
 © 2015, IJCSE All Rights Reserved 210

International International International International Journal of Computer Sciences and EngineeringJournal of Computer Sciences and EngineeringJournal of Computer Sciences and EngineeringJournal of Computer Sciences and Engineering Open Access
 Research Paper Volume-3, Issue-11 E-ISSN: 2347-2693

Min-Max Simulation: An Execution Design of Process

Scheduling Algorithm

Karan Sukhija

Research Scholar, DCSA, PU, Chandigarh

rs.karan.sukhija@gmail.com

www.ijcseonline.org

Received: Oct/23/2015 Revised: Nov/06/2015 Accepted: Nov/18/2015 Published: Nov/27/2015

Abstract— Job scheduling is an elementary characteristic of an operating system. The perception is to have system resources

shared by a number of processes. A number of steps need to be performed to execute a program. Instructions and data must be

loaded into main memory, I/O devices and files must be initialized, and other resources must be prepared. The efficiency of a

system solely is subject to the use of job scheduling algorithm in a multi-programmed system. This paper begins with a brief

representation of task or job sets, followed by a discussion about different type of job scheduling algorithms. In addition, the

elaboration of comparative study of the entire scheduling algorithm along with proposed work is also given. This manuscript

represents the simulation design of proposed CPU scheduling algorithm called MIN-MAX which is both preemptive and non-

preemptive in nature. This work encompasses a software tool which produces a wide-ranging simulation of a number of CPU

scheduling algorithms and provides the output in the form of scheduling performance metrics. The main objective of the paper

is to analyze the performance of different algorithms with the proposed algorithm that results in minimum average waiting time

and context switches. The major focus is to improve the system efficiency in multi programming system and also reduces the

starvation problem among minimum and maximum burst time processes.

Keywords— Process Scheduling, First Come First Serve (FCFS), Round Robin (RR), MIN-MAX Algorithm, Simulation

Design, Starvation, Complexity Analysis.

I. INTRODUCTION

Maximum system utilization is obtained with

multiprogramming concept. For this purpose, several

processes are kept in memory at one time and every time a

running process has to wait, until another process can take

over use of the CPU. Scheduling of the CPU is fundamental

to operating system design. Process execution consists of a

cycle of a CPU time burst and an I/O time burst. Processes

switches between these two states (i.e. CPU burst and I/O

burst). Eventually, the final CPU burst ends with a system

request to terminate execution. Dispatcher module gives

control of the CPU to the process selected by the short term

scheduler that involves switching context, switching to user

mode, jumping to the proper location in the user program to

restart that program. A process migrates between various

scheduling queues during its lifetime as described in below

mentioned table 1 [1].

Queues Description

Job queue Set of all processes in the system

Ready

queue

Set of all processes residing in main

memory, ready and waiting to execute

Device

queue

Set of processes waiting for an I/O device

Table 1: Process Scheduling Queues

Process is an executing instance of a program which

requires a set of resources that are allocated by the CPU. As

a process executes, it changes state among five basic states

as depicts in Fig.1 namely new, ready, running, waiting and

terminated [1].

Fig.1. Process States [7]

A. Algorithm’s Performance Evaluation

CPU scheduling algorithms have a variety of characteristics

and the choice of a particular algorithm on the basis of its

characteristics may favour one class of processes over

another. During the choice of an algorithm, different

properties of the various algorithms should be considered as

Waiting

Interrupt

Admitted

Scheduler

dispatch

Exit

Running Ready

New
Terminated

I/O or event

wait

I/O or event

completion

 International Journal of Computer Sciences and Engineering Vol.-3(11), PP(210-216) Nov 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 211

the comparative performance of algorithm depends on a

variety of factors as given below:

• UTILIZATION: It is the fraction of time a device is

in use. It is measured in the form of ratio of in-use

time / total observation time.

• THROUGHPUT: It is the number of job completions

in a period of time. The measurement used to

calculate this factor is the result of number of jobs /

time unit.

• SERVICE TIME: It is the time required by a device

to handle a request. It is calculated in the form of

specific time unit (exp. seconds).

• QUEUEING TIME: It is the time on a queue waiting

for service from the device. It is computed in terms

of specific time unit.

• RESIDENCE TIME: It is the time spent by a request

at a device. It is calculated by computing the service

time and queuing time together.

• RESPONSE TIME: It is the time used by a system to

respond to a user Job. It is measured in the form of

specific time unit (exp. seconds).

• THINK TIME: Time spent by the user of an

interactive system to figure out the next request. It is

calculated in terms of specific time unit (exp.

seconds).

The objective of these factors is to optimize the algorithm’s

performance.

II. LITERATURE REVIEW

The fundamental task of an operating system is to allocate

the CPU to the jobs for a particular time slice which is

termed as job scheduling [1]. During the CPU allocation

scheduler and dispatcher is used. Scheduling requires

careful attention to ensure fairness and avoid process

starvation in the CPU. A variety of scheduling algorithms

exist which vary in efficiency according to the jobs to be

processed. Scheduling algorithms are generally classified

into preemptive and non-preemptive scheduling disciplines

[2].

Preemptive Scheduling: The entire running task is

interrupted for some time and resumed later when the

priority task has finished its execution [10].

Non-Preemptive Scheduling: The entire running task is

executed till completion. It cannot be interrupted until

terminated.

An overview of most used job scheduling algorithm is

discussed below:

a. First Come First Served (FCFS) Scheduling: It is

the simplest scheduling algorithm that allocates the CPU to

the process that requests the CPU first. This algorithm is

easily managed with a FIFO queue [1]. Processes are

dispatched according to their arrival time on the ready

queue. Being a non preemptive discipline, once a process

has a CPU, it runs to completion [3]. FCFS is optimal for

smaller processes rather than larger processes [2]. As larger

processes occupied/engaged processor for a long time that

fallout low throughput.

b. Shortest Job First (SJF) Scheduling: The

conclusive factor of SJF scheduling algorithm is, a process

with the minimum CPU burst, is served first by the CPU.

SJF uses the FCFS to break tie where two processes have

the same length next CPU burst. It is provably optimal since

it minimizes the average turnaround time and the average

waiting time. The main problem with this discipline is the

necessity of the previous knowledge about the time required

for a process to complete. The SJF algorithm may be

implemented in both ways: Preemptive: currently executing

process can be preempted when a new process arrives with

shortest CPU burst length. This scheme is known as the

Shortest -Remaining-Time-First (SRTF) [4]. Non-

preemptive: once CPU allocated to a process, no other

process can preempt it before its completion [7].

c. Round Robin (RR) Scheduling: This is a

preemptive scheduling algorithm, intended mainly for time

sharing systems in which a small quantum of time i.e. time

slices is assigned to every process. CPU is switched from

one process to another process, as the time slice expires [2].

It is designed to give a better responsive but the worst

turnaround and waiting time due to the fixed time quantum

concept. The scheduler assigns a fixed time unit (quantum)

per process usually 10-100 milliseconds, and cycles through

them [8]. RR is similar to FCFS except that preemption is

added to switch between processes [5].

d. Priority Based Scheduling: In this algorithm, CPU

is allocated to the processes on the basis of priority that is

associated with each and every process. Usually, lower

numbers are used to represent higher priorities. The process

with the highest priority is allocated first.If there are

multiple processes with same priority, typically the FCFS is

used to break tie. This algorithm have starvation problem

because sometime low priority processes may never

execute. The solution proposed here, named aging: as time

progresses increase the priorityof the process, so eventually

the process will become the highest priority and will gain

the CPU. Priority Based Scheduling [8] can be either

implemented in both ways [4]. In preemptive: newly arrived

process with higher priority can preempt the currently

running process with lower priority. In non-preemptive

priority: place the newly arrived highest priority process at

the head of the ready queue without any preemption [6].

 International Journal of Computer Sciences and Engineering Vol.-3(11), PP(210-216) Nov 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 212

e. Multilevel Queue (MQ): In this algorithm there are

several ready queues and scheduling must be done between

the multiple queues [2]. Each ready queue is partitioned into

separate queues varies foreground (interactive) and

background (batch). The foreground ready queue is

interactive in nature and used RR algorithm for scheduling

purpose but the background is in the form of batch and used

FCFS [9]. Here, scheduling used the two ways: Fixed

priority scheduling and Time slice.

f. Multilevel Feedback Queues (MLFQ): There are

several ready queues, each with different priority. When the

CPU is available, the scheduler selects a process from the

highest-priority, non-empty ready queue. Within a queue

[9], it uses RR scheduling. If a process waits too long in a

lower-priority queue may be moved to a higher-priority

queue (this form of aging to prevent starvation). If a process

uses too much CPU time [2], it will be moved to lower-

priority queues. This leaves I/O bound and interactive

processes in the higher-priority queues.

 Aforementioned different scheduling algorithms

discuss diverse strategy to process the jobs on the basis of

their burst times that can be of preemptive and non-

preemptive in nature.

Algorithm Selection Analysis

From the above discussed scheduling algorithms, round

robin scheduling algorithm (i.e. preemptive in nature) and

first come first serve algorithm ((i.e. non-preemptive in

nature)) is selected for analysis further with the proposed

algorithm MIN-MAX [10] [11].

III. PROPOSED WORK

As discussed earlier, all algorithms select the processes

from ready queue one after another and allocate the CPU to

them. But in our new proposed algorithm, the processes are

sorted in increasing order of their burst time so that shortest

process will remove earlier from the ready queue to give

better turnaround time and waiting time. Whenever a

process comes, the required burst time is compared with the

available processes in the ready queue and accordingly

ready queue is updated [7].The following table defines the

five processes in a ready queue waiting for CPU allocation:

The following table defines in what manner, our proposed

scheduling algorithm arrange these processes in ascending

order in a ready queue according to their burst time. This is

done [7] with the implementation of insertion sort that

updates the ready queue which holds the processes for

execution. The following table shows the updated scenario

of the ready queue:

MIN-MAX CPU scheduling algorithm is designed to

reduce the starvation problem between minimum and

maximum burst time processes [12]. Thus, this proposed

algorithm results in less overheads viz. starvation, context

switching and also improves the average waiting time in

contrast to another algorithms.

IV. SIMULATION DESIGN

In order to validate the proposed algorithm over the existing

algorithm First Come First Served (FCFS) and Round

Robin (RR), we have devised/designed the simulator using

the DOT NET platform which offers Graphical User

Interface (GUI) to the user. This interface helps the users to

input the jobs in ready queue by using the ADD button and

the burst time of all the input jobs is decided by randomized

function. The Fig.3 mentioned below depicts the home

screen window of our simulation design.

Fig.3. Home Screen Window

This window consists of ready queue (queue of all input

processes) and scheduling queue (queue of processes

scheduled according to burst time). The ADD button is used

to enter the job in ready queue. The ready queue is

accompanied with insertion sort an objective to arrange all

the jobs in ascending order according to their burst time.

After the job insertion phase, the next step is to schedule the

jobs for execution. The function of the NEXT button is to

schedule and execute the jobs from the ready queue. The

job remove earlier from ready queue is scheduled prior in

scheduling queue for execution. This process is

continuously followed until all the jobs from ready queue

are executed completely. On completion of the process’s

execution COMPARISON function is performed to get

PROCESSES P1 P2 P3 P4 P5

BURST TIME 48 16 37 07 23

PROCESSES P4 P2 P5 P3 P1

BURST TIME 07 16 23 37 48

 International Journal of Computer Sciences and Engineering Vol.-3(11), PP(210-216) Nov 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 213

comparative analysis of proposed algorithm MIN-MAX,

Round Robin algorithm and First Come First Serve

algorithm [12]. The average waiting time and context

switches parameters are used in comparison states for

performance evaluation of different algorithms [13].

Algorithm Methodology

The proposed scheduling algorithm MIN-MAX follows the

minimum-maximum strategy designed to reduce the

starvation problem between minimum and maximum burst

time processes. The detailed steps of

simulation/implementation of proposed algorithm are

mentioned below:

Step-1: Process P1 entered in the ready queue with the burst

time 13.

Step-2: Process P2 entered in the ready queue with the burst

time 9.

Step-3: Process P3 entered in the ready queue with the burst

time 61.

Step-4: Process P4 entered the ready queue with the burst

time 13.

Step-5: Process P5 entered in the ready queue with the burst

time 47.

In the aforementioned simulation window, the processes

along with their burst times are arranged in ascending order

i.e. job with smallest burst time placed at first position and

the job with largest burst time placed at last. Sorting of the

processes is followed by scheduling and execution of the

processes that are placed in ready queue. Scheduling of

processes is based on the methodology of proposed

algorithm MIN-MAX as discussed below.

Step-6: Remove process P2 (i.e. from the beginning) from

ready queue and schedule it for execution and update the

ready queue according to remaining processes as shown in

below window.

Step-7: Remove process P3 (i.e. from the last) from the

ready queue. The burst time of P3 process i.e. 61 is larger

than predefined thresh-hold i.e.50. Splits the process P3 into

two parts in the ratio of 1/4 and 3/4 and update the ready

queue according to remaining processes as shown in below

window.

Step-8: Remove process P1 (i.e. from the beginning) from

the ready queue and schedule it for execution and update

the ready queue for the rest of processes.

Step-9: Remove process P5 (i.e. from the last) from the

ready queue and schedule it for execution and update the

ready queue for the rest of processes.

 International Journal of Computer Sciences and Engineering Vol.-3(11), PP(210-216) Nov 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 214

Step-10: Remove process P4 (i.e. from the beginning) from

the ready queue and schedule it for execution and update

the ready queue for the remaining processes.

Step-11: Remove process P3.2 (i.e. from the last) from the

ready queue and schedule it for execution.

Step-12: Remove the one and only one process P3.1 from

the ready queue and schedule it for execution.

The successful execution of all processes is completed by

using ready queue (i.e. handles all processes with their burst

times in ascending order) and scheduling queue (i.e.

executes all the processes from the ready queue based on

the threshold value). Further performance of the scheduling

algorithm is evaluated on the basis of two parameters:

average waiting time and context switches. For this

purpose, COMPARISON function is applied as depicts in

the following window that explains about the performance

of the proposed algorithm MIN-MAX Round Robin

algorithm and First Come First Serve algorithm.

V. EXPERIMENTAL RESULTS

The proposed scheduling algorithm MIN-MAX is both

preemptive and non-preemptive in nature [13]. This

algorithm is devised on a thresh-hold vector that decides

either to preempt the running process or to not. All the

processes along with their burst times sorted in ascending

order and the shortest process is removed and processed

earlier from the ready queue to get better turnaround time

and waiting time. The entire scheduling algorithm is divided

into iterations and each iteration performed two steps except

the 4th, 8th, 12th, 16th …… so on iterations perform only

single step (i.e. specifically execute the middle job from

remaining jobs) to trim down the starvation problem of

middle process. The key objective of proposed scheduling

algorithm is to reduce the starvation problem between

minimum and maximum burst time processes.

Therefore, this proposed algorithm results in less overheads

viz. starvation, context switching and also improves the

average waiting time in contrast to another algorithms.

 International Journal of Computer Sciences and Engineering Vol.-3(11), PP(210-216) Nov 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 215

VI. MIN-MAX ALGORITHM COMPLEXITY

The complexity of our proposed algorithm in terms of Big –

Oh notation as given below:

VII. COMPARITIVE STUDY

The below mentioned table depicts the comparative study

[7] of a variety of scheduling algorithms viz. First Come

First Serve (FCFS), Shortest Job First (SJF), Shortest

Remaining Time First (SRTF), Round Robin (RR) and

MIN-MAX on the basis of selection function, decision

mode, throughput, response time, overhead, effect on

processes and starvation [2].The selection function finds out

which process is to be selected next for execution among

ready processes. This function can be characterized by

priority, resource requirements, or the execution

characteristics of the process. The selection function

parameter is signified by following three quantities:

s: service time,

w: waiting time,

e: execution time

Table 2: a comparative study [7] of scheduling algorithms

VIII. CONCLUSION

This manuscript is based on the analysis and comparison of

three proportional-shares CPU scheduling algorithm for

single core machines. The simulation of proposed CPU

scheduling algorithm helps in improving the performance of

first come first serve and round robin algorithm as discussed

in the experimental results section. The objective of this

research work is to reduce the starvation problem between

minimum and maximum burst time processes and to attain

this objective- threshold vector is used as mentioned in

algorithm methodology. To demonstrate the performance

sensitivity, two relatively simple system parameters viz.

average waiting time and context switches are used. We

have discussed the scenario that could be a simple step for a

huge aim in obtaining an optimal scheduling algorithm. The

proposed simulation design is also useful for selection of

better job scheduling algorithm with respect to different

scenario as a view point of system performance.

REFERENCES

[1]. Abraham Silberschatz, Peter Baer Galvin and Greg

Gagne, “Operating System Concepts”, John Wiley &

Sons, Inc., Seventh (7
th

)Edition, ISBN: 0-471-69466-

5, 2005.

[2]. William Stallings, “Operating Systems: Internals and

Design Principles”, Sixth (6
th

) Edition, 2009.

[3]. L. Yang, J. M. Schopf and I. Foster, “Conservative

Scheduling: Using predictive variance to improve

scheduling decisions in dynamic environments”, In

Proceedings of the ACM/IEEE conference on

Supercomputing, Page No (15- 31), 2003.

[4]. Milam Milenkovic, “Operating Systems Concepts

and Design”, McGraw-Hill, Computer Science

Series, Second (2
nd

) Edition.

[5]. R. J. Matarneh, “Self-Adjustment Time Quantum in

Round Robin Algorithm Depending on Burst Time of

the Now Running Processes”, American Journal of

Applied Sciences, Volume-06, Issue-10, 2009.

[6]. Baer, J. L., “A survey of some theoretical aspects of

multiprocessing”, Computing Surveys, Page No (31-

80), 1973.

[7]. K. Sukhija, N. Aggarwal and M. Jindal, “An

Optimized approach to CPU Scheduling

Algorithm: Min-Max”, Journal of Emerging

Technologies in Web Intelligence, Volume-06,

Issue-04, Page No (420-428), 2014.

[8]. S. Raheja, R. Dhadich and S. Rajpal, “An Optimum

time Quantum using Linguistic Synthesis for

Round Robin CPU Scheduling Algorithm” ,

International Journal on Soft Computing ,

Volume-03, Issue-01, 2012.

[9]. Andrew S. Tanenbaum, and Albert S. Woodfhull,

“Operating Systems Design and Implementation”,

Second (2
nd

) Edition, 2005.

[10]. H.H.S. Lee; Lecture: CPU Scheduling, School of

Electrical and Computer Engineering, Georgia

Institute of Technology.

 Complexity:

Big-Oh

Best case Average case Worst case

O (c) O (n) O (n)

 International Journal of Computer Sciences and Engineering Vol.-3(11), PP(210-216) Nov 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 216

[11]. E. O. Oyetunji and A. E. Oluleye, “Performance

Assessment of Some CPU Scheduling Algorithms”,

Research Journal of Information Technology,

Volume-01, Issue-01, Page No (22-26), 2009.

[12]. S. Babu, N Priyanka and P.Suresh, “A Novel CPU

Scheduling Algorithm–Preemptive &Non-

Preemptive”, International Journal of Modern

Engineering Research, Volume-02, Issue-06, Page No

(4484-4490), 2012.

[13]. L Cherkasova, Diwaker G and A. Vahdat,

“Comparison of the Three CPU Schedulers in Xen”,

SIGMETRICS Performance Evaluation Review,

Volume-35, Issue-02, Page No (42-51), 2007.

AUTHOR PROFILE

Researcher Karan Sukhija has done his bachelor degree in

computer science and application at RSD College,

Ferozepur City (Batch 2006-09). He was Completed his

Masters in Computer science and application at department

of computer science and application, panjab university,

chandigarh (Batch 2009-12). Currently he is doing research

in the area of Educational Data Mining at Panjab university,

Chandigarh.

