
 © 2014, IJCSE All Rights Reserved 192

 International Journal of Computer ScienceInternational Journal of Computer ScienceInternational Journal of Computer ScienceInternational Journal of Computer Sciencessss and Engineeringand Engineeringand Engineeringand Engineering Open Access
 Research Paper Volume-3, Issue-3 E-ISSN: 2347-2693

 Relative Investigation of Ant Colony Optimization and Genetic

Algorithm based Solution to Travelling Salesperson Problem

Ashwani Chandel
1
, Vikram Jeet Singh

2*

1,2
Department of Computer Science, Himachal Pradesh University, India

www.ijcseonline.org

Received: Feb/24/2015 Revised: Mar/06/2015 Accepted: Mar/22/2015 Published: Mar/31/2015

Abstract— Travelling salesperson problem is a nondeterministic polynomial hard problem in combinatorial optimization

studied in Operations Research and theoretical computer science. To solve this problem, we used two popular meta-heuristics

techniques-Ant Colony Optimization and Genetic Algorithm. Both techniques are applied to solve a TSP with same dataset.

We then compare them. For Ant Colony Optimization, we studied the effect of some parameters (number of ants, evaporation

and number of iterations) on the produced results. On the other hand, we studied chromosome population, crossover

probability and mutation probability parameters that effect Genetic Algorithm results.

Keywords— Ant; Colony; Genetic; Algorithm; Travelling; Salesperson

I. INTRODUCTION

Travelling salesperson problem is described as: there are
cities and given distances between and a travelling
salesperson has to visit all of them, but he does not want to
spend time on travelling more than required. We need to
find the sequence of cities to minimize the travelled
distance. The problem was first formulated as a
mathematical problem in 1930 and is one of the most
intensively studied problems in optimization. It is used as a
benchmark for many optimization methods. Even though
the problem is computationally difficult, a large number of
heuristics and exact methods are known, so that instances
with tens of thousands of cities can also be solved. TSP is
represented in numerous transportation and logistics
applications such as: Arranging routes for school buses to
pick up children in a school district; Delivering meals to
home-bound people; Scheduling stacker cranes in a
warehouse; Planning truck routes to pick up parcel post and
many others; Planning logistics and the manufacture of
microchips; or, A classic example of the TSP is the
scheduling of a machine to drill holes in a circuit board [2].

The objective of this study is to compare Ant Colony

Optimization (ACO) and Genetic algorithm (GA) on TSP.

II. ANT COLONY OPTIMIZATION

Ant Colony Optimization (ACO) is one of the most popular
meta-heuristics used for combinatorial optimization in
which an optimal solution is sought over a discrete search
space. A well-known example is the TSP [2], where the
search-space of candidate solutions grows more than
exponentially as the size of the problem increases, which
makes an exhaustive search for optimal solution infeasible.
It was introduced by Marco Dorigo in the early 1990’s [3],
[4], [5]. Since then, several improvements have been

devised by Gambardella et al [15] and Stützle et al [1].
ACO algorithm is based on a computational paradigm
inspired by real ant colonies and the way they function. The
underlying idea is to use several constructive computational
agents or simulating real ants [7]. Ant's behaviour is
governed by the goal of colony survival rather than being
focused on the survival of individuals. The behaviour that
provided inspiration for ACO is the ants’ foraging
behaviour (Figure 1), and in particular, how ants can find
shortest paths between food sources and their nest. When
searching for food, ants initially explore the area
surrounding their nest in a random manner. While moving,
ants leave a chemical pheromone trail on the ground.

Figure 1: Ants Use Pheromone as Indirect Communication to Build Best
Tour

Ants can smell pheromone. When choosing their way, they

tend to choose, in probability, paths marked by strong

pheromone concentrations. As soon as an ant finds a food

source, it evaluates the quantity and the quality of the food

and carries some of it back to the nest. During the return

trip, the quantity of pheromone that an ant leaves on the

ground may depend on the quantity and quality of the.

Pheromone trails guide other ants to the food. The indirect

communication between ants via pheromone trails enables Corresponding Author: Vikram,
 vikramjeetsingh@live.in

 International Journal of Computer Sciences and Engineering Vol.-3(3), PP(192-195) Mar 2015, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 193

them to find shortest paths between their nest and food

source.

A. ACO Parameters

ACO algorithm is meta-heuristic that optimizes a problem

iteratively trying to improve a candidate solution with

regard to a given measure of quality. In general, meta-

heuristic doesn’t guarantee an optimal solution. The most

asked question is: what is the best result can we obtain in

less iteration with minimum cost and time? Or when to

terminate? This require a good estimation for parameters

used with ACO algorithm, like pheromone trail decay

coefficient (p), pheromone amount, number of ants (M),

maximum number of iterations.

B. ACO representation of TSP

A travelling salesperson is required to pass through a
number of cities, each city is visited once and he needs to
find the shortest closed path tour that link all cities. Thus,
we have undirected graph consists of V nodes or cities
linked by undirected E edges G = (V, E) the edge weights
represent distances between cities. As shown in Figure 2,
the search space S consists of all tours in G. The objective

function value f(s) of a tour s ∈ S is defined as the sum of

the edge-weights of the edges that are in S.

Figure 2: Undirected Graph showing Four Stages of ACO to Reach

Shortest Closed Path

TSP can be modelled in different ways as a discrete
optimization problem. Concerning the Ant system approach,
the edges of the given TSP graph can be considered solution
components, ant introduce a pheromone value Ti, j for the
edge ei, j. The general algorithm is based on a set of ants,
each making one of the possible tours or round-trips along
the cities. Each tour considered as one solution s of search
space S, and the sum of the edges-weights is the objective
function f(s). Now we search for the best tour s at which we
have smallest f(s). The following steps describe how each
ant constructs a solution s:

• Each ant chose randomly one city as start node.

• The ant starts building the tour by moving from one

city to another unvisited city.

• The traversed edge is chose by probability P(ei,j).

• The traversed edge is added to the solution being

constructed.

• When all cites are visited the ant move to the start

node.

• Having completed its journey, the ant deposits more

pheromones on all edges it traversed. Deposited

pheromones are: Ti, j ← Ti, j+1/f(s)

• After each iteration, trails of pheromones evaporate is

done.

The previous steps is used to construct one tour, these steps

can be repeated more and more to obtain the optimum

solution. In each tour, the more intense the pheromone trail

laid out on an edge between two cities, the greater the

probability that that edge will be chosen.

III. GENETIC ALGORITHM
Genetic algorithms as part of evolutionary computing
technique, are inspired by Darwin’s theory. Solution to a
problem solved by genetic algorithms is evolved. I.
Rechenberg introduced the idea of evolutionary computing
in the 1960s in his work “Evolution strategies” (Evolutions
strategy in original). Other researchers then developed his
idea. Genetic Algorithms (GAs) were invented by John
Holland and developed by him and his students and
colleagues [8]. In 1992 John Koza used genetic algorithm to
evolve programs to perform certain tasks [8]. He called his
method as genetic programming. LISP programs were used,
because programs in this language can be expressed in the
form of a “parse tree”, which is the object GA works upon.
Genetic algorithm is started with a set of solutions
(chromosomes) called population. Solutions from one
population are taken and used to form a new population.
This is motivated by a hope, that the new population will be
better than the old one. Solutions which are selected to form
new solutions (off springs) are selected according to their
fitness, the more suitable they are the more chances they
have to reproduce. This is repeated until some condition (for
example number of populations or improvement of the best
solution) is satisfied. It is well known that problem solving
can be often expressed as looking for the extreme of a
function and GA tries to find the minimum/maximum of the
function. Following is the broad outline of a basic Genetic
Algorithm:

1- [Start] Generate random population of n
chromosomes (suitable solutions for the problem).

2- [Fitness] Evaluate the fitness f(x) of each
chromosome x in the population.

3- [New population] Create a new population by
repeating the following steps until the new
population is complete.

• [Selection] Select two parent chromosomes
from a population according to their fitness
(the better fitness, the bigger chance to be
selected)

• [Crossover] with a crossover probability cross
over the parents to form a new offspring
(children). If no crossover was performed,
offspring is an exact copy of parents.

• [Mutation] with a mutation probability mutate
new offspring at each locus (position in
chromosome)

• [Accepting] place new offspring in a new
population.

 International Journal of Computer Sciences and Engineering Vol.-3(3), PP(192-195) Mar 2015, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 194

4- [Replace] use new generated population for a
further run of algorithm

5- [Test] if the end condition is satisfied, stops, and
returns the best solution in current population.

6- [Loop] Go to step 2

There are many things that can be implemented differently

in various problems. First question to be answered is how to

create chromosomes and what types of encoding to choose;

next question is how to select parents (in hope that the better

parents will produce better offspring). Making a new

population only by new offspring can cause loss of best

chromosomes from the last population, so a method called

Elitism is used. At least one best solution is copied without

changes to a new population, so the best solution found can

survive to the end of the run. Basic parameters of GA are:

Crossover Probability, Mutation Probability and Population

size. Crossover and mutation are most important parts of a

GA. The performance is influenced mainly by these two

operators.

A. GA Parameters

Crossover probability suggests how often crossover is to be
performed. If there is no crossover, offspring is an exact
copy of parents. If there is a crossover, offspring is made
from parts of parent’s chromosome. If crossover probability
is 100% then all offspring is made by crossover. If it is 0 %,
whole new generation is made from exact copies of
chromosomes from old population (but this does not mean
that the new generation is the same). Crossover is made in
hope that new chromosomes will have good parts than old
chromosomes and they may be better. However, it is good
to leave some parts of the population to survive to the next
generation.
Mutation probability, on the contrary, shows how often
parts of chromosome will be mutated. If there is no
mutation, offspring is taken after crossover without any
change. If mutation is performed, part of chromosome is
changed. If mutation probability is 100%, whole
chromosome is changed, if it is 0%, nothing is changed.
Mutation is made to prevent falling GA into local extreme,
but it should not occur very often, because in this case GA
will in fact change to random search.

Population size means how many chromosomes are in

population (in one generation). If there are too few

chromosomes, GA has a few possibilities to perform

crossover and only a small part of search space is explored.

On the other hand, if there are too many chromosomes, GA

slows down. Research shows that after some limit (depends

mainly on encoding and the problem) it is not useful to

increase population size, as it does not make solving the

problem faster.

B. GA Representation of TSP

Since chromosomes are selected from the population to be
parents to crossover. The problem is how to select these
chromosomes. According to Darwin’s evolution theory the
best ones should survive and create new offspring. There

are many methods how to select the best chromosomes, for
example, there is Roulette wheel selection, Boltzmann
selection, Tournament selection, Rank selection, Steady
state selection, or some others. Encoding of chromosomes is
one of the problems, when we are starting to solve problem
with GA. Encoding depends greatly on the problem, but
there are many encoding style like as: Binary encoding,
Permutation encoding.
First, we need to decide how to represent a route of the
salesperson. The most natural way of representing a route is
the path representation. Each city is given an alphabetic or
numerical name, the route through the cities is represented
as a chromosome, and appropriate genetic operators are
used to create new routes. For TSP, we use Permutation
encoding for ordering the problem. Every chromosome is a
string of numbers, which represents the numbers in a
sequence. Permutation encoding is only useful for ordering
problems. Even for these problems for some types of
crossover and mutation corrections must be made to leave
the chromosome constant (have real sequence in it).
Chromosomes denote the order of cities, in which
salesperson shall visit them.
Crossover and mutation operators depend on type of
encoding and also on the problem. For our encoding and
problem, we use single point crossover; as shown in Figure
3, the permutation is copied from the first parent until we
reach this point, then the second parent is scanned and if the
number is not yet in the offspring it is added. There are
more ways to produce the rest after crossover point (*).

 Figure 3: Crossover and mutation for permutation encoding

IV. COMPARISON

Both techniques (GA and ACO) are used to solve TSP with

high acceptable performance. As in Figure 4, we can see the

best tour and distance between 25 cities for the same data by

using both GA and ACO.

(a)

 International Journal of Computer Sciences and Engineering Vol.-3(3), PP(192-195) Mar 2015, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 195

(b)

Figure 4: The best tour of 25 cities using both (a) ACO and (b) GA [8]

For ACO, the result is obtained by using 2500 iterations,

250 ants for each iteration and 0.9 as an evaporation

coefficient to produce the best distance of 4.6245. While for

GA, the best distance is 4.6149 by using crossover and

mutation probability as 0.75 and 0.009 respectively after

110 iterations with 200 chromosomes. Advantage of GA is

the small spent time against the large time required by ACO

[8].

V. CONCLUSION
From the study of both the algorithms, we conclude that it is

difficult to select the best parameter for ACO, but we can

observe the dependency of the number of iterations on both

the evaporation coefficient p and the number of ants M. that

if p=0 that have no evaporation, the algorithm does not

converge. But when p is large enough (p=0.9), the algorithm

often converged to suboptimal solutions for complex

problem. It is necessary to evaluate that how these

parameters have an effect on best number of iterations and

evaporations coefficient. Also for GA, we need to select the

best value for chromosome population, crossover, and

mutation probabilities. But still, GA is better suited than

ACO for solving a TSP. The results can be used for working

upon the design and architecture of various systems and

applications as in [9], [10], [11], [12].

REFERENCES

[1] M.Dorigo and T.Stutze, “Research Paper on Ant Colony

Optimization”, MIT Press, Cambridge (2004).

[2] E. Lawer and J. Rooney, “Research Paper on The Travelling

Salesman Problem”, John Wiley & Sons, New York (1985).

[3] M. Dorigo, “PhD thesis Optimization, Learning and Natural

Algorithms”, Politecnico di Milano, Italy (1992).

[4] M. Dorigo and A. Colorni, “Research Paper on Ant System:

Optimization by a Cooperating Agents”, IEEE Trans Syst

Man Cabernet Part B, p. 29-41 (1996).

[5] M. Dorigo and A. Colorni, “Technical Report on a Positive

Feedback Strategy”, Politecnico di Milano, Italy (1991).

[6] M. Dorigo and L.M. Gambardella, “Ant Colony System: A

Cooperative Learning Approach to the Travelling Salesman

Problem”, IEEE Transactions on Evolutionary Computation,

Vol 1 (1997).

[7] S. Camazine and J.L.Deneubourg,”Research Paper on Self-

Organization in Biological Systems”, Princeton University

Press, Princeton (2001).

[8] J.L. Deneubourg and S. Goss, “The self-organization

exploratory pattern of the Argentine ant”, J Insect Behavior,

pages 59-68 (1990).

[9] Vikram Jeet Singh and Ashwani Chandel, “Evolving E-

Governance through Cloud Computing based environment”,

International Journal of Advanced Research in Computer and

Communication Engineering (IJARCCE), Vol 3 Issue 4.

[10] Ashwani Chandel and Manu Sood, “Searching and

Optimization Techniques in Artificial Intelligence: A

Comparative Study and Complexity Analysis”, International

Journal of Advanced Research in Computer Engineering and

Technology (IJARCET), Vol 3 Issue 3 (2014).

[11] Vikram Jeet Singh, Vikram Kumar and Kishori Lal Bansal,

“Research on Application of Perceived QoS Guarantee

through Infrastructure specific Traffic Parameter

Optimization”, International Journal of Computer Network

and Information Security (IJCNIS), Issue 3, MECS

Publisher-Hong Kong (2014).

[12] Ashwani Chandel and Vikram Jeet Singh, “Research on the

Design Architecture & Services over a State Wide Area

Network: A case of Himachal Pradesh”, International

Journal of Advanced Research in Computer Engineering &

Technology (IJARCET), Volume 4, Issue 2 (2015)

