
© 2015, IJCSE All Rights Reserved 196

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
 Review Paper Volume-3, Issue-3 E-ISSN: 2347-2693

Comparative Study on SpeculativComparative Study on SpeculativComparative Study on SpeculativComparative Study on Speculative Execution Strategy to Improvee Execution Strategy to Improvee Execution Strategy to Improvee Execution Strategy to Improve
MapReduce PerformanceMapReduce PerformanceMapReduce PerformanceMapReduce Performance

Rahul R. Ghule
1*

 and Sachin N. Deshmukh
2

Department of Computer Science & Information Technology

Dr. BabasahebAmbedkarMarathwada University, Aurangabad, India

www.ijcseonline.org

Received: Mar/02/2015 Revised: Mar/08/2015 Accepted: Mar/22/2015 Published: Mar/31/2015

Abstract—MapReduce is widely used and popular programming model for huge amount of data processing. Hadoop is open

source implementation of MapReduce framework. Performance of Hadoop depends some of the metrics like job execution time

and cluster throughput. In MapReduce, Job is divided into multiple map and reduce tasks. Some tasks can be executed slowly

due to internal or external reasons. Because of this slow tasks job execution time is prolonged which leads to degradation of

Hadoop performance. To overcome this, current MapReduce framework launch speculative execution in which each slow tasks

is backed up other node in order to reduce the job execution time. These slow tasks can be called as straggler tasks. However,

current MapReduce speculative execution does not estimate the progress of the tasks properly which leads to identifying

incorrect slow tasks. Also, they do not consider data skew among the tasks. This paper studies various speculative execution

strategy like HAT (History based auto-tuning), Longest Approximate Time to End (LATE) and Maximum Cost Performance

(MCP). These strategies overcome the drawbacks of default speculative execution to improve MapReduce performance.

Keywords—MapReduce, Hadoop, Straggler, speculative execution

I. INTRODUCTION

MapReduce[3] is proposed by Google in 2004 and in less

time it become popular programming and parallel

computing framework to process huge amount of data.

Hadoop [2] is popularly used as open source

implementation of MapReduce. In MapReduce user has to

specify map function which takes key value pair as input

and produces intermediate key value pair as output. User

also has to specify reduce function which is used to merge

all intermediate value which has same intermediate key.

When MapReduce system starts executing a job then

master divides the input job file into multiple map tasks.

Then master schedules both map and reduce tasks to the

different nodes in a cluster to achieve parallel processing.

By this all the nodes in cluster executes the tasks which is

assigned to them. MapReduce job is completed when all the

data is processed completely. The execution time of a job is

measured by the tasks which finished last [3]. This can be a

serious problem in homogenous and heterogeneous

environments. Though it is not that much harmful in

homogenous environment where node process same amount

of data in similar time. But this can be serious issue in

heterogeneous environment as execution time can be

maximized due to last finished tasks which have been

affected by uneven size of data, dissimilar data type,

capacities of computation and so on [7]. This can degrade

MapReduceperformance. When a machine takes usually

longer time to complete the tasks then it is called as

straggler tasks which will increase the execution time of

MapReduce job and degrade the cluster throughput[1].This

problem of straggler machine is popularly handled by

speculative execution strategy. In this MapReducestarts a

backup task for slow task on fast node. The aim of backing

up slow tasks on fast node is to improve its execution time

so that backup tasks can finish earlier than original one.

This will leads to decrease job execution time.

In default speculative mechanism,MapReduce

schedulers does not detect straggler correctly due to

wrongly calculated remaining time of all the tasks. This

causes two problems. First, the incorrectly launched backup

task for a false straggler tasks cannot improve job execution

time. Second, these incorrect backup tasks will waste the

system resources and finally it will lead to degrade the

overall performance of MapReduce job [5].

The rest of the paper is organized as follows: Section II

describes causes of stragglers. Section III discusses various

speculative execution strategies. Section IV describes

comparative analysis of the strategies.

II. CAUSES OF STRAGGLER

There can be internal and external causes of straggler tasks.

As we know data can be homogenous and heterogeneous in

nature. The heterogeneous environment can create resource

competition amongst the tasks inMapReduce job execution.

This can create straggler tasks. Also, multiple

MapReducejobs can be executed on the single node. This

also leads to resource competition and creates straggler

tasks. Some external causes are like data skew present in

input, faulty hardware, remote input and so on.
Corresponding Author:Rahul Ghule, rahulghule.r@gmail.com

Department of Computer Science & Information Technology, Dr. Babasaheb

Ambedkar Marathwada University, India

 International Journal of Computer Sciences and Engineering Vol.-3(3), PP(197-200) Mar 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 197

III. SPECULATIVE EXECUTION STRATEGY

There are various speculative execution strategy has been

proposed to improve MapReduce performance. Their main

focus is to shorten the job execution time. Some of the

strategy is discussed below.

A. Hadoop-Original

The Hadoop-original is the default speculative execution in

MapReduce. It is very simple. It begin speculative

execution when map or reduce phase are about to complete

[3]. Then it randomly selects some set of remaining tasks as

backup tasks. But this has some pitfalls like whether

randomly chosen tasks are really a straggler tasks. It does

not consider that the backup node is fast or slow. Same

speculative execution strategy is also used in Microsoft

dryad. To overcome this default speculative execution

strategy Hadoop made some changes. It launches

speculative execution when all map and reduce tasks are

assigned. It identifies straggler tasks on the basis of average

progress rate. Whenever a task's progress is below the

average progress rate then it classify that task as straggler

task. But it can be misleading in heterogeneous environment

as there is uneven data to process [2][5].

A. Longest Approximate Time to End

The Longest Approximate Time to End (LATE) algorithm is

based on three major principle, they are- i) prioritize tasks

to speculate, ii) select fast worker node on which slow task

will be backed up iii) cap speculative to prevent thrashing.

The LATE algorithm finds that default speculative

execution in Hadoop can be misleading in heterogeneous

environment and thus makes some improvement. LATE

uses following parameters:

1. SlowNodeThreshold - This is the cap to avoid

scheduling on slow nodes. The Scores for

allsucceeded and in-progress tasks on the node are

compared to this value.

2. SpecultiveCap - It is the cap on number of speculative

tasks that can be running at once.SlowTaskThreshold-

This is a progress rate threshold to determine if a task

is slow enoughto be speculated upon. This prevents

needless speculation when only fast tasks are

running.Progress Rate of a task is given by

(ProgressScore/ExecutionTime)

3. The time left parameter for a task is estimated based

on the Progress Score provided byHadoop, as (1 −

Progress_Score)/Progress_Rate.

LATE records the progress rate of a task and estimates

their remaining time to identify slow tasks. The tasks having

progress rate below the slowTaskThreshold cap are selected

for backup process. Among those task which has longest

remaining time is considered to be straggler tasks and given

a high priority to back up on another worker node. A worker

node can be classified as slow node when its performance

score is below the slowNodeThreshold. LATE will never

launch backup tasks on these nodes. In LATE,speculative

cap is used to limit the number of backup tasks.

Algorithm 1: LATE

1. a node N asks for a new task

2. if number of running speculative tasks

<SpeculativeCap then

3. if nodes total progress <SlowNodeThreshold then

4. ignore the request

5. else

6. rank currently running tasks that are not currently being

speculated by estimated time left

7. repeat

8. select next task T from ranked list

9. if progress rate of T <SlowTaskThreshold then

10. Launch a copy of T on node N

11. Exit

12. end if

13. until while ranked list has tasks

14. end if

15. end if

The previous work shows that in a cluster with non-

faulty nodes experiment LATE finished jobs 27% faster

than Hadoop’s native scheduler and 31% faster than no

speculation. It also shows that SlowTaskThreshold

(percentile of progress rate below which a task must lie to

be considered for speculation) show that small threshold

values harmfully limit the number of speculative tasks,

values past 25%. It overcomes the problem of default

speculative scheme but still it has some problems like input

data skew. It also doesn’t consider the fixed phase

percentage of each phase in map and reduce. Such fixed

percentage of phases will not be efficient to calculate

progress rate [7].

B. History Based Auto-tuning Strategy

The History-based auto-tuning (HAT) calculates the

progress rate accurately and it incorporates historical

information recorded on each node anddetects straggler

tasks dynamically. In previous strategy like LATE, only

slow nodes is classified irrespective of their type. But in

HAT slow nodes are classified into map slow nodes and

reduce slow nodes. When HAT starts MapReduce job

execution, each worker node read the historical information

from local node and set them as the default values of the

parameters. The historical information contains the values

of map and reduce tasks. On the basis of dynamic tuned

values of map and tasks, HAT can compute progress score

of the tasks accurately. It identifies the slow nodes

according to average progress rate of map tasks and reduce

tasks on each node. If there are any slow tasks are present,

 International Journal of Computer Sciences and Engineering Vol.-3(3), PP(197-200) Mar 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 198

HAT launches backup tasks. The runtime algorithm of HAT

is as follows,

Algorithm 2: Runtime algorithm of HAT

Input: Key/Value pair

Output: Statistical value

1. Every worker nodes reads historical information and

tunes parameters using the history-based auto-tuning

strategy

2. Every worker node computes progress scores of all the

running tasks using the progress monitoring algorithm

3. HAT processes the tasks and detects slow tasks using

the straggler detecting algorithm

4. HAT detects slow nodes which can be map slow node

or reduce slow node using the slow nodedetecting

algorithm

5. HAT launches backup tasks on appropriate worker

nodes using the backup task launching algorithm

6. HAT collects the results and historical information is

updated on every node.

Algorithm 3: Straggler Tasks Detecting algorithm

1. While (the job is still running) {

2. Every worker calculates progress rate of every tasks

that are running on it.

3. HAT calculates the average progress rate of all the

running tasks.

4. Every worker determines slow tasks.

5. Every worker gives the list of slow tasks running on it.

6. HAT calculates the remaining time for all the slow

tasks according to (5) and orders the tasks in

descending order according to the remaining time.

7. HAT calculates the up-bound of the number of

straggler tasks, Strag_UB.

8. If (the number of slow tasks ≤ Strag_UB)

9. All the slow tasks are detected as straggler tasks.

10. Else if (the number of slow tasks >Strag_UB)

11. HAT selects Strag_UB slow tasks with the

longest remaining time as slow tasks.

12. HAT inserts all the straggler tasks into straggler

map/reduce task list.

13. usleep(100000); } //straggler tasks are detected

after every 100ms

HAT can launch backup tasks for reduce straggler

tasks on map slow nodes and map straggler tasks on reduce

slow nodes. The previous work shows that HAT can get up

to 37% of performance gain over Hadoop and 16%

performance gain over LATE scheduler. HAT cannot

address data locality problem when launching backup tasks

[16].

C. Maximum Cost Performance (MCP)

Qui Chen and Cheng Liu have proposed a new smart

speculative execution strategy called as Maximum Cost

Performance (MCP) to improve MapReduce performance.

It mainly focuses on decreasing job execution time of

MapReduce job and increase cluster throughput. This

strategy aims to identify straggler tasks correctly and

estimating total remaining time accurately. On the basis of

the total remaining time backup tasks is selected and it is

backed up on other node for faster execution. It also

evaluates performance score of backup node so that backup

task can be backed up on good node. Backing up a straggler

tasks will eventually leads to maximum cost performance.

A task will be backed up on the basis of following condition

- It must have been executed for certain amount of time

- Both progress rate and process bandwidth must be low

in the current phase

- Profit of backing up a straggler task is higher than not

backing it up.

- Predicted remaining time of slow tasks on backup

node is less than he estimated remaining time on

original node.

- It has longest remaining time than all other tasks.

1) Selecting Backup task:

MCP can predict the process speed of all tasks and calculate

their total remaining time on the basis of which detection of

straggler tasks has been done.

a) Determine Process Speed:

Thisstrategyusesexponentially weighted moving average to

predict the process speed of all running tasks. It is as

follows

���� =∝∗ ���� + �1−∝� ∗ ��� − 1�,0<∝<=1 (1)

 Here, Z(t) = estimated process speed

Y(t) = observed process speed

t= time

∝ is trade-off between stability and responsiveness [4].

To accurately estimate process speed, itwill not start

calculating process speed as soon as execution starts. It

allows the tasks execute for some time then it start

estimating process speed.

b) Estimating Remaining Time and Identify Straggler

Tasks:

Previous strategies used to identify straggler tasks on the

basis of average progress rate alone or some uses process

bandwidth alone. But alone it is not sufficient to identify

straggler tasks. For example, if tasks havelarge data to

process it tend to have low progress rate although its

bandwidth is normal. This leads to misjudgement. Hence

MCP uses both progress rate and process bandwidth to

identify straggler tasks.

As we know map and reduce phases are subdividedi.e.

 International Journal of Computer Sciences and Engineering Vol.-3(3), PP(197-200) Mar 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 199

map is divided in map and combine whereas reduce is

divided in copy, sort and reduce. It use EWMA algorithm in

each of thesesub phases to predict process speed in each of

these phases. This can be useful in accurately

identifyingstraggler tasks. Meanwhile, estimating remaining

time of tasks in each phase is done.

A tasks remaining time is calculated by sum of

remaining time in each phase. When a task is running ina

phase say cp(i.e. current phase), then its remaining time in

cp is calculated by remaining data left to process and

process bandwidth in cp. It isneeded to calculate remaining

time of the same tasks in other phases say fp(i.e. following

phase). Hence to estimate remaining time in fp it uses the

average of process speed in each phase. It takes average of

the process speed of all the tasks which have entered in fp.

It does not calculate average process speed of the phase in

which no tasks has entered yet [1].

������� = ��������� + ���_������ (2)

������� = ���_������
���� ���ℎ��

+ " �#������ ∗ $�%�&�'
� �(��

(3)

$�%�&� = �����(�)�
����*+,

To estimate backup time of a straggler tasks, ituses the sum

of the estimated time for each phase of the tasks given by

est_timep. It is as follows,

��%-./_���� = ∑ �#�_����� ∗ $�%�&�'� (4)

This estimated backup time is compared with the calculated

remaining time of straggler task.

c) Maximizing Cost Performance of a cluster

The cost of speculative execution in tasks can be

represented by occupied slots. The aim is to maximise the

cost performance of cluster computing resources and

shortening the job execution time. The cost can be taken as

the time for which computing resources are occupied i.e.

slot_num * time and benefit is denoted by time saved by the

speculative execution in the task. Backing up a task takes

two slots (one for original and one for backup tasks) and

can save one slot rem_time – backup_time whereas not

backing up a task will take only one slot rem_time and gain

nothing [1]. This is defined as follows,

/�&$��1*�2)� =∝∗ �������� − ��%-./����� (5)

 −3 ∗ 2 ∗ ��%-./_����

/�&$��(5�1*�2)� =∝∗ 0 − 3 ∗ ���_���� (6)

If profit of backing up straggler tasks is more then it will

back it up on other node else original task is executed.

2) Selecting proper backup node

To gain better performance, straggler task must be backed

up on fast backup node. If straggler task is backed upon

slow backup node then it won’t get any gain by backing it

up. To classify, MCPcan maintained health of each node.

Ithas assigned a performance score to each node and on the

basis of this score node status of its health is obtained,

whether it is fast or slow. For that ituses some appropriate

parameter to measure the performance score of the nodes.

It keeps the track of the process bandwidth of the tasks

which are executed on each node. Hencethe performance

score of the nodes can be calculated. It considers data

locality of the tasks. It has taken the locality of data in

account whether it is data local or non-local because data

local task are three times faster than non-local tasks. Before

assigning a node to straggler tasks it must check its locality

so that it can perform faster. If slow tasks executes faster on

backup node then only it is backed up on worker nodes.

The previous workshows that MCP finishes job 37% faster

than the Hadoop-original and 19% faster than the LATE.

MCP improves cluster throughput by 32% over Hadoop-

original and 15% over LATE [1].

IV. COMPARATIVE ANALYSIS

The challenge is to improve MapReduce performance by

shortening job execution time and maximizing cluster

throughput. Various Speculative strategies are developed till

now. The default speculative execution strategy randomly

selects the task and backs it up on other worker node. But it

has some drawbacks in identifying slow tasks and choosing

worker node for backup tasks. It assumes that task makes

progress at stable rate but this assumption breaks down for

various reasons. First, map and reduce is subdivided in

different sub phases. These sub phases are assigned fixed

progress of a task which makes monitoring process difficult.

Second, reduce phase launched asynchronously before all

map tasks complete. Thiscauses variation in progress rate of

tasks. To overcome such drawbacks LATE has been

developed. It keeps the track of progress rate of each task

and which is used to correctly identify straggler tasks. The

task which has progress rate below threshold value will be

considered for backup task. But it does not consider whether

backup task finish earlier on worker node. HAT strategy is

developed which can maintain history of each task. All the

historical information is used to detect straggler tasks

accurately. It classifies the slow nodes into map slow nodes

or reduce slow node which is not present in earlier strategy.

This helps in backing up tasks properly. MCP addresses the

issue of input data skew, fixed percentage of each phases of

map and reduce efficiently. It maintains performance score

of worker node for backup task. It uses EWMA prediction

algorithm to estimate progress speed of a tasks. While

 International Journal of Computer Sciences and Engineering

 © 2015, IJCSE All Rights Reserved

backingup a slow task,it considers data locality. MCP and

HAT improves LATE strategy efficiently.

V. CONCLUSION

To improve MapReduce performance is currently a big task

to do. Various techniques like scheduling of tasks and

speculative execution strategy are under research. This

paper discussed different strategies of speculative execution

to improve MapReduce performance. LATE has made

considerable changes in Hadoop-original. MCP is better

than LATE as itovercomes pitfalls of LATE strategy. HAT

uses historical information of a task

considerable improvement over LATE. The main aim of all

these strategies is to shorten the job execution time and

increase the cluster throughput. This will be helpful in Big

Data applications.

ACKNOWLEDGMENT

The author would like to thanks the university authorities

and Department of Computer Science and Information

Technology, Dr. Babasaheb Ambedkar Marathwada

University, Aurangabad for providing the infrastructure to

carry out the work. This work is committed by university

commission.

REFERENCES

[1] Qi Chen, Cheng Liu and Zhen Xiao, “Improving MapReduce

performance using smart speculative execution

strategy”, IEEE Transaction on Computers VOL 63, NO. 4,

APRIL 2014.

[2] Apache hadoop, http://hadoop.apache.org/

December 2015

[3] J. Dean and S. Ghemawat, “Mapreduce: Simplified Data

Processing on Large Clusters,” Comm. ACM, vol. 51, pp.

107-113, Jan. 2008.

[4] Exponential Weighted Moving Average,

http://en.wikipedia.org/wiki1, Accessed on

[5] MapReduce. [Online] Available: http://www.ibm.com

Accessed on 15January 2015

[6] G. Ananthanarayana, S. Kandula, A. Greenberg, I. Stocia, Y.

Lu, B.Saha, and E. Harris, “Reining in the Outliers in

Mapreduce Clusters Using Mantri” Proc. Inth USENIX Conf.

Operating System Design and implementation, (OSDI ‘10),

2010.

[7] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I.

Stoica, “Improving MapReduce Performance in

Heterogeneous Environments,” in Proc. of the 8th USENIX

conference on Operating systems design and implementation ,

ser. OSDI, 2008.

[8] Zhe Wang, Zhengdong Zhu, Pengfei Zheng, Qian

Xiaoshe Dong, “New Scheduler Strategy for Heterogeneous

Workload-aware in Hadoop,” 8th Annual ChinaGrid

Conference, 2013.

[9] Huanle Xu, Wing Cheong Lau, “Optimization for Speculative

Execution of Multiple Jobs in a MapReduce

Annual ChinaGrid Conference, 2013.

[10] Xuelian Lin, Chunming Hu, Richong Zhang

Wang, “Modeling the Performance of MapReduce under

International Journal of Computer Sciences and Engineering Vol.-3(3), PP(197-200) Mar 201

, IJCSE All Rights Reserved

k,it considers data locality. MCP and

To improve MapReduce performance is currently a big task

to do. Various techniques like scheduling of tasks and

speculative execution strategy are under research. This

paper discussed different strategies of speculative execution

to improve MapReduce performance. LATE has made

original. MCP is better

than LATE as itovercomes pitfalls of LATE strategy. HAT

ask which shows

considerable improvement over LATE. The main aim of all

these strategies is to shorten the job execution time and

increase the cluster throughput. This will be helpful in Big

s the university authorities

and Department of Computer Science and Information

Technology, Dr. Babasaheb Ambedkar Marathwada

University, Aurangabad for providing the infrastructure to

carry out the work. This work is committed by university

Qi Chen, Cheng Liu and Zhen Xiao, “Improving MapReduce

performance using smart speculative execution

strategy”, IEEE Transaction on Computers VOL 63, NO. 4,

http://hadoop.apache.org/, Accessed on 26

J. Dean and S. Ghemawat, “Mapreduce: Simplified Data

Processing on Large Clusters,” Comm. ACM, vol. 51, pp.

nential Weighted Moving Average,

, Accessed on 7 January 2015

http://www.ibm.com,

G. Ananthanarayana, S. Kandula, A. Greenberg, I. Stocia, Y.

Lu, B.Saha, and E. Harris, “Reining in the Outliers in

Mapreduce Clusters Using Mantri” Proc. Inth USENIX Conf.

Operating System Design and implementation, (OSDI ‘10),

ki, A. D. Joseph, R. Katz, and I.

Stoica, “Improving MapReduce Performance in

Heterogeneous Environments,” in Proc. of the 8th USENIX

conference on Operating systems design and implementation ,

Zhe Wang, Zhengdong Zhu, Pengfei Zheng, Qiang Liu,

Xiaoshe Dong, “New Scheduler Strategy for Heterogeneous

aware in Hadoop,” 8th Annual ChinaGrid

, “Optimization for Speculative

Execution of Multiple Jobs in a MapReduce-like Cluster,” 8th

Richong Zhang, Chengzhang

, “Modeling the Performance of MapReduce under

Resource Contentions and Task Failures,”

Technology and Science (CloudCom), IEEE 5th International

Conference on (Vol 1), December

[11] Tao Gu, Chuang Zuo, Qun Liao, Yulu Yangand Tao Li,

“Improving MapReduce Performance by Data Prefetching in

Heterogeneous or Shared Environments”, International

Journal of Grid and Distributed ComputingVol.6, No.5,

[12] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y.

Lu, B. Saha, and E. Harris, “Reining in the Outliers in Map

Reduce Clusters Using Mantri,” Proc. Ninth USENIX Conf.

Operating Systems Design and Implementation (OSDI),

2010.

[13] Y. Kwon, M. Balazinska, and B

Mapreduce Applications,” Proc. Fifth Open Cirrus Summit,

2011.

[14] Open Stack Cloud Operating System

http://www.openstack.org/, Accessed on 13 February 2015

[15] Amazon Elastic Compute Cloud (EC

http://aws.amazon.com/ec2/,Access

[16] Quan Chen, MinyiGuo, Qianni Deng, Long Zheng, Song

Guo, Yao Shen, “HAT: History

tunningMapReduce in heterogenous environments” Springer

Science+Business media, LLC,

AUTHOR PROFILE

Rahul R Ghule doing M. Tech (Computer

Science & Engineering) from Department of

Computer Science and Information Technology

Dr. Babasaheb Ambedkar Marathwada

University, Aurangabad-431001, Maharashtra,

India.

Rahulghule.r@gmail.com

Assistant Professor Dr. Sachin N. Deshmukh

Department of Computer Science and

Information Technology, Dr. Babasaheb

Ambedkar Marathwada University,

Aurangabad-431001, Maharashtra, India.

sndeshmukh@hotmail.com

2015, E-ISSN: 2347-2693

 200

Resource Contentions and Task Failures,” Cloud Computing

Technology and Science (CloudCom), IEEE 5th International

(Vol 1), December 2013.

Tao Gu, Chuang Zuo, Qun Liao, Yulu Yangand Tao Li,

“Improving MapReduce Performance by Data Prefetching in

Heterogeneous or Shared Environments”, International

Journal of Grid and Distributed ComputingVol.6, No.5, 2013.

hanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y.

Lu, B. Saha, and E. Harris, “Reining in the Outliers in Map-

Reduce Clusters Using Mantri,” Proc. Ninth USENIX Conf.

Operating Systems Design and Implementation (OSDI),

Y. Kwon, M. Balazinska, and B. Howe, “A Study of Skew in

Mapreduce Applications,” Proc. Fifth Open Cirrus Summit,

Open Stack Cloud Operating System,

, Accessed on 13 February 2015.

zon Elastic Compute Cloud (EC2),

Accessed on 28 January 2015

Quan Chen, MinyiGuo, Qianni Deng, Long Zheng, Song

Guo, Yao Shen, “HAT: History-based auto-

tunningMapReduce in heterogenous environments” Springer

Science+Business media, LLC, 2011.

doing M. Tech (Computer

Science & Engineering) from Department of

ence and Information Technology,

Dr. Babasaheb Ambedkar Marathwada

431001, Maharashtra,

Dr. Sachin N. Deshmukh

Computer Science and

Dr. Babasaheb

Ambedkar Marathwada University,

431001, Maharashtra, India.

