
 © 2017, IJCSE All Rights Reserved 14

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-5, Issue-4 E-ISSN: 2347-2693

Optimizing Virtual Machine Placement Using Intelligent Water Drop and

Simulating Algorithm

V.O. Ramakant
1*

, A. Victor
2

1*

School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
2
 School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India

*Corresponding Author: omkar.vaidya9@gmail.com, Tel.: +91-97434-58979

www.ijcseonline.org

Received: 02/Mar/2017, Revised: 16/Mar/2017, Accepted: 14/Apr/2017, Published: 30/Apr/2017

Abstract— Developing approaches intended to produce top notch answers for tackle troublesome computational enhancement

issues by playing out a pursuit over the space of heuristics as opposed to looking the arrangement space specifically.

Significant progress in developing search methodologies for a huge variety of application areas still require specialists to

integrate their expertise in every problem domain. Researchers have need for developing automated systems to replace the role

of a human expert. A hyper-heuristic for the most part goes for diminishing the measure of area information in the inquiry

system. Coming about approach ought to be shabby and quick to execute, requiring less mastery in either the issue area or

heuristic techniques and it would be vigorous. Resulting approach is cheap and fast to implement, requiring less expertise in

either the problem domain as well as hyper heuristic methods and it would be robust.

Keywords— Hyper-Heuristic Algorithms, Virtual Machine Placement problem, Genetic Algorithms, Energy efficient

I. INTRODUCTION

In distributed computing, Virtual Machine (VM) situation is

a basic operation which is directed as a major aspect of the

VM movement and meant to locate the best Physical

Machine (PM) to have the VMs. It directly affects the

execution, asset usage and power utilization of the server

farms and can lessen the upkeep cost of the server farms for

cloud suppliers. Various VM arrangement plans are planned

and proposed for VM position in the distributed computing

condition expected to enhance different components

influencing the server farms, the VMs and their executions.

1.1 Virtual Machine Placement in Cloud Data Centers:

Distributed computing, another figuring stage in which

clients can obtain and discharge the assets on request from a

Web program, ends up noticeably a standout amongst the

most dangerously extending advances in the processing

business today. Subsequently, the number and the size of

Cloud specialist co-ops have extraordinarily expanded. More

server farms mean more vitality supply, more system use,

and causes expanded warmth dissemination, lessened

computational thickness, and higher working expenses.

The utilization of workload combination to clear physical

server hubs to enhance framework proficiency has been as of

now exhibited in various works. A key issue in workload

solidification is to delineate VMs to physical machines

(PMs). Numerous past works have figured the VM mapping

issue as a multi-dimensional container pressing issue. Each

measurement speaks to an especially asset kind of a VM ask

for, the objective is to use as less canister as conceivable to

satisfy all the VM asks. The issue is NP-hard and can be

illuminated by some heuristic techniques, for example, first-

fit or best fit, be that as it may, those strategies disregard the

dynamic conduct of workload.

Xinying Zheng and Yu Cai propose another element VM

position plot that can progressively and viably outline VM

solicitations to PMs while sparing vitality. They build a

VM/PM mapping likelihood framework, in which each VM

ask for is doled out with a likelihood running on a PM. The

VM/PM mapping likelihood lattice consider of asset

necessities, virtualization overhead, control productivity and

in addition server dependability. Our plan then chooses

where to execute another occupation, and whether to move

existing employments to enhance worldwide framework

proficiency [1].

Meng Wang, Xiaoqiao Mengy, and Li Zhangy utilize

arbitrary factors to describe the future transfer speed use.

They utilize arbitrary factors which take after specific

dispersions that are evaluated from either verifiable

movement rates or guaging calculations. Such a probabilistic

portrayal can better speak to the vulnerability without bounds

transmission capacity request [2].

Joe Wenjie Jiang and TianLan concentrate on the

administration of system assets by abusing joint course

determination and VM arrangement. They formalize it as a

streamlining issue, in which, givena arrangement of

employment landings, the system administrator needs settle

on the directing and position choices to limit the system clog

over the long haul [3].

 International Journal of Computer Sciences and Engineering Vol.5(4), Apr 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 15

1.2 Hyper Heuristic: Some genuine issues are perplexing.

Due to their (regularly) NP-hard nature, specialists and

experts as often as possible turn to issue custom-made

heuristics to acquire a sensible arrangement in a sensible

measure of time. Hyper-heuristics are rising systems

intended to produce great answers for take care of

troublesome computational enhancement issues by playing

out an inquiry over the space of heuristics as opposed to

seeking the arrangement space specifically. One of their

principle points is to raise the level of all-inclusive statement

of pursuit strategies, and to consequently adjust the

calculation by consolidating the quality of every heuristic

and compensating for the shortcomings of others.

1.3 Hyper-heuristics Classification: Two sorts of hyper-

heuristic techniques can be recognized in the writing: (i)

heuristic determination systems (ii) heuristic era strategies

from given parts. For both hyper-heuristic philosophies, there

are two perceived sorts of heuristics: (i) valuable heuristics

which handle an incomplete arrangement and manufacture an

entire arrangement (ii) perturbative heuristics which work on

total arrangement. The documentation of useful and

perturbative shows how the pursuit through the arrangement

space is overseen by the low-level heuristics [5].

An orthogonal classification of hyper-heuristics is provided

in [6] (see Figure 1) depending on: (i) the nature of the

heuristic search space and (ii) the source of feedback during

the search process. Hyper-heuristics can be used to select or

generate constructive or perturbative heuristics which

determine the nature of the heuristic search space.

A hyper-heuristic can employ no learning, online learning

(getting feedback from the search process while solving an

instance), or offline learning (getting feedback via training

over a selected set of instances to be utilized for solving

unseen instances). A hyper-heuristic which combines simple

random heuristic selection with a method of accepting

improving and equal quality moves is an example which uses

a no learning approach [10].

II. RELATED WORK

2.1 Multi-objective Hyper-Heuristics Approaches: Hyper-

heuristics have recently seen an increase in attention from

researchers. Although many hyper-heuristics papers have

been published, they are still mainly limited to single-

objective optimization. The hyper heuristics for multi-target

advancement issues is another territory of research in

Evolutionary Computation and Operational Research ([10],

[5]). To date, few reviews, have been recognized that

arrangement with Hyper-Heuristics for multi-target issues

(see Table 2).

The primary approach is a multi-objective Hyper Heuristic in

view of Tabu pursuit [11]. The key component of this paper

lies in picking a reasonable heuristic at every cycle to handle

the current issue by utilizing Tabu hunt as an abnormal state

look methodology. The proposed approach was connected to

space portion and timetabling issues and created comes about

with worthy arrangement quality.

A versatile multi-method (multi-point) seek called Amalgam

is proposed in [20]. It utilizes different hunt calculations;

NSGAII, PSO, AMS, and DE at the same time utilizing the

ideas of multi-strategy seek and versatile posterity creation.

AMALGAM is connected to a few ceaseless multi-target test

issues and it was better than different techniques. It was

additionally connected to take care of a few water asset

issues and it yielded great arrangements ([20], [21], [12])

display a multi-objective hyper-heuristic approach including

two stages: the main stage expects to deliver an effective

Pareto front (this might be of low quality in view of the

thickness), while the second stage means to manage a given

issue adaptably to drive a subset of the populace to the

coveted Pareto front.

This approach was assessed on the multi-target voyaging

sales representative issues with eleven low level heuristics. It

is contrasted with other multi-objective methodologies from

the writing which uncovers that the proposed approach

produces great quality outcomes yet future work is yet

expected to enhance the strategy [12].

In [19], they propose a hypervolume-based hyper-heuristic

for an element mapped multi-target island-based model. The

proposed technique demonstrates its prevalence when

analyzed over the commitment based hyper-heuristic and

other standard parallel models over the WFG test.

Another hyper-heuristic in view of the multi-objective

transformative calculation NSGAII is proposed in [14]. The

principle thought of this technique is in creating the last

Pareto ideal set, through a learning procedure that advances

mixes of condition-activity rules in view of NSGAII. The

proposed technique was tried on many examples of sporadic

2D cutting stock benchmark issues and created promising

outcomes.

A multi-procedure group multi-objective transformative

calculation called MS-MOEA for element enhancement is

proposed in [23]. It consolidates distinctive procedures

including a memory system and hereditary and differential

administrators to adaptively make posterity and accomplish

quick merging velocity. Exploratory outcomes demonstrate

that MS-MOEA can acquire promising outcomes.

In [13] an online determination hyper-heuristic, Markov

chain based, (MCHH) is examined. The Markov chain

controls the determination of heuristics and applies online

support figuring out how to adjust move weights between

 International Journal of Computer Sciences and Engineering Vol.5(4), Apr 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 16

heuristics. In MCHH, half and half meta-heuristics and

Evolution Strategies were consolidated and connected to the

DTLZ test issues. The MCHH has additionally been

connected to genuine water dispersion systems outline issues

and delivered aggressive outcomes.

In [15], a hyper-heuristic-based codification is proposed for

comprehending strip pressing and cutting stock issues with

two destinations that expand the aggregate benefit and limit

the aggregate number of cuts. Trial comes about demonstrate

that the proposed Hyper-Heuristic out performs single

heuristics.

In [16], a multi-objective hyper-heuristic for the plan and

advancement of a stacked neural system is proposed. The

proposed approach depends on NSGAII consolidated with a

nearby pursuit calculation (Quasi-Newton calculation).

In [24], creator introduced a multi-objective hyper-heuristic

enhancement conspire for building framework outline issues.

A hereditary calculation, recreated tempering and molecule

swarm enhancement are utilized as low-level heuristics.

In [17], creator proposed a multi-pointer hyper-heuristic for

multi-target improvement. This was approach in light of

various rank markers that taken from NSGAII, IBEA and

SPEA2.

In [19], creator proposed a hypervolume-based hyper

heuristic for an element mapped multi-target island-based

model.

In [25], creator proposed a different neighborhood hyper-

heuristic for two-dimensional rack space portion issue. The

proposed hyper-heuristic depended on a reenacted

toughening calculation.

In [18], creator introduce a multi-objective hyper-heuristic

hereditary calculation (MHypGA) for the arrangement of

Multi-Objective Software Module Clustering Problem. In

MHypGA, distinctive techniques for choice, hybrid and

change operations of hereditary calculations are consolidated

as a low-level heuristic.

The canister pressing issue is a combinatorial NP-difficult

issue. In it, objects of various volumes must be stuffed into a

limited number of canisters of limit in a way that limits the

quantity of receptacles utilized. Numerous varieties of this

issue are available, for example, 2D pressing, direct pressing,

pressing by weight, pressing by cost, et cetera. The uses of

these issues incorporate, topping off compartments, stacking

trucks with weight limit, and making record reinforcement in

removable media.

The VM situation issue can be composed as a canister

pressing issue. The Physical machines can be considered as

containers and the VM's to be set can be considered as

articles to be led in the receptacle. Powerful situation of

virtual machines in a group of physical machines is

fundamental for advancing the utilization of computational

assets and decreasing the likelihood of virtual machine

reallocation. Large portions of past works regard virtual

machine situation as an occurrence of the canister pressing

issue, as they go for sparing vitality.

III. ARCHITECTURE MODEL

3.1 System Architecture:

The Hyper heuristics system architecture is segregated in

three levels. Base level contains problem description,

representation, evolution function, initial solution of the

problem. Base level also contains Heuristics repository.

Heuristics repository holds all the heuristics algorithm to be

available to solve the problem. Domain Barrier is the Bridge

between Hyper level and Base Level. Domain Barrier will

maintain the synchronization between the Base and Hyper

Level. Hyper Level first collect all the data required for the

specific problem. Hyper Level contains the mechanism to

select the algorithm and apply the selected heuristic and take

back the feedback. The Hyper level will store the result of

the heuristic mechanism for the problem to compare the

mechanism with other heuristic mechanism.

Figure 3.1: Hyper-Heuristics System Architecture

In dissertation work it is proposed that, attempt will be made

to optimize virtual machine placement by using hyper

heuristic framework.

3.2 Objectives of Project:

1.To develop Hyper-Heuristic Framework for single

objective virtual machine placement

a. Identifying suitable low level heuristics (local search

/ global search techniques) to solve Virtual Machine

Placement problem.

b. Designing problem specific low level heuristic.

c. Distinguishing reasonable abnormal state heuristic to

pick rectify low level heuristic at every choice

point.

 International Journal of Computer Sciences and Engineering Vol.5(4), Apr 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 17

2. To develop Hyper-Heuristic Framework for multi

objective virtual machine placement

a. Identifying suitable low level heuristics (local search

/ global search techniques) to solve Virtual Machine

Placement problem.

b. Designing problem specific low level heuristic.

c. Distinguishing reasonable abnormal state heuristic to

pick remedy low level heuristic at every choice

point.

3. Possible Output: Hyper heuristic framework for single and

multi-objective virtual machine placement problem.

IV. METHODOLOGY

4.1 Intelligent Water Drop Algorithm(IWD)

Water drops that stream in waterways, lakes, and oceans are

the wellsprings of motivation for building up the IWD. This

insight is more evident in waterways which discover their

approaches to lakes, oceans, or seas regardless of numerous

sorts of impediments on their ways. In the water drops of a

stream, the gravitational constrain of the earth gives the

inclination to streaming toward the goal. On the off chance

that there were no hindrances or obstructions, the water drops

would take after a straight way toward the goal, which is the

most limited way from the source to the goal. In any case,

because of various types of snags in their way to the goal,

which compel the way development, the genuine way should

be unique in relation to the perfect way and loads of wanders

aimlessly in the stream way is watched. The fascinating point

is this developed way is by all accounts ideal as far as

separation from the goal and the requirements of the earth.

Envision a water drop will move from a state of waterway to

the following point in the front. It is accepted that each water

drop streaming in a waterway can convey a measure of soil

which is appeared by the extent of the water drop in the

figure. The measure of soil of the water drop increments as it

ranges to the correct point while the dirt of the stream bed

diminishes. Truth be told, some measure of soil of the stream

bed is evacuated by the water drop and is added to the dirt of

the water drop. This property is installed in the IWDs with

the end goal that each IWD holds soil and expels soil from

its way amid development in the earth. A water drop has

likewise a speed and this speed assumes a vital part in the

expelling soil from the beds of waterways. Let two water

drops having a similar measure of soil move from a state of a

waterway to the following point. The water drop with greater

bolt has higher speed than the other one. At the point when

both water drops touch base at the following point on the

privilege, the quicker water drop is expected to accumulate

more soil that the other one. The specified property of soil

expelling which is subject to the speed of the water drop is

inserted in each IWD of the IWD calculation.

• Step 1: Set the quantity of water drops NIWD to a positive

whole number esteem. Here, it is proposed that NIWD is

set equivalent to the quantity of things Nc. For speed

refreshing, the parameters are set as av = 1, bv = 0.01, and

cv = 1. For soil refreshing, as = 1, bs = 0.01, and cs = 1.

The neighborhood soil refreshing parameter rn, which

ought to be a little positive number short of what one, is

picked as rn = 0.9. The worldwide soil refreshing

parameter rIWD, which ought to be looked over [-1, 0], is

set as rIWD = - 0.9. In addition, the underlying soil on

every way is indicated by the steady InitSoil with the end

goal that the dirt of the way between each two things i and

j is set by soili; j = InitSoil: The underlying speed of IWDs

is meant by the consistent InitVel. Both parameters InitSoil

and InitVel are likewise client chose.

• Step 2. For each IWD, a went by hub list Vc[IWD] is

viewed as and is set to the unfilled rundown. The speed of

each IWD is set to InitVel and the underlying soil of each

IWD is set to zero.

• Step 3. For each IWD, arbitrarily select a hub and partner

the IWD to this hub.

• Step 4. Refresh the went by hub rundown of each IWD to

incorporate the hubs just went to.

• Step 5. For each IWD that has not finished its answer,

rehash Steps 5.1-5.4.

• Step 5.1. Pick the following hub j to be gone by the IWD

among those that are not in its went to hub list and don't

disregard the m imperatives characterized in condition (3).

At the point when there is no unvisited hub that does not

abuse the limitations, the arrangement of this IWD has

been finished. Something else, pick next hub j when the

IWD is in hub i with the likelihood pIWD(i,j)

characterized in beneath condition and refresh its went to

hub list.

(4.1)

 (4.2)

(4.3)

(4.4)

 International Journal of Computer Sciences and Engineering Vol.5(4), Apr 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 18

Algorithm 1: Intelligent Water Drop Algorithm

Input: Weight of object i., No. of bin j.

Output: Minimum no. of bins required to carry all objects.

1. Initializing of static arguments

2. Initializing of dynamic arguments

3. For each IWD, arbitrarily choose a node and associate the

IWD to this node.

4. Refresh the visited node list of every IWD to include the

nodes just visited.

5. For each IWD that has not completed its solution, repeat

Steps

 1) Choose the next node j to be visited from non-

visited node list

 2) For every IWD shifting from node i to node j,

update its velocity

 3) Compute the amount of the soil that the current

water with the updated velocity.

 4) Refresh the soil of the path crossed by that IWD.

6. Find the repetition-best solution

7. Update the soils of the paths that exist in the current

iteration-best solution

8. Update the complete best solution

9. Go to Step 2 until the maximum number of iterations is

reached.

10. The algorithm stops with the final solution.

• Step 5.2. For each IWD moving from hub i to hub j,

refresh its speed velIWD(t) with the end goal that

(4.5)

• Step 5.3. Register the measure of the dirt, soil(i; j), that the

ebb and flow water drop IWD with the refreshed speed

velIWD = velIWD(t + 1) loads from its ebb and flow way

between two hubs i and j

 (4.6)

Such that,

(4.7)

• Step 5.4. Refresh the dirt of the way navigated by that

IWD, soil(i, j), and the dirt that the IWD conveys,

soilIWD,

(4.8)

 (4.9)

• Step 6. Find the iteration-best solution TIB from all the

solutions found by the IWDs.

• Step 7. Refresh the dirts of the ways that exist in the

present emphasis best arrangement TIB

 (4.10)

• Step 8. Refresh the aggregate best arrangement TTB by the

present cycle best arrangement TIB

• Step 9. Go to Step 2 until the maximum number of

iterations is reached.

• Step 10. The calculation stops here with the last

arrangement TTB.

4.2 Simulated Annealing

Toughening is the way toward cooling material in a warmth

shower. The material is warmed to high vitality where there

are visit state changes. It is then continuously cooled to a low

vitality state where state changes are uncommon. Simulated

annealing (SA) emulates this physical process whereby the

material is slowly cooled until a steady state is reached.

Simulated annealing can be understood as an extension of the

simple random gradient descent algorithm. [33]

recommended that mimicked toughening could be utilized to

scan for arrangements in an advancement issue whose goal is

to merge to an ideal state.

SA repeatedly considers neighbours w’ of the current

solution w and probabilistically decides between changing to

w’ or staying with w. Normally, enhancing moves are

constantly acknowledged while exacerbating moves can be

acknowledged probabilistically in light of a capacity P of the

temperature t and assessment distinction between f(w') and

f(w). The temperature is proportionate with the probability

of acceptance; i.e. high temperature means high acceptance

probability and vice versa. The temperature is gradually

reduced as the algorithm proceeds. Acknowledgment

likelihood is figured as e^(()/t) where is the size of f(w') - f(

w) (the distinction between the present and new arrangement

assessment capacity) and t is the present estimation of the

temperature parameter. The pseudo-code in Algorithm 5

presents a simulated annealing that iterates through M

iterations. The temperature is calculated as a function of the

remaining number of iterations. [32] demonstrated the

significance of setting the cooling plan (begin temperature,

end temperature, temperature diminishment) and the area

structure to the aftereffect of SA. The temperature is set at a

high value at the beginning to allow more worse moves and

then it is slowly reduced to reach equilibrium.

 International Journal of Computer Sciences and Engineering Vol.5(4), Apr 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 19

Algorithm 2: Simulated Annealing Algorithm

Input: Weight of object i.,No. of bin j.

Output: Minimum no. of bins required to carry all objects.

1. Choose an introductory solution = (x1,..., xn) Ω; an

introductory temperature t = t0 ; control argument

value α; finishing temperature e; a iterative schedule, M that

describes total number of repetitions carried out at every

temperature;

2. Incumbent solution ← f(w);

3. Repeat

4. Make iteration counter m = 0;

5. Repeat;

6. Choose an integer i from the set f1,2,....,ng arbitrarily;

7. If xi = 0, select item i, i.e. make xi = 1, retrieve new solution w’

then

8. While solution w’ is impractical, do

9. Create other item w;’ from arbitrarily; highlight the new

solution as w’ ;

10. Let = f(w’) - f(w);

11. While (0) or (Random (0, 1) <), do w ←

w’;

12. Else

13. Drop item i, and select other item arbitrarily, find new

solution w’;

14. Let = f(w’) - f(w);

15. While (0) or (Random (0, 1) <), do w ←

w’;

16. End if

17. If incumbent solution < f(w), Incumbent solution f(w);

18. m++;

19. Till m = M

20. Make t = a * t;

21. Till t < e.

V. RESULTS AND DISCUSSION

In this phase work, implementation of the IWD and SA approach

solve single-objective virtual machine placement problem is

completed. There is objective such as minimize server resources. In

that implementation, I refer dataset of 100 physical machines and

250 virtual machine datasets which is generated by given

specification. Table 5.1 shows implementation IWD and SA for

various iterations. SA improves result iteration wise. IWD take

longer execution time than SA because its heavy structure.

Table 5.1: IWD and SA approach solve VMP problem based on

Optimization Server Resources
Iteration Intelligent

Water

Drop

Simulated

Annealing

Execution

time(sec)for

IWD

Execution

time(sec)for SA

50 53 58 195.325 128.356

100 52 55 256.429 246.658

500 52 53 1245.518 1103.35

700 49 53 1853.2548 1523.931

1000 51 50 2637.6314 2267.4962

Above table, represent the result of IWD and SA

implementation for optimizing server resources where main

goal is minimizing number of virtual machine requirement.

Intelligent water drop algorithm is global search algorithm

whereas SA is local search algorithm. SA improve result

after iteration increasing. IWD works better than SA for

optimizing server resources.

Table 5.2: IWD and SA approach solve VMP problem based on

Different size of VMs
VMs

size

Intelligent

Water

Drop

Simulated

Annealing

Execution

time(sec)for

IWD

Execution

time(sec)for SA

50 17 18 153.256 102.631

100 23 24 193.382 99.568

150 33 35 211.35 154.315

200 41 42 1532.846 1025.3482

250 49 50 2356.148 1567.243

The above table 5.2 shows the IWD approach solve virtual

machine placement problem based on different size of VMs

groups. They have distinctive CPU estimate, memory limit

and system transfer speed. We IWD and SA algorithm with

base paper implementation of random, BFD and BF-HC

algorithms.

Figure 5.1 demonstrates the quantity of dynamic PMs for

different sorts of calculations, BFD and BF-HC require less

PMs than arbitrary calculations. The consequence of BFD is

superior to BF-HC, because BFD is composed per the extent

of VMs while BF-HC is intended for activity accumulation

between the VMs, however BF-HC requires practically an

indistinguishable number of PMs from BFD [31].

Figure 5.1: Traditional Algorithm Comparison

We also analyses performance of IWD and SA algorithm for

various size virtual machines. We perform it on number of

VMs like 50, 100, 150, 200 and 250. We observe that these

to heuristic algorithm work efficiently for single objective

virtual machine placement problem.

 International Journal of Computer Sciences and Engineering Vol.5(4), Apr 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 20

Figure 5.2: Active PMs number in IWD and SA algorithm

VI. CONCLUSION AND FUTURE SCOPE

We focused on study of multi-objective bin packing problem

and Single-objective virtual machine placement problem

using IWD and SA. Bin packing problem is basic and very

relative domain for virtual machine placement problem. We

first analyses algorithm performance for bin packing. Both

IWD and SA works efficiently for VMP. We choose these

two heuristics to analyses hyper-heuristic framework

performance for different types heuristic. IWD is work in

global search manner where SA is local search algorithm.

The results of SA improve its outcomes iteration after

iteration. It forward only best available outcome except in

high temperature regime. Whereas IWD is global search

algorithm. Per results of bin packing problem, algorithm

works efficient for minimizing bins but it performance is

somewhat poor for minimizing heterogeneity. Per results of

virtual machine placement problem, IWD provide best result

with 49 PMs and SA provide best result with 50 Pms. IWD

performance is quite better than SA algorithm.

REFERENCES

[1] N. Bobroff, A. Kochut, K. Beaty, “Dynamic Placement of Virtual

Machines for Managing SLA Violations”, 10th IFIP/IEEE

International Symposium on Integrated Network Management,

Munich, pp.119-128, 2007.

[2] M. Wang, X. Meng, L. Zhang, “Consolidating virtual machines

with dynamic bandwidth demand in data centers”, Proceedings

IEEE INFOCOM, Shanghai, pp. 71-75, 2011.

[3] J. W. Jiang, T. Lan, S. Ha, M. Chen, M. Chiang, “Joint VM

placement and routing for data center traffic

engineering”, Proceedings IEEE INFOCOM, Orlando, pp. 2876-

2880, 2012.

[4] Cowling, Peter, Graham Kendall, Eric Soubeiga, “A hyperheuristic

approach to scheduling a sales summit”, International Conference

on the Practice and Theory of Automated Timetabling, Berlin

Heidelberg, pp. 176-190, 2000.

[5] K. Edmund, “Hyper-heuristics: A survey of the state of the art”,

Journal of the Operational Research Society, Vol.64, Issue.12,

pp.1695-1724, 2013.

[6] K. Edmund, “A classification of hyper-heuristic approaches”,

Handbook of metaheuristics, Springer US, pp.449-468, 2010.

[7] E. Ozcan, Y. Bykov, M. Birben, E. K. Burke, “Examination

timetabling using late acceptance hyper-heuristics”, 2009 IEEE

Congress on Evolutionary Computation, Trondheim, pp. 997-

1004, 2009.

[8] M. Ayob, G. Kendall, “A Monte Carlo hyper-heuristic to

optimize component placement sequencing for multi head

placement machine”, In Proceedings of the International

Conference on Intelligent Technologies (ISTRD), Thailand, pp

132–141, 2003.

[9] M Misir, W Vancroonenburg, K Verbeeck, GV. Berghe, “A

selection hyper-heuristic for scheduling deliveries of ready-mixed

concrete”, In Proceedings of the Metaheuristics International

Conference, Itly, pp.289-298, 2011.

[10] Özcan, Ender, Burak Bilgin, EE Korkmaz, “A comprehensive

analysis of hyper-heuristics”, Intelligent Data Analysis, Vol.12,

Issue.1, pp.3-23, 2008.

[11] EK Burke, G Kendall, E Soubeiga, “A tabu-search hyperheuristic

for timetabling and rostering”, Journal of Heuristics, Vol. 9,

Issue.6, pp.451-470, 2003

[12] Nadarajen Veerapen, Dario Landa-Silva, Xavier Gandibleux,

“Hyperheuristic as Component of a Multi-Objective

Metaheuristic”, Do toral Symposium on Engineering Sto hasti Lo

al Sear h Algorithms, Belgium, pp.51-55, 2009.

[13] K McClymont, EC Keedwell, “Markov chain hyper-heuristic

(MCHH): an online selective hyper-heuristic for multi-objective

continuous problems “, Proceedings of the 13th annual conference

on Genetic and evolutionary computation, Ireland, pp. 2003-2010,

2011.

[14] J Gomez, H Terashima-Marín, “Approximating multi-objective

hyper-heuristics for solving 2d irregular cutting stock problems”,

Mexican International Conference on Artificial Intelligence,

Berlin, pp.349-360, 2010.

[15] G. Miranda, J. de Armas, C. Segura, C. León, “Hyperheuristic

codification for the multi-objective 2D Guillotine Strip Packing

Problem”, IEEE Congress on Evolutionary Computation,

Barcelona, pp.1-8, 2010.

[16] Furtuna Renata, Silvia Curteanu, Florin Leon, “Multi-objective

optimization of a stacked neural network using an evolutionary

hyper-heuristic”, Applied Soft Computing, Vol.12, Issue.1,

pp.133-144, 2012.

[17] Vázquez Rodríguez, José Antonio, Sanja Petrovic, “Calibrating

continuous multi-objective heuristics using mixture experiments”,

Journal of Heuristics, Vol.18, Issue.5, pp.699-726, 2012.

[18] A.C. Kumari, K. Srinivas M.P. Gupta, “Software module

clustering using a hyper-heuristic based multi-objective genetic

algorithm”, 3rd IEEE International Advance Computing

Conference (IACC), Ghaziabad, pp. 813-818, 2013.

[19] C León, G Miranda, C Segura, “Hyperheuristics for a dynamic-

mapped multi-objective island-based model”, International Work-

Conference on Artificial Neural Networks, Berlin, pp.41-59, 2009.

[20] JA Vrugt, BA Robinson, “Improved evolutionary optimization

from genetically adaptive multimethod search”, National Academy

of Sciences, Vol.104, Issue.3, pp.708-711, 2007.

[21] Raad, Darian, Alexander Sinske, JV Vuuren, “Multiobjective

optimization for water distribution system design using a

hyperheuristic”, Journal of Water Resources Planning and

Management, Vol.136, Issue.5, pp.592-596, 2010.

[22] X Zhang, R Srinivasan, MV Liew, “On the use of multi‐algorithm,

genetically adaptive multi‐objective method for multi‐site

 International Journal of Computer Sciences and Engineering Vol.5(4), Apr 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 21

calibration of the SWAT model”, Hydrological Processes, Vol.24,

Issue.8, pp.955-969, 2010.

[23] Yu Wang, Li Bin, “Multi-strategy ensemble evolutionary

algorithm for dynamic multi-objective optimization”, Memetic

Computing, Vol.2, Issue.1, pp.3-24, 2010.

[24] AF Rafique, S Sivasundaram, “Multiobjective hyper heuristic

scheme for system design and optimization”, AIP Conference

Proceedings-American Institute of Physics, Vol.1493, No.1,

pp.764-769, 2012.

[25] Ruibin Bai, “A new model and a hyper-heuristic approach for two-

dimensional shelf space allocation”, 4OR, Vol.11, Issue.1, pp.31-

55, 2013.

[26] Ruibin Bai, “An investigation of novel approaches for optimising

retail shelf space allocation”, Docotral Disssertation of University

of Nottingham, Nottingham, pp.1-220, 2005.

[27] E López-Camacho, H Terashima-Marin, P Ross, “A unified hyper-

heuristic framework for solving bin packing problems”, Expert

Systems with Applications, Vol.41, Issue.15, pp.6876-6889, 2014.

[28] Peter Ross, “Hyper-heuristics: learning to combine simple

heuristics in bin-packing problems”, Proceedings of the 4th

Annual Conference on Genetic and Evolutionary Computation,

NY, pp.942-948,2002.

[29] Matthew Hyde, “A genetic programming hyper-heuristic approach

to automated packing”, Docotral Dissertation University of

Nottingham, Nottingham, pp.1-175, 2010.

[30] Kevin Sim, “Novel Hyper-heuristics Applied to the Domain of Bin

Packing”, Docotral Dissertation of Edinburgh Napier University,

singapore, pp.1-149, 2014.

[31] J. Dong, X. Jin, H. Wang, Y. Li, P. Zhang, S. Cheng, “Energy-

Saving Virtual Machine Placement in Cloud Data Centers”, 2013

13th IEEE/ACM International Symposium on Cluster, Cloud, and

Grid Computing, Netherlands, pp. 618-624, 2013.

Authors Profile

Mr.Omkar R Vaidya is student School of

Computing Science and Engineering at V.I.T.

University, Vellore, India. He received his BE

(Information Technology) from Shivaji

University and pursuing M.Tech. (Computer

Science and Engineering) from Vellore

Institute of Technology. He has participated in

the National Programming Contest and

National Level Debate held at Shivaji University. He won 2 prizes

at National Level Programming Context.

