
 © 2018, IJCSE All Rights Reserved 1604

 International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-6, Issue-6 E-ISSN: 2347-2693

VM Optimization using Deadline Based Task Scheduling in Cloud

Computing

Monika
1*

, Pardeep Kumar
2
, Sanjay Tyagi

3

1,2,3

Department of Computer Science and Applications, Kurukshetra University, Kurukshetra-136119, India

*Corresponding Author: monika.banasthali@gmail.com

Available online at: www.ijcseonline.org

Accepted: 18/Jun/2018, Published: 30/Jun/2018

Abstract - The approach of scheduling the tasks directly impacts the performance of cloud. Deadline based approach is the

major area of concern in cloud computing, because deadline based tasks must be executed in time. In this paper, a novel

deadline based task scheduling system model has been proposed. In proposed model, tasks have been executed on the basis of

deadline constraint. Auto-scalability and resource optimization are other factors that have also been taken into consideration

into the present work. The proposed model assists in reducing the makespan of the requests that is valuable to user.

Keywords - Cloud computing, deadline based constraint, makespan, resource optimization, scheduling algorithm.

I. INTRODUCTION

Cloud computing provides dynamic resource allocation and

fulfils the clients need at any cost with respect to time. Some

users do not care for the cost at which their request is being

fulfilled. In other cases, users may provide time and cost

constraints as a basic parameter of scheduling the jobs. In

this paper, system model has been proposed based on

deadline with respect to time. Along with deadline, resource

optimization has also been considered in this paper.

Resource manager optimizes the number of resources used

in execution that automatically reduce energy.

II. RELATED WORK

Deadline based approach is not a new approach of

scheduling. In this area, Javier Celaya et. al. (2011) proposed

network based methodology. In this methodology,

decentralized scheduler was used. Global scheduler found

availability of nodes and local scheduler used EDF (Earliest

Deadline First) scheduling policy to execute the requests.

However, on cloud, using cost and tasks, flow deadline

scheduling was implemented by Maciej Malawski et. al.

(2012). This approach worked on different workflows of a

task. Along with workflow, tasks priority of deadline based

tasks were set to schedule the tasks efficiently. To reduce

cost, Nitish Chopra et. al. (2013) enhanced the HEFT

scheduling algorithm. Their approach worked on private as

well as public clouds. First of all, proposed methodology

checked the availability of resources that could finish the

tasks in time. If resources were not found, then private

clouds were availed to fulfil the request on time as well as

cost constraint. Deadline tasks were handled by graph

theory, using Bipartite methodology by Chien-Hung Chen

et. al. (2014), while ILP (Integer Linear Programming) was

used by Zhao-Rong Lai et. al. (2014) to handle deadline

based tasks.

Considering cost, task dependency should be handled

properly, while executing deadline based tasks. Dinesh

Komarasamy et. al. (2015) first removed the tasks

dependency, filtered according to their priority and then

executed the tasks. Apart from these factors, Longkun Guo

et al. (2017) handled deadline based tasks along with

increasing the workload of the resources. This increased the

CPU utilization and also minimized the number of used

resources.

To execute the deadline based requests, auto-scaling

technique is used. With this technique, resources can be

scaled up and scaled down according to need. Hyejeong

Kang et. al. (2013), in their work, simply auto-scaled the

resources that satisfy the request’s requirement and SLA

defined by the user. Jieun Choi et. al. (2015), in their work,

first found out the appropriate cluster. If no cluster was

found according to need, then request was moved to the

private resource. Still, if no appropriate private resource was

found, then new private resource was created according to

need.

Vinay et. al. (2016) proposed a methodology, in which

resources were auto-scaled to execute sub-tasks. In their

work, child tasks were checked if they can be executed in

time or not. If not, then resources were auto-scaled to finish

the tasks in time.

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1605

III. PROBLEM FORMULATION

Execution of request on given period of time is the users’

demand while using cloud resources. This demand leads

their request to the deadline based task scheduling. In

deadline based scheduling, all tasks are put in a queue and

are scheduled using particular methodology. Auto-scaling is

another factor that is included in the deadline based

scheduling. Using auto-scaling factor, our resources can be

scaled whenever needed. There are two types of auto-scaling

methods in cloud environment:

 Horizontal scaling: In this type of scaling method,

resource is created of the same type i.e. same storage and

CPU processing power to the resource that is in use.

 Vertical scaling: Using this scaling method, resource

configuration can be scaled up or down while executing

the tasks.

IV. PROPOSED SYSTEM MODEL ON RESOURCE

OPTIMIZATION USING DEADLINE

CONSTRAINT FOR TASK SCHEDULING

Let there be n tasks named as t1, t2, …, tn. These deadline

based tasks are arranged in a queue, Q1, in ascending order

(considering lowest number with highest priority). Then it is

checked whether all tasks in Q1 can finish the jobs according

to ti / r, where ti is size of the i
th

task and r is processing

power of the resource. If tasks can’t be completed in time,

then particular tasks will be aborted. Then execution time

and next_deadline of the tasks is compared. The

next_deadline is calculated by equation (i):

next_deadline = deadline of task – execution time of current

task to be executed (i)

For any task having execution time greater than its

next_deadline, new resource is created and task is assigned

to that resource. During execution, we again check whether

remaining tasks could be executed in time or not. If not, then

a new resource is generated and that individual resource is

provided to the particular tasks. The process continues until

all jobs / requests have been executed. During this process,

resource manager checks the status of each resource. If any

resource gets free, then request is assigned to that resource

instead of creating new resource.

V. ASSUMPTIONS OF PROPOSED MODEL

The proposed methodology not only executes the deadline

based requests in time, but also optimizes the resources also

that helps in reducing power consumption to some extent.

The proposed methodology has some assumptions, which

are:

 The tasks placed in deadline queue are non-

preemptive i.e. the execution of a task cannot be

stopped forcefully and the resource cannot be

assigned to another task.

 Horizontal scaling method is used for auto-scaling

approach.

 Tasks are arranged based on their deadline time and

not on cost & priority.

 All tasks are independent to each other.

 If new task comes, then it will not be entertained i.e.

nature of proposed model is static.

VI. ALGORITHM

The following abbreviations have been used in algorithm:

n_deadline = next deadline of tasks after executing current

task.

cur_exe = execution time of i
th

task.

Ti = i
th

task.

Tn = n
th

/ last task.

Vk = k
th

virtual machine / resource.

Ti.exe = execution time of i
th

 task.

Steps of proposed methodology:

 Submit deadline based tasks to the server.

 Arrange the tasks in ascending order according to

deadline in a queue.

 Set i = 0, k = 0.

 While i < n do

 If Ti.exe < Ti.n_deadline

then

assign Ti task to Vk resource.

Else

If any resource other

than V0 is free

then

Assign Ti to that free resource

Else create a new resource Vk++

and

Assign Ti task to Vk++ .(end of if

statement)

 Ti.deadline=Ti.n_deadline

Ti.n_deadline = Ti. n_deadline –

cur_exe

 done (end of while loop)

 Stop.

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1606

Fig. 1 Flow chart of deadline based scheduling algorithm.

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1607

VII. EXPERIMENT AND ANALYSIS

The proposed algorithm has been analyzed by taking a

scenario of ten tasks with their deadline constraint. To

perform this analysis, following configuration has been

taken:

Resource size = 20,000 mips.

Here, only one resource, vm0, has been considered for

executing the tasks and following tasks have been stored in

Q1.

Tasks configuration has shown in table 1:

Table 1
Task

(T)

Task

size in

(MI)

Execution time

(T.exe) in ms.

Deadline

(D) in ms.

Next deadline

(n_deadline)

T1 4000 200 400 200

T2 6000 300 600 400

T3 8000 400 800 600

T4 10000 500 1000 800

T5 12000 600 1200 1000

T6 14000 700 1400 1200

T7 16000 800 1600 1400

T8 18000 900 1800 1600

T9 20000 1000 2000 1800

T10 22000 1100 2200 2000

After executing T1, if it is found that first task has been

executed in time, then scenario of table 1 will change into

scenario shown in table 2.

Table 2

Task

(T)

Execution time

(T.exe) in ms.

Deadline

(D) in ms.

Next deadline

(n_deadline)

T2 300 400 100

T3 400 600 300

T4 500 800 500

T5 600 1000 700

T6 700 1200 900

T7 800 1400 1100

T8 900 1600 1300

T9 1000 1800 1500

T10 1100 2000 1700

In table 2, execution time of T3 is less than its next deadline

time. Therefore vm1 resource is created and T3 is assigned to

it. After executing T2, resulting scenario is shown in table 3.

Table 3

Task

(T)

Execution time

(T.exe) in ms.

Deadline

(D) in ms.

Next deadline

(n_deadline)

T4 500 500 0

T5 600 700 200

T6 700 900 400

T7 800 1100 600

T8 900 1300 800

T9 1000 1500 1000

T10 1100 1700 1200

As shown in table 3, T5, T6, T7, T8 have less execution time

than their next deadline time. In such case, first we check if

created resource i.e. vm1 is free or not. In this case, vm1 is

not free. Therefore, we scale our resource by creating

resources vm2, vm3, vm4, vm5 and assign it to T5, T6, T7, and

T8 respectively.

After executing T4, we found the scenario shown in

following table 4:

Table 4

Task

(T)

Execution time

(T.exe) in ms.

Deadline

(D) in ms.

Next deadline

(n_deadline)

T9 1000 1400 0

T10 1100 1600 2000

To execute T10, new resource should be created. Before

creating, it will be checked whether there is any created

resource, which is available to execute the task. It was

observed that vm1 is free. Therefore, T10 will be assigned to

vm1.

Now, the following scenario shown in table 5 is observed.

Table 5

Resource Tasks in

Resource

Remaining time of resource to

be free

vm0 T9 1000

vm1 T10 1100

vm2 T5 400

vm3 T6 200

vm4 T7 300

vm5 T8 400

By the given scenario of 10 tasks, it has been observed that

only 6 resources are needed to complete the tasks within

given deadline.

VIII. CONCLUSION AND FUTURE WORK

One of the major motive of cloud computing is that every

task should be completed on or before the deadline of the

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1608

task. To implement this deadline based algorithm, auto-

scaling of the resources is performed in an economical and

efficient way in this paper. The proposed approach not only

scales the resources but also optimizes them. The minimum

number of possible resources had been created in this

approach. As creation of more resources consumes more

energy, a methodology can be proposed that can help in

reducing power consumption in future.

REFERENCES

[1] Javier Celaya, Unai Arronategui, “A Highly Scalable Decentralized

Schedulerof Tasks with Deadlines”, in IEEE/ACM 12th

International Conference on Grid Computing, 2011, pp. 58 – 65.

[2] Lu Guan, Ying Wang, Yanfei Li, “A Dynamic Resource Allocation

Method in IaaSBased on Deadline Time”, in IEEE 14th Asia-

PacificNetwork Operations and Management Symposium

(APNOMS), 2012, pp. 1 – 4.

[3] Guan Le, Ke Xu, Junde Song, “Dynamic Resource Provisioning and

Scheduling with Deadline Constraint in Elastic Cloud”, in IEEE

International Conference on Service Science, 2013, pp. 113-117.

[4] Zhao-Rong Lai, Che-Wei Chang, Xue Liu, Tei-Wei Kuo, Pi-Cheng

Hsiu, “Deadline-Aware Load Balancing for MapReduce”, in IEEE

20th Internati-onal Conference on Embedded and Real-Time

Computing Systems & Applications, 2014, pp. 1-10.

[5] Chien-Hung Chen, Jenn-Wei Lin, Sy-Yen Kuo, “Deadline-

Constrained MapReduce Scheduling Based on Graph Modelling”,

in IEEE International Conference on Cloud Computing, 2014, pp.

416-423.

[6] Maurice Khabbaz, Chadi Assi, “Modelling and Analysis of A Novel

Deadline-Aware Scheduling Scheme for Cloud Computing Data

Centers”,in IEEE Transactions on Cloud Computing, 2015, pp. 15.

[7] Dinesh Komarasamy, Vijayalakshmi Muthu-swamy, “Adaptive

Deadline based Dependent Job Scheduling algorithm in Cloud

Computing”, in IEEE Seventh International Conference on

Advanced Computing, 2015, pp. 1-5.

[8] R Krishnam Raju Indukuri, Suresh Varma Penmasta, Dr. M V

Rama Sundari, Dr. G. Jose Moses, “Performance Evaluation of

Deadline Aware Multi Stage Schedulingin Cloud Computing”, in

IEEE 6th International Conference on Advanced Computing, 2016,

pp. 229-234.

[9] Vinay Kand S M Dilip Kumar, “Auto-scaling for Deadline

Constrained Scientific Workflows in Cloud Environment”, in IEEE

Annual India Conference (INDICON), 2016, pp. 1-6.

[10] Longkun Guo, Hong Shen, “Efficient Approxi-mation Algorithms

for the Bounded Flexible Schedu-ling Problem in Clouds”, in IEEE

Transactions on Parallel and Distributed Systems, 2017, pp. 1-12.

[11] Jieun Choi, Younsun Ahn, Seoyoung Kim, Yoonhee Kim1,

Jaeyoung Choi, “VM Auto-scaling Methods for High Throughput

Computing on Hybrid Infrastructure”, in cluster computing,

springer, 2015, pp. 1063–1073.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6075048
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6075048
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6338450
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6338450
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6338450
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6338450
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6900045
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6900045
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6900045
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6245519
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7824661
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7824661
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71

