

 © 2017, IJCSE All Rights Reserved 169

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-5, Issue-12 E-ISSN: 2347-2693

An Adaptive Sorting Algorithm for Almost Sorted List

Rina Damdoo

1
*, Kanak Kalyani

2

1*

 Department of CSE, RCOEM, Nagpur, India
2
 Department of CSE, RCOEM, Nagpur, India

*Corresponding Author: damdoor@rknec.edu, Tel.: +91-9324425240

Available online at: www.ijcseonline.org

Received: 20/Nov/2017, Revised: 29/Nov/2017, Accepted: 17/Dec/2017, Published: 31/Dec/2017

Abstract—Sorting algorithm has a great impact on computing and also attracts a grand deal of research. Even though many

sorting algorithms are evolved, there is always a scope of for a new one. As an example, Bubble sort was first analyzed in

1956, but due to the complexity issues it was not wide spread. Although many consider Bubble sort a solved problem, new

sorting algorithms are still being evolved as per the problem scenarios (for example, library sort was first published in 2006 and

its detailed experimental analysis was done in 2015) [11]. In this paper new adaptive sorting method Paper sort is introduced.

The method is simple for sorting real life objects, where the input list is almost but not completely sorted. But, one may find it

complex to implement when time-and-space trade-off is considered.

Keywords—Adaptive sort, Time complexity, Paper sort, Sorted list, Un-sorted list

I. INTRODUCTION

A sorting algorithm is known as adaptive, if it takes benefit

of already sorted elements in the list i.e. while sorting if the

source list has few already sorted elements, taking this into

consideration, adaptive algorithms will not try to re-arrange

those. Insertion sort has been time-honoured as a well known

and established optimal-most comparison-based sorting

algorithm for small arrays [1], [2], [4], [10].

 Non-adaptive algorithms do not consider already

sorted elements in the list. They compel each element to be

re-arranged to confirm their final position in the list. To

achieve this position, elements may incur swapping through

and fro.

 Paper sort combines advantages of Insertion sort

and Merge sort. The name Paper sort has been given to this

new sorting algorithm because the way of sorting is similar

to the way, students’ examination Answer papers are

arranged roll number wise.

II. PROPOSED APPROACH

Given a list of numbers, in paper sort we split the list into

two lists sorted and unsorted. Consider the first number as

the key element of the sorted list SL (say K) which is initially

empty. Then the second position element (say X) is

compared with K, and is added at end to sorted list if it is

greater than K. If it is not, it is added to unsorted list USL

which is initially empty.

 Now the third position element is compared with the

last (say L) number in the sorted list and is added at end to

sorted list if it is larger than L, otherwise it is added at the

end of unsorted list USL. This procedure is continued until

all the elements are scanned and we get two lists sorted list

SL and unsorted list USL. Recursively above procedure is

repeated on USL until we get an empty USL.

 Now there are multiple sorted lists which can be

merged in the reverse order they are generated i.e. last and

second last lists are first merged to get a temporary list. Then

temporary and third last list are merged to give a new

temporary list and so on finally to get a single SL. Paper sort

with some random numbers is explained in Figure 1.

III. IMPLEMENTATION

 Splitting Procedure

While implementing a program for this sort in C language, I

found that shifting of numbers in an array in order to make

space for next number in sorted sequence is a time

consuming task. So without changing the original method

little changes can be done to it, so that shifting can be

avoided. This can be done by swapping the numbers X and

the number getting added to sorted list where X is number in

array next to position where sorted list ends. Explanation

provided below is actual execution of algorithm after every

pass.

 International Journal of Computer Sciences and Engineering Vol. 5(12), Dec 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 170

Figure1: Demonstration of Paper sort

65 52 49 84 53 17 32 60 70 44

Pass 1 starts

65

65 52

65 52 49

Now when 84 is scanned it must be added after 65. In order

to make space for 84, instead of shifting 52 and 49 in array

we swap 52 and 84 to get

65 84 49 52

Remaining numbers are all added as it is to get

65 84 49 52 53 17 32 60 70 44

PASS 1 ends

PASS 2 starts for numbers 49, 52,53,17,32,60,70,44

65 84 49 52 53 17 32

Now when 60 is scanned it must be added after 53 so swap

17 and 60 to get

65 84 49 52 53 60 70 17

Now when 70 is scanned it must be added after 60 so swap

32 and 70 to get

65 84 49 52 53 60 70 17 32

65 84 49 52 53 60 70 17 32 44

PASS 2 ends

PASS 3 starts for numbers 17, 32, 44

65 84 49 52 53 60 70 17

65 84 49 52 53 60 70 17 32

65 84 49 52 53 60 70 17 32 44

PASS 3 ends with empty USL and three sorted lists (65, 84),

(49, 52, 53, 60, 70), (17, 32, 44)

 Merging procedure

Merging adjacent runs is done with the help of temporary

memory. Algorithm uses a temporary memory equal to size

of array. Then, it merges elements of last two generated

 International Journal of Computer Sciences and Engineering Vol. 5(12), Dec 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 171

void PaperSort()

{

 int A[20]={65,52,49,84,53,17,32,60,70,44};

 int B[20], BOUND[10];

 int i=0, j=0, k, t, p, q;

 while (i<20)

 {

 for (k=i+1; k<20; k++)

 if (A[k] > A[i])

 { t= A[k];

 A[k]= A[i+1];

 A[i+1] = t;

 i++;

 }

 BOUND[j++]= i;

 i++;

 }

 j--;

 while (j >= 1)

 { k=0;

 p= (j-2>=0 ? BOUND[j-2] + 1:0);

 q=BOUND[j-1] + 1;

 while (p <= BOUND[j-1] && q<20)

 {

 if (A[p] <= A[q])

 B[k++]= A[p++];

 else

 B[k++] = A[q++];

 }

 while (p <= BOUND[j-1])

 B[k++] = A[p++];

 while (q<20)

 B[k++] = A[q++];

 for (i=0; i<k; i++)

 A[BOUND[j-2] + 1 + i] = B[i];

 j--;

}

for (k=0; k<20; k++)

 printf("%d ", B[k]);

}

sorted lists into temporary array (say B). After merging all

elements of B are copied to original array. Question here is

as the list is not uniformly divided into sub lists, how sub

lists bounds must be remembered. Answer is very simple, we

have to sacrifice a little on memory and use one more array

(say BOUND), which will store the sub lists bounds. A

simple merge algorithm runs left to right or right to left

depending on which run is smaller on the temporary memory

and original memory of the sub list. The final sorted run is

stored in the original memory of the initial runs. Paper sort

searches for appropriate element in some order and takes

advantage of already positioned elements, so it is an adaptive

algorithm.

IV. PSEUDO CODE FOR PAPER SORT

Given Figure 2 is Pseudo code for Paper Sort. This algorithm

has been executed on 20 integers in C language as shown.

V. TIME COMPLEXITY MEASUREMENT

1. Best case: If the list is already arranged in required

sequence then Paper sort has best case time complexity

Ω(n). Insertion sort also makes use of the already sorted

elements but it works well for small set of numbers.

2. Worst case: Worst case will occur when the list is

exactly inversely arranged. Paper sort has Worst case

time complexity O(n
2
). This algorithm is not intended to

be used by application where data is not almost sorted.

3. Average case: In average case Paper sort has average

case time complexity Θ(n log n). When space utilization

is major concern, space complexity will not be

comparable with merge sort.

VI. CONCLUSION AND FUTURE WORK

Every sorting algorithm has some advantages and

disadvantages. Space and Time complexity trade-off is

always under consideration.

 Proposed algorithm, Paper sort, can be applied to

data which is almost sorted. Paper sort is an easy to

understand method as compared to heap sort, quick sort. If

the list is almost sorted, paper sort is a better option than

merge sort. But it requires extra memory to save the Bounds

of lists, which can be considered as drawback of this method.

Even if proposed sorting algorithm is not a divide and

conquer algorithm, number of passes required to sort N

elements are not necessarily N-1. Comparative analysis of

Paper sort and Merge sort is depicted in Table 1.

 Three specific types of psychological complexity

that affect a programmer's ability to comprehend software

have been identified as problem complexity, system design

complexity, and procedural complexity. The proposed

algorithm can be refined to reduce the space complexity [3],

[5], [6].

Figure 2: Pseudo code for Paper Sort

Table 1: Comparative analysis of Paper sort and Merge sort

S. No
Parameter for

comparison

Paper

sort

Merge

Sort

1 Number of Passes 7 12

2 Number of comparisons 21 13

 International Journal of Computer Sciences and Engineering Vol. 5(12), Dec 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 172

References

[1] E. Horowitz, S. Sahani, “Fundamentals of Computer

Algorithms”, Computer Science Press, Rockville, Md., 1998.

[2] D. Knuth, “The Art of Computer Programming”, volume 3

“Sorting and searching”, Second edition, Assison Wesley,

1998.

[3] C.L. Liu, “Analysis of Sorting Algorithms”, Proceedings of

Switching and Automata Theory, 12th Annual Symposium,

East Lansing, MI, USA, pp. 207-215, 1971.

[4] M. Devi, S. Charaya, “Enhancing the Efficiency of Radix sot

by using clustering Mechanism: A Review”, IJSRD, Volume

4 Issue 5, pp.847- 850, 2016.

[5] J. Darlington, “A synthesis of several sorting algorithms”, Acta

Informatica II, Springer-Verlag, pp. 1-30, 1978.

[6] John Darlington, Remarks on “A Synthesis of Several Sorting

Algorithms”, Springer Berlin / Heidelberg”, Volume 13,

March 1980, pp. 225-227.

[7] A. Andersson, T. Hagerup, S. Nilsson, R. Raman, Proceedings

of the 27th Annual ACM Symposium on the Theory of

Computing, 1995.

[8] V. Paul, “Entropy, Search, Complexity- Algorithms by

Kolmogorov Complexity (A Survey)”, Bolyai Society

Springer, pp. 209-232, 2007

[9] R. Harter, “A Computer Environment for Beginners' Learning

of Sorting Algorithms: Design and Pilot Evaluation”, ERIC,

Journal Number 795978, Computers & Education, volume 51

No.2, pp. 708-723, 2008

[10] A. Bharadwaj, S. Mishra, “Comparison of Sorting Algorithms

based on Input Sequences”, International Journal of Computer

Applications, Volume 78 No.14, pp.7-10, 2013

[11] N. Faujdar, S. Ghrera, “A Detailed Experimental Analysis of

Library sort Algorithm”, INDICON, IEEE, pp. 1-6, 2015

Authors Profile

Prof. Rina Damdoo received the Masters in

Technology in Computer Science and

Engineering from Nagpur University in 2012.

Currently she is serving as Assistant Professor

at Shri Ramdeobaba College of Engineering

and Management, Nagpur. She has a teaching

experience of 15 years with expertise in

subjects like Data Structures, Operating

Systems, System Software, Design Patterns. Her research interest

includes N-grams, Statistical Machine Learning and sentiment

analysis in the domain of Template messaging.

Email: damdoor@rknec.edu

Prof. Kanak Kalyani received the Masters in

Technology in Computer Science from

Visvesvaraya National Institute of Technology,

Nagpur (VNIT Nagpur) in 2010. Currently she

is serving as Assistant Professor at Shri

Ramdeobaba college of Engineering and

Management, Nagpur and has a teaching

experience of 7 years. She has expertise in

subjects like Data Structures, Object oriented Programming, Mobile

Application Programming and Salesforce Technology. Her research

interest includes Business Intelligence and Traffic Mining.

Email: kalyanik@rknec.edu

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Neetu%20Faujdar.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Satya%20Prakash%20Ghrera.QT.&newsearch=true
mailto:kalyanik@rknec.edu

