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Abstract— Travelling salesperson problem is a nondeterministic polynomial hard problem in combinatorial optimization 

studied in Operations Research and theoretical computer science. To solve this problem, we used two popular meta-heuristics 

techniques-Ant Colony Optimization and Genetic Algorithm. Both techniques are applied to solve a TSP with same dataset. 

We then compare them. For Ant Colony Optimization, we studied the effect of some parameters (number of ants, evaporation 

and number of iterations) on the produced results. On the other hand, we studied chromosome population, crossover 

probability and mutation probability parameters that effect Genetic Algorithm results.  
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I.  INTRODUCTION 

Travelling salesperson problem is described as: there are 
cities and given distances between and a travelling 
salesperson has to visit all of them, but he does not want to 
spend time on travelling more than required. We need to 
find the sequence of cities to minimize the travelled 
distance. The problem was first formulated as a 
mathematical problem in 1930 and is one of the most 
intensively studied problems in optimization. It is used as a 
benchmark for many optimization methods. Even though 
the problem is computationally difficult, a large number of 
heuristics and exact methods are known, so that instances 
with tens of thousands of cities can also be solved. TSP is 
represented in numerous transportation and logistics 
applications such as: Arranging routes for school buses to 
pick up children in a school district; Delivering meals to 
home-bound people; Scheduling stacker cranes in a 
warehouse; Planning truck routes to pick up parcel post and 
many others; Planning logistics and the manufacture of 
microchips; or, A classic example of the TSP is the 
scheduling of a machine to drill holes in a circuit board [2]. 

The objective of this study is to compare Ant Colony 

Optimization (ACO) and Genetic algorithm (GA) on TSP. 

 

II. ANT COLONY OPTIMIZATION 

Ant Colony Optimization (ACO) is one of the most popular 
meta-heuristics used for combinatorial optimization in 
which an optimal solution is sought over a discrete search 
space. A well-known example is the TSP [2], where the 
search-space of candidate solutions grows more than 
exponentially as the size of the problem increases, which 
makes an exhaustive search for optimal solution infeasible. 
It was introduced by Marco Dorigo in the early 1990’s [3], 
[4], [5]. Since then, several improvements have been 

devised by Gambardella et al [15] and Stützle et al [1]. 
ACO algorithm is based on a computational paradigm 
inspired by real ant colonies and the way they function. The 
underlying idea is to use several constructive computational 
agents or simulating real ants [7]. Ant's behaviour is 
governed by the goal of colony survival rather than being 
focused on the survival of individuals. The behaviour that 
provided inspiration for ACO is the ants’ foraging 
behaviour (Figure 1), and in particular, how ants can find 
shortest paths between food sources and their nest. When 
searching for food, ants initially explore the area 
surrounding their nest in a random manner. While moving, 
ants leave a chemical pheromone trail on the ground.  

  

Figure 1: Ants Use Pheromone as Indirect Communication to Build Best 
Tour 

Ants can smell pheromone. When choosing their way, they 

tend to choose, in probability, paths marked by strong 

pheromone concentrations. As soon as an ant finds a food 

source, it evaluates the quantity and the quality of the food 

and carries some of it back to the nest. During the return 

trip, the quantity of pheromone that an ant leaves on the 

ground may depend on the quantity and quality of the. 

Pheromone trails guide other ants to the food. The indirect 

communication between ants via pheromone trails enables Corresponding Author: Vikram, 
                                      vikramjeetsingh@live.in   
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them to find shortest paths between their nest and food 

source. 

A. ACO Parameters 

ACO algorithm is meta-heuristic that optimizes a problem 

iteratively trying to improve a candidate solution with 

regard to a given measure of quality. In general, meta-

heuristic doesn’t guarantee an optimal solution. The most 

asked question is: what is the best result can we obtain in 

less iteration with minimum cost and time? Or when to 

terminate? This require a good estimation for parameters 

used with ACO algorithm, like pheromone trail decay 

coefficient (p), pheromone amount, number of ants (M), 

maximum number of iterations. 

 

B. ACO representation of TSP 

A travelling salesperson is required to pass through a 
number of cities, each city is visited once and he needs to 
find the shortest closed path tour that link all cities.  Thus, 
we have undirected graph consists of V nodes or cities 
linked by undirected E edges G = (V, E) the edge weights 
represent distances between cities. As shown in Figure 2, 
the search space S consists of all tours in G. The objective 

function value f(s) of a tour s ∈ S is defined as the sum of 

the edge-weights of the edges that are in S. 
 

 
Figure 2: Undirected Graph showing Four Stages of ACO to Reach 

Shortest Closed Path 

TSP can be modelled in different ways as a discrete 
optimization problem. Concerning the Ant system approach, 
the edges of the given TSP graph can be considered solution 
components, ant introduce a pheromone value Ti, j for the 
edge ei, j. The general algorithm is based on a set of ants, 
each making one of the possible tours or round-trips along 
the cities. Each tour considered as one solution s of search 
space S, and the sum of the edges-weights is the objective 
function f(s). Now we search for the best tour s at which we 
have smallest f(s). The following steps describe how each 
ant constructs a solution s:  

• Each ant chose randomly one city as start node.  

• The ant starts building the tour by moving from one 

city to another unvisited city.  

• The traversed edge is chose by probability P(ei,j).  

• The traversed edge is added to the solution being 

constructed.  

• When all cites are visited the ant move to the start 

node.  

• Having completed its journey, the ant deposits more 

pheromones on all edges it traversed. Deposited 

pheromones are: Ti, j ← Ti, j+1/f(s) 

• After each iteration, trails of pheromones evaporate is 

done.  

The previous steps is used to construct one tour, these steps 

can be repeated more and more to obtain the optimum 

solution. In each tour, the more intense the pheromone trail 

laid out on an edge between two cities, the greater the 

probability that that edge will be chosen. 

 

III. GENETIC ALGORITHM 
Genetic algorithms as part of evolutionary computing 
technique, are inspired by Darwin’s theory. Solution to a 
problem solved by genetic algorithms is evolved. I. 
Rechenberg introduced the idea of evolutionary computing 
in the 1960s in his work “Evolution strategies” (Evolutions 
strategy in original). Other researchers then developed his 
idea. Genetic Algorithms (GAs) were invented by John 
Holland and developed by him and his students and 
colleagues [8]. In 1992 John Koza used genetic algorithm to 
evolve programs to perform certain tasks [8]. He called his 
method as genetic programming. LISP programs were used, 
because programs in this language can be expressed in the 
form of a “parse tree”, which is the object GA works upon. 
Genetic algorithm is started with a set of solutions 
(chromosomes) called population. Solutions from one 
population are taken and used to form a new population. 
This is motivated by a hope, that the new population will be 
better than the old one. Solutions which are selected to form 
new solutions (off springs) are selected according to their 
fitness, the more suitable they are the more chances they 
have to reproduce. This is repeated until some condition (for 
example number of populations or improvement of the best 
solution) is satisfied. It is well known that problem solving 
can be often expressed as looking for the extreme of a 
function and GA tries to find the minimum/maximum of the 
function. Following is the broad outline of a basic Genetic 
Algorithm: 

1- [Start] Generate random population of n 
chromosomes (suitable solutions for the problem).  

2- [Fitness] Evaluate the fitness f(x) of each 
chromosome x in the population.  

3- [New population] Create a new population by 
repeating the following steps until the new 
population is complete.  

• [Selection] Select two parent chromosomes 
from a population according to their fitness   
(the better fitness, the bigger chance to be 
selected)  

• [Crossover] with a crossover probability cross 
over the parents to form a new offspring 
(children). If no crossover was performed, 
offspring is an exact copy of parents.  

• [Mutation] with a mutation probability mutate 
new offspring at each locus (position in 
chromosome)  

• [Accepting] place new offspring in a new 
population.  
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4- [Replace] use new generated population for a 
further run of algorithm  

5- [Test] if the end condition is satisfied, stops, and 
returns the best solution in current   population.  

6- [Loop] Go to step 2  

There are many things that can be implemented differently 

in various problems. First question to be answered is how to 

create chromosomes and what types of encoding to choose; 

next question is how to select parents (in hope that the better 

parents will produce better offspring). Making a new 

population only by new offspring can cause loss of best 

chromosomes from the last population, so a method called 

Elitism is used. At least one best solution is copied without 

changes to a new population, so the best solution found can 

survive to the end of the run. Basic parameters of GA are: 

Crossover Probability, Mutation Probability and Population 

size. Crossover and mutation are most important parts of a 

GA. The performance is influenced mainly by these two 

operators. 

 

A. GA Parameters 

Crossover probability suggests how often crossover is to be 
performed. If there is no crossover, offspring is an exact 
copy of parents. If there is a crossover, offspring is made 
from parts of parent’s chromosome. If crossover probability 
is 100% then all offspring is made by crossover. If it is 0 %, 
whole new generation is made from exact copies of 
chromosomes from old population (but this does not mean 
that the new generation is the same). Crossover is made in 
hope that new chromosomes will have good parts than old 
chromosomes and they may be better. However, it is good 
to leave some parts of the population to survive to the next 
generation. 
Mutation probability, on the contrary, shows how often 
parts of chromosome will be mutated. If there is no 
mutation, offspring is taken after crossover without any 
change. If mutation is performed, part of chromosome is 
changed. If mutation probability is 100%, whole 
chromosome is changed, if it is 0%, nothing is changed. 
Mutation is made to prevent falling GA into local extreme, 
but it should not occur very often, because in this case GA 
will in fact change to random search.  

Population size means how many chromosomes are in 

population (in one generation). If there are too few 

chromosomes, GA has a few possibilities to perform 

crossover and only a small part of search space is explored. 

On the other hand, if there are too many chromosomes, GA 

slows down. Research shows that after some limit (depends 

mainly on encoding and the problem) it is not useful to 

increase population size, as it does not make solving the 

problem faster. 

B. GA Representation of TSP 

Since chromosomes are selected from the population to be 
parents to crossover. The problem is how to select these 
chromosomes.  According to Darwin’s evolution theory the 
best ones should survive and create new offspring. There 

are many methods how to select the best chromosomes, for 
example, there is Roulette wheel selection, Boltzmann 
selection, Tournament selection, Rank selection, Steady 
state selection, or some others. Encoding of chromosomes is 
one of the problems, when we are starting to solve problem 
with GA. Encoding depends greatly on the problem, but 
there are many encoding style like as: Binary encoding, 
Permutation encoding.  
First, we need to decide how to represent a route of the 
salesperson. The most natural way of representing a route is 
the path representation. Each city is given an alphabetic or 
numerical name, the route through the cities is represented 
as a chromosome, and appropriate genetic operators are 
used to create new routes. For TSP, we use Permutation 
encoding for ordering the problem. Every chromosome is a 
string of numbers, which represents the numbers in a 
sequence. Permutation encoding is only useful for ordering 
problems. Even for these problems for some types of 
crossover and mutation corrections must be made to leave 
the chromosome constant (have real sequence in it). 
Chromosomes denote the order of cities, in which 
salesperson shall visit them. 
Crossover and mutation operators depend on type of 
encoding and also on the problem. For our encoding and 
problem, we use single point crossover; as shown in Figure 
3, the permutation is copied from the first parent until we 
reach this point, then the second parent is scanned and if the 
number is not yet in the offspring it is added. There are 
more ways to produce the rest after crossover point (*).  
  

       Figure 3: Crossover and mutation for permutation encoding 

 

IV. COMPARISON 

 

Both techniques (GA and ACO) are used to solve TSP with 

high acceptable performance. As in Figure 4, we can see the 

best tour and distance between 25 cities for the same data by 

using both GA and ACO.       

  
(a) 
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(b) 

Figure 4: The best tour of 25 cities using both (a) ACO and (b) GA [8] 

  

For ACO, the result is obtained by using 2500 iterations, 

250 ants for each iteration and 0.9 as an evaporation 

coefficient to produce the best distance of 4.6245. While for 

GA, the best distance is 4.6149 by using crossover and 

mutation probability as 0.75 and 0.009 respectively after 

110 iterations with 200 chromosomes. Advantage of GA is 

the small spent time against the large time required by ACO 

[8]. 

 

V. CONCLUSION 
From the study of both the algorithms, we conclude that it is 

difficult to select the best parameter for ACO, but we can 

observe the dependency of the number of iterations on both 

the evaporation coefficient p and the number of ants M. that 

if p=0 that have no evaporation, the algorithm does not 

converge. But when p is large enough (p=0.9), the algorithm 

often converged to suboptimal solutions for complex 

problem. It is necessary to evaluate that how these 

parameters have an effect on best number of iterations and 

evaporations coefficient. Also for GA, we need to select the 

best value for chromosome population, crossover, and 

mutation probabilities. But still, GA is better suited than 

ACO for solving a TSP. The results can be used for working 

upon the design and architecture of various systems and 

applications as in [9], [10], [11], [12]. 
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