in Figure 1 as an illustration for Theorem 2.1.

Figure 1
Definition 2.1.[3] A chord of a cycle C_{n} is an edge joining two non-adjacent vertices
Theorem 2.2. $G \bigoplus K_{1, n}$ is sum divisor cordial graph for $n \geq 4, n \in \mathrm{~N}$, where tt is cycle C_{n} with one chord and chord forms a triangle with two edges of C_{n}.

Proof. Let G be the cycle C_{n} with one chord, $V(G)=$ $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $e=u_{2} u_{n}$ be the chord of C_{n}. The vertices $u_{1}, u_{2}, \ldots, u_{n}$ forms a triangle with chord e.
Let $V\left(K_{1, n}\right)=\left\{v, v_{1}, v_{2}, \ldots, v_{n}\right\}$, where $v=u_{1}$ is the apex vertex and $v_{1}, v_{2}, \ldots, v_{n}$ are the pendant vertices of $K_{1, n}$.
$\left|V\left(G \bigoplus K_{1, n}\right)\right|=2 n$ and $\left|E\left(G \bigoplus K_{1, n}\right)\right|=2 n+1$.
We define labeling $\mathrm{f}: \mathrm{V}\left(\mathrm{G} \bigoplus \mathrm{K}_{1, n}\right) \rightarrow\{1,2,3, \ldots$, $2 \mathrm{n}\}$ as follows.

$$
\begin{array}{lll}
f\left(u_{i}\right)=2 i-1 ; & & 1 \leq i \leq n \\
f\left(v_{j}\right)=2 j ; & & 1 \leq j \leq n
\end{array}
$$

According to this pattern the vertices are labeled such that for any edge $e=u_{i} u_{i+1}$ in C_{n},
$f\left(u_{i}\right) \mid f\left(u_{i+1}\right) 1 \leq i \leq n$
Also
$f(v)$ does not divides $f\left(v_{j}\right) 1 \leq j \leq n$
Hence $e_{f}(1)=\mathrm{n}+1, e_{f}(0)=\mathrm{n}$
Thus $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
So, $G \bigoplus K_{1, n}$ is a sum divisor cordial graph, $\bar{\triangle}$ vhere G is the cycle C_{n} with one chord.

Example 2.2. Sum divisor cordial labeling of ringsum of C_{6} with one chord and $K_{1,6}$ is shown in Figure 2 as an illustration for Theorem 2.2.

Figure 2
Definition 2.2.[3] Two chords of a cycle C_{n} are said to be twin chords if they form a triangle with an edge of C_{n}.
For positive integers n and p with $5 \leq p+2 \leq n, C_{n, \mathrm{p}}$ is the graph consisting of a cycle C_{n} with a pair of twin chords with which the edges of C_{n} form cycle C_{p}, C_{3} and C_{n+1-p} without chords.
Theorem 2.3. $C_{n, 3} \bigoplus K_{1, n}$ is a vertex odd divisor cordial graph, for $n \geq 5, n \in \mathrm{~N}$

Proof. Let $V\left(C_{n, 3}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}, e_{1}=u_{2} u_{n}$ and $e_{2}=u_{3} u_{n}$ be the chords of C_{n}.
Let $V\left(K_{1, n}\right)=\left\{v=u_{1}, v_{1}, v_{2}, \ldots, v_{n}\right\}$, where v is the apex vertex and $v_{1}, v_{2}, \ldots, v_{n}$ are pendant vertices of $K_{1, n}$.
$\left|V\left(C_{n, 3} \bigoplus K_{1, n}\right)\right|=2 n$ and $\left|E\left(C_{n, 3} \bigoplus K_{1, n}\right)\right|=2 n+2$.
We define labeling $f: V\left(C_{n, 3} \bigoplus \in K_{1, n}\right) \rightarrow\{1,2,3, \ldots$. , $2 n\}$ as follows.

$$
\begin{array}{rlr}
f\left(u_{1}\right)=1 & \\
f\left(u_{2}\right) & =3 & \\
f\left(u_{3}\right) & =2 n & \\
f\left(u_{i}\right) & =2 i-3 ; & \\
& 4 \leq i \leq n . \\
f\left(v_{j}\right) & =2 j ; & \\
f\left(v_{n}\right) & =2 n-1 \leq n-1 .
\end{array}
$$

According to this labeling, the vertices are labeled such that $e_{f}(1)=\mathrm{n}+1=e_{f}(0)$.
Thus $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence the graph under consideration admits sum divisor cordial labeling. Thus $C_{n, 3} \bigoplus K_{l, n}$ is a sum divisor cordial graph.

Example 2.3. Sum divisor cordial labeling of $C_{7,3} \bigoplus K_{1,7}$ is shown in Figure 3 as an illustration for Theorem 2.3.

Figure 3
Definition 2.3.[3] The cycle with triangle is a cycle with three chords which by themselves form a triangle. For positive integers p, q, r and $n \geq 6$ with $p+q+r+3$ $=n, C_{n}(p, q, r)$ denotes the cycle C_{n} with triangle whose edges form the edges of cycles $C_{p+2}, C_{q+2}, C_{r+2}$ without chords.

Theorem 2.4. $C_{n}(1,1, n-5) \oplus K_{1, n}$ is a sum divisor cordial graph, for $n \geq 6, n \in \mathrm{~N}$.

Proof. Let $V\left(C_{n}(1,1, n-5)\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$, where $e_{1}=u_{1} u_{3}, e_{2}=u_{3} u_{n-1}$ and $e_{3}=u_{1} u_{n-1}$ are chords of C_{n} which by them selves form triangle.

Let $V\left(K_{1, n}\right)=\left\{v=u_{1}, v_{1}, v_{2}, \ldots, v_{n}\right\}$, where v is the apex vertex and $v_{1}, v_{2}, \ldots, v_{n}$ are the pendant vertices.
$\left|V\left(C_{n}(1,1, n-5) \bigoplus K_{1, n}\right)\right|=2 n$ and $\mid E\left(C_{n}(1,1, n-5)\right.$
$\left.\bigoplus K_{1, n}\right) \mid=2 n+3$.
We define labeling $f: V\left(C_{n}(1,1, n-5) \bigoplus K_{1, n}\right) \rightarrow\{1,2$, $3, \ldots, 2 n\}$ as follows.

$$
\begin{aligned}
& f\left(\mathrm{u}_{1}\right)=1 \\
& f\left(\mathrm{u}_{2}\right)=2 n \\
& f\left(\mathrm{u}_{i}\right)=2 i-3 ; 3 \leq i \leq n \\
& f\left(\mathrm{u}_{j}\right)=2 j ; 1 \leq i \leq n-1 \\
& f\left(v_{n}\right)=2 n-1
\end{aligned}
$$

In view of above defined labeling pattern
$e_{f}(0)=\mathrm{n}+1, e_{f}(1)=\mathrm{n}+2$
Thus $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence $C_{n}(1,1, n-5) \bigoplus K_{1, n}$ is a sum divisor cordial graph.

Example 2.4. Sum divisor cordial labeling of ringsum of cycle with triangle $C_{8}(1,1,3)$ and $K_{1,8}$ is shown in Figure 4 as an illustration for Theorem 2s.4.

Figure 4
Definition 2.4.[3] The wheel graph W_{n} is defined as C_{n} $+K_{1}$. The vertices corresponding to C_{n}
are called rim vertices and the vertex corresponding to K_{1} is called apex.
Theorem 2.5. $W_{n} \bigoplus K_{1, n}$ is a sum divisor cordial graph for $n \geq 3, n \in \mathrm{~N}$.

Proof. Let $\mathrm{V}\left(\mathrm{Wn} \bigoplus K_{1, n}\right)=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$, where $\mathrm{V}_{1}=\mathrm{V}(\mathrm{Wn})$ $=\left\{u, u_{1}, u_{2}, \ldots, u_{n}\right\}, u$ is apex vertex and
$\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{un}\right\}$ are rim vertices; $\mathrm{V}_{2}=\mathrm{V}\left(K_{1, n}\right)=\left\{\mathrm{v}=\mathrm{u}_{1}, \mathrm{v}_{1}\right.$, $\left.\mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ are pendant vertices and v be the apex vertex.
$\left|V\left(W_{n} \bigoplus K_{1, n}\right)\right|=2 n+1,\left|E\left(W_{n} \bigoplus K_{1, n}\right)\right|=3 n$.
We define labeling $f: V\left(W_{n} \oplus K_{1, n}\right) \rightarrow\{1,2,3, \ldots$, $2 n+1\}$ as follows

$$
\begin{aligned}
f\left(u_{i}\right)= \begin{cases}i & ; i \equiv 0(\bmod 4) \\
i+1 & ; i \equiv 1,2(\bmod 4) \\
i+2 & ; i \equiv 3(\bmod 4) \quad(2 \leq i \leq n)\end{cases} \\
f(u)=2 \\
f\left(u_{1}=v\right)=1 \\
f\left(v_{j}\right)=f\left(u_{n}\right)+j ; 1 \leq j \leq n .
\end{aligned}
$$

Then we have
$e_{f}(1)=\left\lceil\frac{3 n}{2}\right\rceil, e_{f}(0)=\left\lfloor\frac{3 n}{2}\right\rfloor$
Thus $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence the graph under consideration admits sum divisor cordial labeling.

Thus $W_{n} \bigoplus K_{1, n}$ is a sum divisor cordial graph.
Example 2.5. Sum divisor cordial labeling of $W_{6} \oplus$ $K_{1,6}$
is shown in Figure 5 as an illustration for Theorem 2.5.

Figure 5
Definition 2.5.[3] The flower graph $f l_{n}(n \geq 3)$ is obtained from helm H_{n} by joining each pendant vertex to the central vertex of H_{n}.

Theorem 2.6. $f l_{n} \oplus K_{1, n}$ is a sum divisor cordial graph for $n \geq 3, n \in \mathrm{~N}$.

Proof. Let $V\left(f l_{n} \oplus K_{1, n}\right)=V_{1} \cup V_{2}$,
$V_{1}=V\left(f l_{n}\right)=\left\{u, u_{1}, u_{2}, \ldots, u_{n}, w_{1}, w_{2}, \ldots, w_{n}\right\}$, where u is the apex vertex, $u_{1}, u_{2}, \ldots, u_{n}$ are internal vertices and $w_{1}, w_{2}, \ldots, w_{n}$ are external vertices;
$V_{2}=V\left(K_{1, n}\right)=\left\{v=w_{1}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertex set of $K_{1, n}$, where $v_{1}, v_{2}, \ldots, v_{n}$ are pendant vertices and v is the apex vertex of $K_{1, n}$.
$\left|V\left(f l_{n} \bigoplus K_{1, n}\right)\right|=3 n+1,\left|E\left(f l_{n} \bigoplus K_{1, n}\right)\right|=5 n$.
We define labeling $f: V\left(f l_{n} \oplus K_{1, n}\right) \rightarrow\{1,2,3, \ldots$, $3 n+1\}$ as follows.

$$
\begin{array}{ll}
f(u)=1 & \\
f\left(u_{i}\right)=2 i+1 ; & 1 \leq i \leq n \\
f\left(w_{i}\right)=2 i ; & 1 \leq i \leq n \\
f\left(v_{j}\right)=f\left(u_{n}\right)+j ; & 1 \leq j \leq n
\end{array}
$$

Then we have

$$
e_{f}(1)=\left\lceil\frac{5 n}{2}\right\rceil, e_{f}(0)=\left\lfloor\frac{5 n}{2}\right\rfloor
$$

Thus $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$..
Hence the graph under consideration admits sum divisor cordial labeling.
Thus $f l_{n} \bigoplus K_{1, n}$ is a sum divisor cordial graph.
Example 2.6. Sum divisor cordial labeling of $f l_{4} \oplus K_{1,4}$ is shown in Figure 6 as an illustration for Theorem 2.6.

Figure 6
Definition 2.6.[3] The gear graph, denoted by G_{n}, is obtained from the wheel W_{n} by adding a vertex between every pair of adjacent rim vertices of W_{n}.

Theorem 2.7. $G_{n} \oplus K_{1, n}$ is a sum divisor cordial graph for all n.

Proof Let $V\left(G_{n} \oplus K_{1, n}\right)=V_{1} \cup \quad V_{2}$,
$V_{1}=V\left(G_{n}\right)=\left\{u, u_{1}, u_{2}, \ldots, u_{2 n}\right\}$, where u is the apex vertex, $u_{1}, u_{3}, \ldots, u_{2 n-1}$ are vertices with degree 3 and $u_{2}, u_{4}, \ldots, u_{2 n}$ are vertices with degree 2 ;
$V_{2}=V\left(K_{1, n}\right)=\left\{v=w_{1}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertex set of $K_{1, n}$, where $v_{1}, v_{2}, \ldots, v_{n}$ are pendant vertices and v is the apex vertex of $K_{1, n}$.
$\left|V\left(G_{n} \bigoplus K_{1, n}\right)\right|=3 n+1,\left|E\left(G_{n} \bigoplus K_{1, n}\right)\right|=4 n$.
We define labeling $f: V\left(G_{n} \oplus K_{1, n}\right) \rightarrow\{1,2,3, \ldots, 3 n$ $+1\}$ as follows.
Case:1 $n \equiv 1,3(\bmod 4)$

$$
\begin{aligned}
& f(u)=2 \\
& f\left(u_{1}=v\right)=1 \\
& f\left(u_{i}\right)= \begin{cases}i+1 & ; i \equiv 1,2(\bmod 4) \\
i+2 & ; i \equiv 3(\bmod 4) \\
i & ; i \equiv 0(\bmod 4) \quad(2 \leq i \leq n)\end{cases}
\end{aligned}
$$

Case:2 $n \equiv 2,4(\bmod 4)$

$$
\begin{gathered}
f(u)=2 \\
f\left(u_{1}=v\right)=1 \\
f\left(v_{j}\right)=f\left(u_{n}\right)+j ; \quad 1 \leq j \leq n-1 . \\
f\left(v_{n}\right)=2 \mathrm{n} \\
f\left(u_{n}\right)=3 \mathrm{n}+1 \\
f\left(u_{i}\right)= \begin{cases}i+1 & ; i \equiv 1,2(\bmod 4) \\
i+2 & ; i \equiv 3(\bmod 4) \\
i & ; i \equiv 0(\bmod 4) \quad(2 \leq i \leq n-1)\end{cases}
\end{gathered}
$$

Then we have $e_{f}(1)=\mathrm{n}-1, e_{f}(0)=\mathrm{n}$.
Thus $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence $G_{n} \bigoplus K_{1, n}$ is a sum divisor cordial graph.

Figure 7

Example 2.7. Sum divisor cordial labeling of $G_{6} \bigoplus K_{1,6}$ is shown in Figure 7 as an illustration for Theorem 2.7.

Theorem 2.8. $P_{n} \oplus K_{1, n}$ is a sum divisor cordial graph for all n.
Proof. Let $V\left(P_{n} \bigoplus K_{l, n}\right)=V_{1} \cup V_{2}$, where $V_{1}=V(P n)$ $=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V_{2}=V\left(K_{1, n}\right)=\left\{v=u_{1}, v_{1}, v_{2}, \ldots\right.$, $v_{n} \jmath$. Here $v_{1}, v_{2}, \ldots, v_{n}$ are the pendant vertices and, v is the apex vertex.
$\left|V\left(P_{n} \bigoplus K_{l, n}\right)\right|=2 n,\left|E\left(P_{n} \oplus K_{l, n}\right)\right|=2 n-1$.
We define labeling $f: V\left(P_{n} \bigoplus K_{1, n}\right) \rightarrow\{1,2,3, \ldots, 2 n\}$ as follows.

$$
\begin{aligned}
& f\left(u_{i}\right)=2 i ; \quad 1 \leq i \leq n, \\
& f\left(v_{j}\right)=2 j-1 ; 1 \leq j \leq n .
\end{aligned}
$$

Then we have $e_{f}(1)=\mathrm{n}-1, e_{f}(0)=\mathrm{n}$.
Thus $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence the graph under consideration admits sum divisor cordial labeling.
Thus $P_{n} \bigoplus K_{1, n}$ is a sum divisor cordial graph.
Example 2.8. Sum divisor cordial labeling of $P_{5} \bigoplus K_{1,5}$ is shown in Figure 8 as an illustration for Theorem 2.8.

Figure 8
Definition 2.7.[3] The shell $\operatorname{Sn}(\mathrm{n} \geq 4, \mathrm{n} \in \mathrm{N})$ is the graph obtained by taking $n-3$ concurrent chords in the cycle $C n$.
The vertex at which all the chords are concurrent is called the apex vertex of S_{n}.
Theorem 2.9. $S_{n} \bigoplus K_{1, n}$ is a sum divisor cordial graph for all $n \in \mathrm{~N}$.
Proof. Let $V\left(S_{n} \oplus K_{1, n}\right)=V_{1} \cup V_{2}$,
$V_{1}=V\left(S_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$, where u_{1} is apex vertex; V_{2} $=V\left(K_{1, n}\right)=\left\{v=u_{1}, v_{1}, v_{2}, \ldots, v_{n}\right\}$, where $v_{1}, v_{2}, \ldots, v_{n}$ are pendant vertices and v is the apex vertex of $K_{1, n}$.
$\left|V\left(S_{n} \oplus K_{1, n}\right)\right|=2 n+1,\left|E\left(S_{n} \bigoplus K_{1, n}\right)\right|=3 n-1$.
We define labeling $f: V\left(S_{n} \oplus K_{1, n}\right) \rightarrow\{1,2,3, \ldots, 2 n$ $+1\}$ as follows

$$
\left.\begin{array}{rl}
f\left(u_{i}\right)=\left\{\begin{array}{ll}
i+1 & ; i \equiv 0,1(\bmod 4) \\
i+2 & ; i \equiv 2(\bmod 4) \\
i & ; i \equiv 3(\bmod 4)
\end{array} \quad(2 \leq i \leq n)\right.
\end{array}\right\}
$$

Then we have

Cases of n	Edge conditions
$n \equiv 0,2(\bmod$ $4)$	$e_{f}(0)=\left\lceil\frac{3 n-1}{2}\right\rceil, e_{f}(1)=\left\lfloor\frac{3 n-1}{2}\right\rfloor$
$n \equiv 1,3(\bmod$ $4)$	$e_{f}(1)=\frac{3 n-1}{2}=e_{f}(1)$

Thus $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence the graph under consideration admits sum divisor cordial labeling.

Thus $\mathrm{Sn} \oplus \mathrm{K} 1, \mathrm{n}$ is a sum divisor cordial graph.
Example 2.9. Sum divisor cordial labeling of S7 \oplus K1,7 is shown in Figure 9 as an illustration for Theorem 2.9.

Figure 9
Definition 2.8.[3] The double fan $D F_{n}$ is obtained by P_{n} $+2 K_{1}$.
Theorem 2.10. $D F_{n} \oplus K_{1, n}$ is a sum divisor cordial graph for all n.

Proof. Let $\mathrm{V}\left(\mathrm{DFn} \oplus K_{1, n}\right)=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$,
$\mathrm{V}_{1}=\mathrm{V}(\mathrm{DFn})=\left\{u, w, u_{1}, u_{2}, \ldots, u_{n}\right\}$, where u, w are two apex vertices of DFn;
$\mathrm{V}_{2}=\mathrm{V}\left(K_{1, n}\right)=\left\{v=w, v_{1}, v_{2}, \ldots, v_{n}\right\}$, where v_{l}, v_{2}, \ldots , v_{n} are pendant vertices and v is the apex vertex of $K_{1, n}$. $\left|V\left(D F_{n} \oplus K_{1, n}\right)\right|=2 n+2,\left|E\left(D F_{n} \oplus K_{1, n}\right)\right|=4 n-1$.

We define labeling $f: V\left(D F_{n} \oplus K_{1, n}\right) \rightarrow\{1,2,3, \ldots$, $2 n+2\}$ as follows.

$$
\begin{gathered}
f(u)=2 \\
f(v=w)=1 \\
f\left(u_{i}\right)= \begin{cases}i+2 & ; i \equiv 0,1(\bmod 4) \\
i+1 & ; i \equiv 3(\bmod 4) \\
i+3 & ; i \equiv 2(\bmod 4) \quad(1 \leq i \leq n)\end{cases}
\end{gathered}
$$

Case:1 $\mathrm{n} \equiv 0,1,3(\bmod 4)$

$$
f\left(v_{j}\right)=f\left(u_{n}\right)+j ; \quad l \leq j \leq n .
$$

Case:2 $n \equiv 2(\bmod 4)$
$f\left(v_{l}\right)=n+2$
$f\left(v_{j}\right)=f\left(u_{n}\right)+j ; \quad 2 \leq j \leq n$.
In view of the above labeling pattern we have

Cases of n	Edge conditions
$n \equiv 0,2(\bmod 4)$	$e_{f}(0)=2 n, e_{f}(1)=2 n-1$
$n \equiv 1,3(\bmod 4)$	$e_{f}(1)=2 n, e_{f}(0)=2 n-1$

Thus $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence the graph under consideration admits sum divisor cordial labeling.
i.e. $\mathrm{DF}_{\mathrm{n}} \oplus \mathrm{K}_{l, n}$ is a sum divisor cordial graph.

Example 2.10. Sum divisor cordial labeling of $D F_{5} \oplus K_{1,5}$ is shown in Figure 10 as an illustration

for Theorem 2.10.
Figure 10
Theorem 2.11. $K_{2, n} \oplus K_{1, n}$ is a sum divisor cordial graph for all n .
Proof. Let $\mathrm{V}\left(K_{2, n}\right)=\mathrm{V}_{1} \cup \mathrm{~V}_{2}, \mathrm{~V}_{1}=\{u, w\}, \mathrm{V}_{2}=\left\{u_{1}\right.$, $\left.u_{2}, \ldots, u_{n}\right\}$ and
$\mathrm{V}\left(K_{1, n}\right)=\mathrm{V}_{3}=\left\{v=u_{l}, v_{l}, v_{2}, \ldots, v_{n}\right\}$, where v_{l}, v_{2}, \ldots ., v_{n} are pendant vertices and v is the apex vertex of $K_{1, n}$.

Then $V\left(K_{2, n} \oplus K_{1, n}\right)=V_{1} \cup V_{2} \cup V_{3}$.
$\left|V\left(K_{2, n} \bigoplus K_{1, n}\right)\right|=2 n+2,\left|E\left(K_{2, n} \bigoplus K_{1, n}\right)\right|=3 n$.
We define labeling $f: V\left(K_{2, n} \oplus K_{1, n}\right) \rightarrow\{1,2,3, \ldots$, $2 n+2\}$ as follows.

$$
\begin{aligned}
f(u) & =1 . & & \\
f(w) & =2 & & \\
f\left(u_{i}\right) & =i+2 ; & & l \leq i \leq n . \\
f\left(v_{j}\right) & =f\left(u_{n}\right)+j ; & & l \leq j \leq n .
\end{aligned}
$$

In view of the above labeling pattern we have

Cases of n	Edge conditions
$n \equiv 0,2(\bmod 4)$	$e_{f}(0)=\frac{3 n}{2}=e_{f}(1)$
$n \equiv 1,3(\bmod 4)$	$e_{f}(0)=\left\lceil\frac{3 n}{2}\right\rceil, e_{f}(0)=\left\lfloor\frac{3 n}{2}\right\rfloor$

Thus $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence the graph under consideration admits sum divisor cordial labeling.
Thus $K_{2, n} \oplus K_{1, n}$ is a sum divisor cordial graph.

Example 2.11. Sum divisor cordial labeling of $\mathrm{K} 2,7 \oplus \mathrm{~K} 1,7$ is shown in Figure 11 as an illustration for Theorem 2.11.

Figure 11

III. CONCLUDING REMARKS

The sum divisor cordial labeling is an invariant of divisor cordial labeling by considering codomain as finite set of numbers. It is interesting to see that if two graphs are sum divisor cordial then their ringsum is sum divisor cordial or not. We have investigated eleven
sum divisor cordial graphs in context of ringsum of graphs.

References

[1] D. G. Adalja and G. V. Ghodasara, "Some New Sum Divisor Cordial Graphs", International Journal of Applied Graph Theory, Vol. 2, No.1, pp.19-33, 2018.
[2] D. M. Burton, "Elementary Number Theory", Brown Publishers, Second Edition, 1990.
[3] J. A. Gallian, "A Dynamic Survey of Graph Labeling", The Electronic Journal of Combinatorics, 20, 2017, \# DS6.
[4] G. V. Ghodasara and D. G. Adalja, "Divisor Cordial Labeling in Context of Ring Sum of Graphs", International Journal of Mathematics and Soft Computing, Vol.7, No.1, pp. 23-3, 2017.
[5] J. Gross and J. Yellen, "Graph Theory and Its Applications", CRC Press, 1999. Indian Acad. Math., 27, 2, pp.373-390, 2005.
[6] A. Lourdusamy and F. Patrick, "Sum Divisor Cordial Labeling For Star And Ladder Related Graphs", Proyecciones Journal of Mathematics, Vol.35, No.4, pp. 437-455, 2016.
[7] R. Varatharajan and S. Navanaeethakrishnan and K. Nagarajan, "Divisor Cordial Graphs", International J. Math. Combin., Vol.4, pp.15-25, 2011.
[8] R. Varatharajan, S. Navanaeethakrishnan and K. Nagarajan, "Special Classes of Divisor Cordial Graphs", International Mathematical Forum, Vol.7, No. 35, pp. 1737-1749, 2012 .

Authors Profile

Divya G. Adalja received its Bachelor of Science from Saurshtra University(Gujarat) in 2002 and Master of Science from Saurshtra University) in the year 2008. Currently she is working as Sr . assistant professor in Mathematics Dept. at Marwadi University (Gujarat). She is doing her Ph.D. under the guidance of Dr. G. V. Ghodasara at Gujarat
 Thechnological University, Ahmedabad (Gujarat).

Dr. Gaurang V. Ghodasara received M.Sc. degree from Sardar Patel University, Vallabh Vidyanagar, (Gujarat). He received M. Phil and Ph. D. both degree from Saurashtra University, Rajkot(Gujarat) in 2005 and 2009 respectively. Currently he is working as an assistant professor in Mathematics Department at H. \& H. B. Kotak Institute of Science, Rajkot(Gujarat). He is
 registered guide at Gujarat Technological University, Chandkheda, Ahmedabad(Gujarat) .

