Further Results on Sum *Number and Mod Sum* Number of Graphs

R. K. Samal ${ }^{\mathbf{}^{*}}$, D. Mishra ${ }^{2}$
${ }^{1}$ Department of Mathematics, OPS Mohavidyalaya, Hindol Road, Dhenkanal, Odisha, India
${ }^{2}$ Department of Mathematics, C.V. Raman College of Engineering, Bhubaneswar, Odisha, India
*Corresponding Author: rksamalmath@gmail.com, Tel.: 9437730770

Available online at: www.ijcseonline.org
Accepted: 17/Aug/2018, Published: 31/Aug/2018
Abstract- In this paper we establish that the graphs $K_{n}-E\left(K_{r}\right), K_{n, n}$ for $n \geq 2, K_{n, n}-E\left(n K_{2}\right)$ for $n \geq 2, P_{n} \odot K_{1}$ for $n \geq 2$ and $C_{n} \odot K_{1}$ for $n \geq 4$ possesses sum* and modsum* labelings and find their sum ${ }^{*}$ and mod sum* numbers.

Keywords: Sum* graphs, Sum* number, Mod sum* graphs and Mod sum* number.

I. INTRODUCTION

The graphs considered here are finite, connected, undirected and simple. The notations and terminologies involving graph theory may be found in [2]. The study undertaken in this paper involves sum* and mod sum* labeling of graphs. The objective of this work is to explore and identify some new classes of graphs that exhibit sum* and mod sum* labeling. In this paper we use a methodology which fundamentally involves formulation and subsequent mathematical validation. Sum* and mod sum* labeling concepts have been used in the problems involving relational database management. We recapitulate some important definitions useful for the present investigation. The concept of a sum graph was introduced by Harary in 1990 [3]. Let N be the set of positive integers. The sum graph $G^{*}(S)$ of a finite subset $S \subset N$ is the graph (S, E) with $u v \in E$ if and only if $u+v \in S$. A graph G is said to be a sum graph if it is isomorphic to the sum graph $G(S)$ for some $S \subset N$. The sum number $\sigma(G)$ of a graph G is the least number r of isolated vertices $r K_{1}$ such that $G \cup r K_{1}$ is a sum graph. The concept of mod sum graph was introduced by Boland et al. [4] in 1990. A mod sum graph is a sum graph with $S \subset Z_{m} \backslash\{0\}$ and all arithmetic performed modulo m where $m \geq|S|+1$. The mod sum number $\rho(G)$ of graph G is the least number r of isolated vertices $r K_{1}$ such that $G \cup r K_{1}$ is a mod sum graph.

The notion of sum* graphs and mod sum* graphs were introduced by Sutton in 2001 [1]. A graph $G=$ $\left(V_{p} \cup V_{i}, E\right)$ a sum* graph of $G_{p}=\left(V_{p}, E_{p}\right)$ if there is an injecting labeling λ of the vertices of G with distinct nonnegative integers with the property that $u v \in E_{p}$ if and only if $\lambda(u)+\lambda(v)=\lambda(z)$ for some vertex $z \in G$. The sum* number $\sigma^{*}\left(G_{p}\right)$ of G_{p} is the minimum cardinality of a
set of new vertices such that there exists a sum* graph of G_{p} on the set of vertices $V_{p} \cup V_{i}$. Sum* graphs are generalization of sum graphs. Sutton shows that every graph is an induced sub graph of a connected sum* graph. A graph $G=\left(V_{p} \cup V_{i}, E\right)$ is a mod sum* graph of $G_{p}=\left(V_{p}, E_{p}\right)$ if there exists a positive integer z and a labeling λ of the vertices of G with distinct elements from $\{0,1,2, \ldots, z-1\}$ so that $u v \in E_{p}$ if and only if $(\lambda(u)+\lambda(v))(\bmod z)$ is the label of vertex of G, where V_{i} is an incidental vertex set of a summable graph that is not vertex of the primary graph G_{p}.The mod sum* number $\rho *\left(G_{p}\right)$ of G_{p} is the cardinality of the smallest set of incidentals V_{i} such that there exists a mod sum* graph of G_{p} on $V_{p} \cup V_{i}$ vertices. Mod sum* graphs are a generalization of mod sum graphs, so that all mod sum graph labeling are also mod sum* graph labeling. Sutton in his PhD thesis [1] has obtained established that $\sigma *\left(K_{2}\right)=\sigma *\left(S_{1}\right)=0, \sigma *\left(S_{n}\right)=0$ for $n \geq 2, \sigma *\left(T_{n}\right)=$ 1 for $n \geq 3$ and $T_{n} \neq S_{n}, \sigma *\left(C_{3}\right)=1, \sigma *\left(C_{n}\right)=2$ for $n \geq$ $4, \sigma *\left(W_{n}\right)=2$ for $n \geq 4, \sigma *\left(F_{n}\right)=2$ for $n \geq 3, \sigma *\left(K_{n}\right)=$ $n-2$ for $n \geq 3, \rho *\left(K_{2}\right)=\rho *\left(S_{1}\right)=0, \rho *\left(S_{n}\right)=0$ for n $\geq 2, \rho *\left(T_{n}\right)=0$ for $n \geq 3$ and $T_{n} \neq S_{n}, \rho *\left(C_{3}\right)=0$, $\rho *\left(C_{n}\right)=0$ for $n \geq 4, \rho *\left(W_{n}\right)=0$ for $n \geq 4, \rho *\left(F_{n}\right)=0$ for $n \geq 3, \rho *\left(K_{n}\right)=0$ for $n \geq 3$.

Here our objective and purpose is to explore more on sum* and mod sum* labelling of graphs by extending the findings of Sutton [1] and find some new classes of graphs exhibiting sum* and mod sum* labelling and find their sum* and mod sum* numbers.
Section 2 gives sum* number and mod sum* number of $K_{n}-E\left(K_{r}\right)$. Section 3 gives sum* number and mod sum* number of the graphs $K_{n, n}$ and, $K_{n, n}-E\left(n K_{2}\right)$. Section 4
gives sum* number and mod sum* number of the graphs $P_{n} \odot K_{1}$ for $n \geq 2$ and $C_{n} \odot K_{1}$.

II. THE SUM*NUMBER AND MOD SUM* NUMBER OF $\boldsymbol{K}_{\boldsymbol{n}}-\boldsymbol{E}\left(\boldsymbol{K}_{\boldsymbol{r}}\right)$.

In this section we determine the sum* number and mod sum* number of the graph $K_{n}-E\left(K_{r}\right)$. Let $G=K_{n}-$ $E\left(K_{r}\right), n \geq r \geq 2$ and $m=\sigma *(G)$. We assume that $V\left(G \cup m K_{1}\right)$ is given sum* labeling so that we may denote the vertices of $G \cup m K_{1}$ by their labels. Let $S=G \cup m K_{1}=$ $V\left(\left(K_{n}-E\left(K_{r}\right)\right) \cup m K_{1}\right) ; \quad A=V\left(K_{r}\right)=\left\{a_{1}, a_{2}, \cdots, a_{r}\right\}$, where $a_{1}<a_{2}<\cdots<a_{r}$ and a_{i} is not adjacent to a_{j} with $\neq j ; \quad B=V\left(K_{n}\right) \backslash V\left(K_{r}\right)=\left\{b_{1}=0, b_{2}, \cdots, b_{n-r}\right\}$, where $0=b_{1}<b_{2}<\cdots<b_{n-r}$ and b_{i} is adjacent to b_{j} with $i \neq j$; $C=V\left(m K_{1}\right)=\left\{c_{1}, c_{2}, \cdots, c_{m}\right\}$, where $0=b_{1}<b_{2}<\cdots<$ $b_{n-r}<a_{1}<a_{2}<\cdots<a_{r}<c_{1}<c_{2}<\cdots<c_{m}$. So $C \cap(A \cup B)=\phi . \quad$ Let $\quad V\left(\left(K_{n}-E\left(K_{r}\right)\right) \cup m K_{1}\right)=S=$ $A \cup B \cup C$. Le $A_{0}=\left\{b_{i}+a_{j} \mid j=1,2, \cdots, r ; i=2,3, \cdots, n-\right.$ $r\}$ and $B_{0}=\left\{b_{i}+b_{j} \mid i, j=2,3, \cdots, n-r\right.$ and $\left.i \neq j\right\}$..Thus, $A_{0} \subset S, B_{0} \subset S$ and as such $A_{0} \cup B_{0} \subseteq C \subset S$.

Lemma 2.1. $0 \in S$.

Proof. It is obvious that $0 \in B$ and as such $0 \in A \cup B \cup$ $C=S$.
Lemma2.2. $\boldsymbol{\sigma} *\left(K_{n}-E\left(K_{r}\right)\right)=1$ for $n=4$ and $r=2$.
Proof. We consider the following sum* labeling of the graph $\left(K_{n}-E\left(K_{r}\right)\right) \cup K_{1}$:
$b_{i}=(i-1) N_{1}, i=1,2 ; a_{j}=j N_{1}+N_{2}, j=1,2 ; c_{k}=$
$(k+2) N_{1}+N_{2}, k=1$, where N_{1} and N_{2} are prime numbers with $5 \leq N_{1} \leq N_{2}$. Obviously, the above labeling is a sum* labeling of $K_{n}-E\left(K_{r}\right)$ and $\sigma *\left(K_{n}-E\left(K_{r}\right)\right)=1$ for $n=4$ and $r=2$.
Lemma2.3. $\quad \boldsymbol{\sigma} *\left(K_{n}-E\left(K_{r}\right)\right)=0$ for $K_{r} \subseteq K_{n}$ and $3 \leq r \leq n \leq 4$.
Proof. It is easy to verify, so from now on we assume that $n \geq 5$ and $r \geq 2$.
Lemma 2. 4. $\boldsymbol{\sigma} *\left(K_{n}-E\left(K_{r}\right)\right)=0$ for $K_{r} \subseteq K_{n}$ and $r=n$ or $r=n-1$.
Proof. It is obvious that for $r=n$, since $K_{n}-E\left(K_{n}\right)=n K_{1}$. For $r=n-1, K_{n}-E\left(K_{r}\right)$ is a star, which is known to be sum* graph [1].
Lemma 2. 5. $\boldsymbol{\sigma} *\left(K_{n}-E\left(K_{r}\right)\right)=n-r-1$ for $K_{r} \subseteq K_{n}$ and $2 \leq r \leq n-2$ and $n \geq 5$.
Proof. Label of the vertices in B are $0,1,2, \cdots, n-r-1$ such that $\lambda\left(b_{1}\right)<\lambda\left(b_{2}\right)<\cdots<\lambda\left(b_{n-r}\right)$ and label of the vertices in A are $n-r, n-r+1, \cdots n-1$ such that $\lambda\left(a_{1}\right)<\lambda\left(a_{2}\right)<\cdots<\lambda\left(a_{r}\right)$. Let S_{1} be the set of $n-1$ distinct labels produced by the edges incident on the vertex b_{1} and let S_{2} be the set of $n-r$ distinct labels produced by the edges incident on the vertex a_{r}. The largest label in S_{1}, namely $\lambda\left(b_{1}\right)+\lambda\left(a_{1}\right)$ is the same as the smallest label in S_{2}
so that there are at least $(n-1)+(n-r)-1=2 n-r-$ 2 distinct edge sums in a sum* labeling of the graph $K_{n}-$ $E\left(K_{r}\right)$. Since the smallest label in the graph $K_{n}-E\left(K_{r}\right)$ cannot be the edge sum of any edge, at most $n-1$ of these edge sums can be labels of the graph $K_{n}-E\left(K_{r}\right)$ so that $\boldsymbol{\sigma} *\left(K_{n}-E\left(K_{r}\right)\right)=(2 n-r-2)-(n-1)=n-r-1$. Label the vertices in B and A are respectively $0,1,2, \cdots, n-$ $r-1$ and $n-r, n-r+1, \cdots n-1$ and also the incidentals with $n, n+1, \cdots, 2 n-r-2$.
Theorem2.1.
$*\left(K_{n}-E\left(K_{r}\right)\right)=\left\{\begin{array}{c}0 \quad \text { if } \quad r=n, n-1 \\ n-r-1\end{array}\right.$ if $2 \leq r \leq n-2 \quad$ for $K_{r} \subseteq K_{n}$ and $n \geq 5$.
Proof. There are two valid assertions in this theorem. The first assertion is obtained from Lemma 2.4 and the second assertion is obtained from Lemma 2.5.
Lemma 2.6. $\boldsymbol{\rho} *\left(K_{n}-E\left(K_{r}\right)\right)=0$ for $K_{r} \subseteq K_{n}$ and $r=n$ or $r=n-1$.
Proof. It is obvious that for $r=n$, since $K_{n}-E\left(K_{n}\right)=n K_{1}$. For $r=n-1, K_{n}-E\left(K_{r}\right)$ is a star, which is known to be mod sum* graph [1].

Lemma2.7. $\boldsymbol{\rho} *\left(K_{n}-E\left(K_{r}\right)\right)=0$ for $K_{r} \subseteq K_{n}$ and $2 \leq r \leq n-2$ and $n \geq 5$.
Proof. Label of the vertices in B and A are respectively $0,1,2, \cdots, n-r-1$ and $n-r, n-r+1, \cdots n-1$ and let graph modulus be $z=n$. Then all the edge sums $(\bmod z)$ are vertices of the graph $K_{n}-E\left(K_{r}\right)$. So mod sum* number of the graph $K_{n}-E\left(K_{r}\right)$ is zero. Hence the Lemma 2.7 holds.

Theorem 2.2. $\boldsymbol{\rho} *\left(K_{n}-E\left(K_{r}\right)\right)=0$ for $K_{r} \subseteq K_{n}$ and $n \geq 5$.
Proof. There are two valid assertions in this theorem. The first assertion is obtained from Lemma 2.6 and the second assertion is obtained from Lemma 2.7.

III. THE SUM*NUMBER AND MOD SUM* NUMBER OF THE GRAPHS $\boldsymbol{K}_{\boldsymbol{n}, \boldsymbol{n}}$ AND $\boldsymbol{K}_{\boldsymbol{n}, \boldsymbol{n}}-\boldsymbol{E}\left(\boldsymbol{n} \boldsymbol{K}_{2}\right)$

The following open problems given by Sutton in his Ph.D. thesis [1] are solved in this section.

Open Problem 1. What is the sum* number and mod sum* number of the graph $K_{n, n}$.
Open Problem 2. What is the sum* number and mod sum* number of the graph $K_{n, n}-E\left(n K_{2}\right)$.

Theorem 3. 1. $\sigma *\left(K_{n, n}\right)=n-1$ for $n \geq 2$.

Proof. The following facts are needed to prove the above theorem.
Fact 1: Let $m=\sigma *\left(K_{n, n}\right), n \geq 2$. Let $V\left(K_{n, n}\right)=(A, B)$ be the bipartition of a complete symmetric bipartite graph $K_{n, n}$ with $A=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$, where $a_{1}<a_{2}<\cdots<a_{n}$ and a_{i} is not adjacent to a_{j} with $i \neq j, B=\left\{b_{1}, b_{2}, \cdots, b_{n}\right\}$, where $b_{1}<b_{2}<\cdots<b_{n}$ and b_{i} is not adjacent to b_{j} with $i \neq j, C=V\left(m K_{1}\right)=\left\{c_{1}, c_{2}, \cdots, c_{m}\right\}$ be the set of incidentals, where $c_{1}<c_{2}<\cdots<c_{m}$. Hence, we have $(A \cup B) \cap C=\phi$. Let $V\left(K_{n, n} \cup m K_{1}\right)=A \cup B \cup C=S$.
Fact 2: Sum* labeling schemes for the graph $K_{n, n} \cup m K_{1}$ are given as follows.
$a_{i}=(i-1) N$, for $i=1,2, \cdots n ; b_{j}=(j-1) N+$
1 , for $j=1,2, \cdots n$; $c_{k}=(n+k-1) N+1$, for $k=$
$1,2, \cdots n-1$, where $N \geq 5$ is an integer.
It is obvious that $\left\{a_{2}+b_{n}, a_{3}+b_{n}, \cdots, a_{n}+b_{n}\right\} \subseteq C$ and $a_{2}+b_{n}<a_{3}+b_{n}<\cdots<a_{n}+b_{n}$. So $|C|=n-1$.
Fact 3:

- The vertices of S are distinct.
- $A \cap B=\emptyset, B \cap C=\emptyset, C \cap A=\emptyset$;
- $\quad a_{i}+a_{j} \notin S$ for any $a_{i}, a_{j} \in A(i \neq j \neq 1)$;
- $\quad b_{i}+b_{j} \notin S$ for any $b_{i}, b_{j} \in A(i \neq j)$;

Fact 4:

- $\quad c_{i}+c_{j} \notin S$ for any $c_{i}, c_{j} \in C(i \neq j)$;
- $a_{i}+c_{j} \notin S$ for any $a_{i} \in A(i \neq 1)$ and for any $c_{j} \in C$;
- $b_{i}+c_{j} \notin S$ for any $b_{i} \in B$ and for any $c_{j} \in C$;
- $a_{i}+b_{j}=c_{k}$ for any $a_{i} \in A(i \neq 1)$ and for any $b_{j} \in B$.
Consequently from Fact 1 to 4 given above, we conclude that the above labeling is a sum* labeling of the graph $K_{n, n} \cup$ $m K_{1}$ and as such the theorem holds.

Theorem 3. 2. $\rho *\left(K_{n, n}\right)=0$ for $n \geq 2$.
Proof. Consider the following facts.
Fact1: Let $V\left(K_{n, n}\right)=(A, B)$ be the bipartition of a complete symmetric bipartite graph $K_{n, n}$ with $A=$ $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$, where $a_{1}<a_{2}<\cdots<a_{n}$ with a_{i} not adjacent to a_{j} with $i \neq j, B=\left\{b_{1}, b_{2}, \cdots, b_{n}\right\}$, where $b_{1}<b_{2}<\cdots<b_{n}$ and b_{i} is not adjacent to b_{j} with $i \neq j$, Let $S=V\left(K_{n, n}\right)=A \cup B$.
Fact 2: Mod sum* labeling schemes for the graph $K_{n, n}$ as follows.

- $\quad a_{i}=(i-1) N$, for $i=1,2, \cdots n ; b_{j}=(j-1) N+$ 1 , for $j=1,2, \cdots n$; where $N \geq 5$ is an integer with modulus $z=m=(n-1) N$.

Fact 3:

- The vertices of S are distinct.
- $A \cap B=\emptyset$;
- $a_{i}+a_{j} \notin S$ for any $a_{i}, a_{j} \in A(i \neq j \neq 1)$;

Fact 4:

- $\quad b_{i}+b_{j} \notin S$ for any $b_{i}, b_{j} \in B(i \neq j)$;
- $\quad\left(a_{i}+b_{j}\right)(\bmod z)$ are vertices of $K_{n, n}$.

Facts 1 to 4 given above makes us conclude the labeling given above is a mod sum* labeling of graph $K_{n, n}$ and as such the proof follows.

Theorem 3. 3. $\sigma *\left(K_{n, n}-E\left(n K_{2}\right)\right)=n-3$ for $n \geq 4$.
Proof. Consider the following facts.
Fact 1: Let $m=\sigma *\left(K_{n, n}-E\left(n K_{2}\right)\right), n \geq 4$. Let $V\left(K_{n, n}-E\left(n K_{2}\right)\right)=(A, B)$ be the bipartition of $K_{n, n}-$ $E\left(n K_{2}\right)$ with $A=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$, where $a_{1}<a_{2}<\cdots<$ a_{n} and a_{i} is not adjacent to a_{j} with $i \neq j$, $B=\left\{b_{1}, b_{2}, \cdots, b_{n}\right\}$, where $b_{1}<b_{2}<\cdots<b_{n}$ and b_{i} is not adjacent to b_{j} with $i \neq j,\left\{a_{1} b_{1}, a_{2} b_{2}, \cdots, a_{n} b_{n}\right\}=$ $E\left(n K_{2}\right), C=V\left(m K_{1}\right)=\left\{c_{1}, c_{2}, \cdots, c_{m}\right\}$ be the set of incidentals, where $c_{1}<c_{2}<\cdots<c_{m}$. Hence, we have $(A \cup B) \cap C=\phi$. Let $S=V\left(\left(K_{n, n}-E\left(n K_{2}\right)\right) \cup m K_{1}\right)=$ $A \cup B \cup C$.
Fact 2: Sum* labeling schemes for the graph $\left(K_{n, n}-\right.$ $\left.E\left(n K_{2}\right)\right) \cup m K_{1}$ are given as follows.
$a_{i}=(i-1) N$, for $i=1,2, \cdots n ; b_{j}=(j-1) N+$
1 , for $j=1,2, \cdots n$; $c_{k}=(n+k-1) N+1$, for $k=$
$1,2, \cdots n-3$, where $N \geq 5$ is an integer.
It is obvious that $\left\{a_{3}+b_{n}, a_{4}+b_{n}, \cdots, a_{n-1}+b_{n}\right\} \subseteq C$ and $a_{3}+b_{n}<a_{4}+b_{n}<\cdots<a_{n-1}+b_{n}$. So $|C|=n-3$.
Fact 3:

- The vertices of S are distinct.
- $A \cap B=\emptyset, B \cap C=\emptyset, C \cap A=\emptyset$;
- $\quad a_{i}+a_{j} \notin S$ for any $a_{i}, a_{j} \in A(i \neq j \neq 1)$;
- $\quad b_{i}+b_{j} \notin S$ for any $b_{i}, b_{j} \in B(i \neq j)$.

Fact 4:

- $c_{i}+c_{j} \notin S$ for any $c_{i}, c_{j} \in C(i \neq j)$;
- $a_{i}+c_{j} \notin S$ for any $a_{i} \in A(i \neq 1)$ and for any $c_{j} \in C$;
- $b_{i}+c_{j} \notin S$ for any $b_{i} \in B$ and for any $c_{j} \in C$;
- $a_{i}+b_{j}=c_{k}$ for any $a_{i} \in A(i \neq 1)$ and for any $b_{j} \in B ;$
- $\quad a_{i}+b_{j} \notin S(i \neq 1)$ iff $i+j=n+2$ or $i=j=n$;
- $a_{2}+b_{n}, a_{3}+b_{n-1}, \cdots, a_{n}+b_{2}, a_{n}+b_{n}$ $E\left(n K_{2}\right)$.
Consequently from Fact 1 to 4 given above, we conclude that the above labeling is a sum* labeling of the graph $\left(K_{n, n}-\right.$ $\left.E\left(n K_{2}\right)\right) \cup m K_{1}$ and as such the theorem holds.

Theorem 3.4. $\rho *\left(K_{n, n}-E\left(n K_{2}\right)\right)=0$ for $n \geq 4$.
Proof. Let $V\left(K_{n, n}-E\left(n K_{2}\right)\right)=(A, B)$ Let be the bipartition of the graph $\left(K_{n, n}-E\left(n K_{2}\right)\right)$ with $A=$ $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$, where $a_{1}<a_{2}<\cdots<a_{n}$ and a_{i} is not
adjacent to a_{j} with $i \neq j, \quad B=\left\{b_{1}, b_{2}, \cdots, b_{n}\right\}$, where $b_{1}<b_{2}<\cdots<b_{n}$ and b_{i} is not adjacent to b_{j} with $i \neq j$, $\left\{a_{1} b_{1}, a_{2} b_{2}, \cdots, a_{n} b_{n}\right\}=E\left(n K_{2}\right)$. Let Let $S=V\left(K_{n, n}-\right.$ $\left.E\left(n K_{2}\right)\right)=A \cup B$. The mod sum* labeling for the graph $K_{n, n}-E\left(n K_{2}\right)$ is as follows.
$a_{i}=(i-1) N$, for $i=1,2, \cdots n ; b_{j}=(j-1) N+$
1 , for $j=1,2, \cdots n$; where $N \geq 5$ is an integer with modulus $z=m=(n-1) N$.
The following assertions are readily seen to be valid.

1. The vertices of S are distinct;
2. $A \cap B=\emptyset$;
3. $a_{i}+a_{j} \notin S$ for any $a_{i}, a_{j} \in A(i \neq j \neq 1)$;
4. $b_{i}+b_{j} \notin S$ for any $b_{i}, b_{j} \in B(i \neq j)$;
5. $\left(a_{i}+b_{j}\right)(\bmod z)$ are vertices of $K_{n, n}-E\left(n K_{2}\right)$;
6. $\quad a_{i}+b_{j} \notin S(i \neq 1)$ iff $i+j=n+2$ or $i=j=n$;

So, $\quad a_{2}+b_{n}, a_{3}+b_{n-1}, \cdots, a_{n}+b_{2}, a_{n}+b_{n} \quad$ is $E\left(n K_{2}\right)$.
Thus the above labeling is a mod sum* labeling of graph $K_{n, n}-E\left(n K_{2}\right)$ and as such the theorem holds.

IV. THE SUM* NUMBER AND MOD SUM* NUMBER OF THE GRAPHS $P_{n} \odot K_{1}$ AND $C_{n} \odot K_{1}$

In this section, we determine sum* number and mod sum* number of the graphs $P_{n} \odot K_{1}$ and $C_{n} \odot K_{1}$. Recall that the sum* number is the minimum number of incidentals needed so that the union of graph and incidentals may be labeled as a sum* graph. Similarly the mod sum* number is the minimum number of incidentals needed so that the union of graph and incidentals may be labeled as a mod sum* graph.

Theorem 4.1. $\boldsymbol{\sigma} *\left(P_{n} \odot K_{1}\right)=\mathbf{0}$ for $n \geq 2$.
Proof. Let $V\left(P_{n} \odot K_{1}\right)=(A, B)$ be the bipartition of a graph $P_{n} \odot K_{1}$ with $A=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$, where $a_{1}<a_{2}<\cdots<a_{n}$ and a_{i} is not adjacent to a_{j} with $i \neq j, B=\left\{b_{1}, b_{2}, \cdots, b_{n}\right\}$, where $b_{1}<b_{2}<\cdots<b_{n}$ and b_{i} is not adjacent to b_{j} with $i \neq j$. Let $S=A \cup B$. The sum* labeling for the graph $P_{n} \odot K_{1}$ is as follows.
$\chi\left\{a_{i}\right\}=(i-1)$ for $i=1,2, \cdots, n ; \quad \chi\left\{b_{j}\right\}=2 n-j$ for $j=1,2, \cdots, n$.
Hence, we get $\chi\left\{a_{i}\right\}+\chi\left\{a_{i+1}\right\} \in S$ for $i=1,2, \cdots, n-1$ and $\chi\left\{a_{i}\right\}+\chi\left\{b_{i}\right\}=2 n-1$ for $i=1,2, \cdots, n$.

The above labeling is a sum* labeling of the $\operatorname{graph} P_{n} \odot K_{1}$ and $\boldsymbol{\sigma} *\left(P_{n} \odot K_{1}\right)=\mathbf{0}$ for $n \geq 2$.

Theorem 4.2. $\boldsymbol{\rho} *\left(P_{n} \odot K_{1}\right)=\mathbf{0}$ for $n \geq 2$.
Proof. Let $V\left(P_{n} \odot K_{1}\right)=(A, B)$ be the bipartition of a graph $P_{n} \odot K_{1}$ with $A=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$, where $a_{1}<a_{2}<\cdots<a_{n}$ and a_{i} is not adjacent to a_{j} with $\neq j, B=\left\{b_{1}, b_{2}, \cdots, b_{n}\right\}$, where $b_{1}<b_{2}<\cdots<b_{n}$ and b_{i} is not adjacent to b_{j} with
$i \neq j$. Let $S=A \cup B$. The mod sum* labeling for the graph $P_{n} \odot K_{1}$ is as follows.
$\chi\left\{a_{i}\right\}=(i-1)$ for $i=1,2, \cdots, n ; \quad \chi\left\{b_{j}\right\}=2 n-j$ for $j=1,2, \cdots, n$ with modulus $z=2 n$.
Thus the above labeling is a mod sum* labeling of the graph $P_{n} \odot K_{1}$ and $*\left(P_{n} \odot K_{1}\right)=\mathbf{0}$ for $n \geq 2$.

Theorem 4.3. . $\boldsymbol{\sigma} *\left(C_{n} \odot K_{1}\right)=\mathbf{0}$ for $n \geq 4$.
Proof. We have either $n=2 k+1(k \geq 2)$ or $n=$ $2 k(k \geq 2)$.
Case 1: Let $n=2 k+1(k \geq 2)$.. Consider the following cases.
Fact 1: Sum* labeling schemes for the graph $C_{n} \odot K_{1}$ as follows.

- $a_{i}=(k-i) N+1, b_{i}=(i-1) N, i=1,2, \cdots, k ;$
- $d_{i}=(2 k+i-2) N+2, e_{i}=(3 k-i-1) N+$ $3, i=1,2, \cdots, k$;
- $a_{k+1}=k N+1, d_{k+1}=k N+2$, where $N \geq 5$ is an integer;
- Let

$$
\begin{aligned}
& A=\left\{a_{1}, a_{2}, \cdots, a_{k}, a_{k+1}\right\}, B= \\
& \left\{b_{1}, b_{2}, \cdots, b_{k}\right\}, D=\left\{d_{1}, d_{2}, \cdots, d_{k}, d_{k+1}\right\}, E= \\
& \left\{e_{1}, e_{2}, \cdots, e_{k}\right\}, S=A \cup B \cup D \cup E .
\end{aligned}
$$

Fact 2:

- The vertices of S are distinct;
- $b_{i}+b_{j} \notin S$ for any $b_{i}, b_{j} \in B(i \neq j, i \neq 1)$;
- $\quad d+d_{j} \notin S$ for any $d_{i}, d_{j} \in D(i \neq j)$;
- $e_{i}+e_{j} \notin S$ for any $e_{i}, e_{j} \in E(i \neq j)$.

Fact 3:

- $\quad a_{i}+b_{j} \in S$ if and only if a_{i} is adjacent to b_{j};
- $a_{i}+d_{j} \in S$ if and only if $i=j$ and $a_{1} b_{k} a_{2} b_{k-1} \cdots a_{k-1} b_{2} a_{k} b_{1} a_{k+1} a_{1}$ is a cycle $C_{2 k+1} ;$
- $\quad a_{i}+e_{j} \notin S$ for any $a_{i} \in A$ and for any any $e_{j} \in E$;
- $b_{i}+d_{j} \notin S$ for any $b_{i} \in B$ and for any any $d_{j} \in D ;$
- $\quad b_{i}+e_{j} \in S$ if and only if $i=j$.

Case 2: Let $n=2 k(k \geq 2)$. Consider the following facts.
Facts 1: Sum* labeling schemes for the graph $C_{n} \odot K_{1}$ is as follows.

- $\quad a_{i}=(k-i) N+1, b_{i}=(i-1) N, i=1,2, \cdots, k$.
- $d_{i}=(k+i-1) N+1, e_{i}=(3 k-i-1) N+$
$2, i=1,2, \cdots, k$, where $N \geq 5$ is an integer.
- Let $A=\left\{a_{1}, a_{2}, \cdots, a_{k}\right\}, B=\left\{b_{1}, b_{2}, \cdots, b_{k}\right\}, D=$ $\left\{d_{1}, d_{2}, \cdots, d_{k}\right\}, E=\left\{e_{1}, e_{2}, \cdots, e_{k}\right\}, S=A \cup B \cup$ $D \cup E$.

Fact 2:

- The vertices of S are distinct;
- $b_{i}+b_{j} \notin S$ for any $b_{i}, b_{j} \in B(i \neq j, i \neq 1)$;
- $\quad d_{i}+d_{j} \notin S$ for any $d_{i}, d_{j} \in D(i \neq j)$;
- $e_{i}+e_{j} \notin S$ for any $e_{i}, e_{j} \in E(i \neq j)$.
- $a_{i}+b_{j} \in S$ iff a_{i} is adjacent to b_{j}.

Fact 3:

- $a_{i}+d_{j} \in S$ if and only if $i=j$ and $a_{1} b_{k} a_{2} b_{k-1} \cdots a_{k-1} b_{2} a_{k} b_{1} a_{1}$ is a cycle $C_{2 k}$;
- $\quad a_{i}+e_{j} \notin S$ for any $a_{i} \in A$ and for any any $e_{j} \in E$;
- $b_{i}+d_{j} \notin S$ for any $b_{i} \in B$ and for any any $d_{j} \in D ;$
- $\quad b_{i}+e_{j} \in S$ if and only if $i=j$;
- $\quad d_{i}+e_{j} \notin S$ for any $d_{i} \in D$ and for any any $e_{j} \in E$.

From the facts given above, we conclude that the above labeling is a sum* labeling of graph $C_{n} \odot K_{1}$ for $n \geq 4$ with $\boldsymbol{\sigma} *\left(C_{n} \odot K_{1}\right)=\mathbf{0}$ and hence the proof.
Theorem 4.4. . $\boldsymbol{\rho} *\left(C_{n} \odot K_{1}\right)=\mathbf{0}$ for $n \geq 4$.
Proof. We have either $n=2 k+1(k \geq 2)$ or $n=$ $2 k(k \geq 2)$.
Case 1: Let $n=2 k+1(k \geq 2)$.. Consider the following cases.
Fact 1: Mod sum* labeling scheme for the graph $C_{n} \odot K_{1}$ is as follows.

- $\quad a_{i}=(k-i) N+1, b_{i}=(i-1) N, i=1,2, \cdots, k ;$
- $d_{i}=(k-i) N+2, e_{i}=(k-i) N+3, i=$ $1,2, \cdots, k$;
- $a_{k+1}=k N+1, d_{k+1}=k N+2$ with modulus $z=k n$, where $N \geq 5$ is an integer;
- Let

$$
\begin{aligned}
& A=\left\{a_{1}, a_{2}, \cdots, a_{k}, a_{k+1}\right\}, B= \\
& \left\{b_{1}, b_{2}, \cdots, b_{k}\right\}, D=\left\{d_{1}, d_{2}, \cdots, d_{k}, d_{k+1}\right\}, E= \\
& \left\{e_{1}, e_{2}, \cdots, e_{k}\right\}, S=A \cup B \cup D \cup E .
\end{aligned}
$$

Fact 2:

- The vertices of S are distinct;
- $a_{i}+b_{j} \bmod z \in S$ if and only if a_{i} is adjacent to b_{j}; ${ }^{1}$
- $a_{i}+d_{j} \bmod z \in S$ if and only if $i=j$;
- $\quad b_{i}+e_{j} \bmod z \in S$ if and only if $i=j$;
- $a_{1} b_{k} a_{2} b_{k-1} \cdots a_{k-1} b_{2} a_{k} b_{1} a_{k+1} a_{1}$ is a cycle $C_{2 k+1}$.

Case 2: Let $n=2 k(k \geq 2)$. Consider the following facts.
Fact1: Mod sum* labeling scheme for the graph $C_{n} \odot K_{1}$ is as follows.

- $a_{i}=(k-i) N+1, b_{i}=(i-1) N, i=1,2, \cdots, k ;$
- $d_{i}=(k+i-1) N+1, e_{i}=(3 k-i-1) N+$ $2, i=1,2, \cdots, k$ with modulus $z=(n+k-1) N$, where $N \geq 5$ is an integer;
- Let $A=\left\{a_{1}, a_{2}, \cdots, a_{k}\right\}, B=\left\{b_{1}, b_{2}, \cdots, b_{k}\right\}, D=$ $\left\{d_{1}, d_{2}, \cdots, d_{k}\right\}, E=\left\{e_{1}, e_{2}, \cdots, e_{k}\right\}, S=A \cup B \cup$ $D \cup E$.

Fact 2:

- The vertices of S are distinct;
- $\quad a_{i}+b_{j} \bmod z \in S$ if and only if a_{i} is adjacent to b_{j};
- $a_{i}+d_{j} \bmod z \in S$ if and only if $i=j$;
- $b_{i}+e_{j} \bmod z \in S$ if and only if $i=j$;
- $a_{1} b_{k} a_{2} b_{k-1} \cdots a_{k-1} b_{2} a_{k} b_{1} a_{1}$ is a cycle $C_{2 k}$;
- $\quad d_{i}+e_{j} \notin S$ for any $d_{i} \in D$ and for any any $e_{j} \in E$.

From the facts given above, we conclude that the above labeling is a mod sum* labeling of graph $C_{n} \odot K_{1}$ for $n \geq 4$ with $\rho *\left(C_{n} \odot K_{1}\right)=\mathbf{0}$ and hence the proof.

V. CONCLUSION

This article gives sum* and mod sum* labeling to some new classes of graphs and determine their sum* and mod sum* numbers. The graphs explored in this article include $K_{n}-$ $E\left(K_{r}\right), K_{n, n}$ for $n \geq 2, K_{n, n}-E\left(n K_{2}\right)$ for $n \geq 2, P_{n} \odot K_{1}$ for $n \geq 2$ and $C_{n} \odot K_{1}$ for $n \geq 4$. To the best of our knowledge this is the second article dealing with sum* and mod sum* labeling and the only other article available in literature is the one given by M. Sutton [1] who introduced these labeling concepts. As not much progress has been done in this area there is huge scope for further explorations.

References

[1] M. Sutton, "Sumable Graphs Labellings and Their Applications", Ph. D. Thesis, Department of Computer Science, The University of Newcastle, 2001.
[2] F.Harary, "Graph Theory", Addison-Wesley, Reading, MA, 1969.
[3] F. Harary, "Sum Graphs and Difference Graphs", Congressus Numerantium , Vol. 72, pp. 101-108, 1990.
[4] J. Bolland, R. Laskar, C. Turner, G. Domke, " On Mod Sum Graphs", Congressus Numerantium, Vol. 70, pp.131-135, 1990.
[5] W. Dou, J. Gao, "The (Mod, Integral) Sum Numbers of Fans and $K_{n, n}-E\left(n K_{2}\right) "$, Discrete Mathematics, Vol. 306, pp.2655-2669, 2006.
[6] H.Wang, P. Li, "Some Results on Exclusive Sum Graphs", J. Appl. Math Comput, Vol. 34, pp. 343-351, 2010.

Authors Profile

Mr.Raja kishore samal pursed Master of Science from Utkal University, Bhubaneswar, Odisha, India in 1997 and M.Phil from same University in year 2007. He is currently pursuing Ph.D. and currently working as a Assistant Professor in Department of Mathematics, OPS Mohavidyalaya, Hindol Road, Dhenkanal, Odisha, India since 2016. He is a life member of Orissa Mathematical Society and Indian Society for Technical Education (ISTE) since 2006. He has published 5 research papers in reputed international journals including Taylor and Francis and conferences. His main research work focuses on Sum labeling of graphs. He has more than 18 years of teaching experience.
Prof. Debdas Mishra has obtained Ph.D. in Mathematics from Indian Institute of Technology, Kharagpur, India in 2007. He is currently working as a faculty member in the Department of Mathematics, C. V. Raman College of Engineering, Bhubaneswar, India since 1998. He is a life member of Orissa Mathematical Society and Indian Unit for Pattern Recognition and Artificial Intelligence [IUPRAI], ISI Calcutta since 2011. He has published more than 50 research papers in reputed international journals including Thomson Reuters (SCI \& Web of Science) and conferences. His main research work focuses on Graph Labeling Problems. He has successfully guided three doctoral research scholars. He has more than 20 years of teaching experience and 11 years of Research Experience.

