

 © 2017, IJCSE All Rights Reserved 215

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-5, Issue-9 E-ISSN: 2347-2693

Analysis of Web Application Security

Shreekishan Jewliya

Dept. Of Computer Science, Rajasthan Swayat Shasan Mahavidyalaya, Jaipur, India

*Corresponding Author: krishanjew@yahool.com, Tel.: +91-9982379762

Available online at: www.ijcseonline.org

Received: 13/Aug/2017, Revised: 28/Aug/2017, Accepted: 10/Sep/2017, Published: 30/Sep/2017

Abstract— Web applications are a standout amongst the most predominant stages for data and administrations conveyance

over Internet today. As they are progressively utilized for basic administrations, web applications turn into a prominent and

significant focus for security assaults. Despite the fact that a huge group of methods have been developed to invigorate web

applications and alleviate the assaults toward web applications, there is little exertion gave to drawing associations among

these strategies and building a major picture of web application security look into. This paper reviews the range of web

application security, with the point of systematizing the current strategies into a enormous picture that advances future

research. We initially present the one of kind viewpoints in the web application advancement which brings inalienable

difficulties for building secure web applications. At that point we distinguish three fundamental security properties that a web

application should protect: Input Validity, State Integrity what's more, Logic Correctness, and depict the relating

vulnerabilities that abuse these properties alongside the assault vectors that adventure these vulnerabilities. We compose the

current research works on securing web applications into three classifications in view of their outline theory: security by

Construction, security by Verification and security by Protection. At long last, we compress the lessons learnt and examine

future research openings around there.

Keywords—Web Security, Web Application, AJAX, Jquery, XML, JavaScript, HTTP, PHP, session.

I. INTRODUCTION

Internet has developed from a framework that conveys static

pages to a stage that backings appropriated applications,

known as web applications and end up plainly a standout

amongst the most predominant advancements for data and

administration conveyance over Internet. The expanding

ubiquity of web application can be described to a few

variables, including remote accessibility, cross-stage

similarity, quick advancement, and so forth. The AJAX

(Asynchronous JavaScript and XML) innovation too

improves the client encounters of web applications with

better intelligence and responsiveness. As web applications

are progressively used to convey security basic

administrations, they turn into an important focus for security

attacks. Many web applications connect with back-end

database Frameworks, which may store delicate data (e.g.,

money related, wellbeing), the bargain of web applications

would bring about depicts the power and assets aggressors

have security property characterizes the part of the web

application conduct proposed by the designers. Given a

danger demonstrate, on the off chance that one web

application neglects to save certain security property under

all situations, this application is uncertain or powerless

against comparing assaults.

We recognize a few open issues that are deficiently tended to

in the current writing. We additionally examine future

explore openings in the range of web application security

what's more, the new difficulties that are normal ahead. We

structure whatever is left of this paper as takes after. We first

portray how a web application works and its interesting

characteristics in Section II. At that point, we represent three

fundamental security properties that a safe web application

should hold, also as relating vulnerabilities and assault

vectors in Section III. We close our paper in Section IV.

II. RELATED WORK

Chong et al. [1] develop a web application framework SIF

(Servlet Information Flow), based on a security-typed

language Jif, which extends Java with information flow

control and access control. SIF is able to label user input,

track the information flow and enforce the annotated security

policies at both compile time and runtime.

In addition, their parallel work Swift [2] is a unifying

framework to enforce end-to-end information flow policies

for distributed web applications. Jif source code can be

automatically and securely partitioned into server-side and

client-side code. SIF and Swift can be used for building

secure web applications free of input validation

vulnerabilities, as long as the security policies associated

 International Journal of Computer Sciences and Engineering Vol.5(9), Sep 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 216

with the information flow of untrusted user data are specified

correctly. We note that they can also be used to enforce other

security policies that are relevant with application logic (e.g.,

authorization), which we will explain later.

Samuel et al.[3] builds a reliable context-sensitive auto-

sanitization engine into web template systems based on type

qualifiers to address this problem.

Wassermann et al. [4] propose string-taint analysis, which

enhances Minamide’s string analysis with taint support.

Their technique labels and tracks untrusted substrings from

user input and ensures no untrusted scripts can be included in

SQL queries and generated HTML pages. Their technique

not only addresses the missing sanitization but also

the weak sanitization performed over user input.

Nguyen- Tuong et al. [5] modify PHP interpreter to precisely

taint user data at the granularity of characters and tracks

tainted user data at runtime. However, the sanitization of user

data

requires retrofitting the application source code to explicitly

call a newly-defined function, which can be error-prone and

affect the analysis precision.

Robertson et al. [6] propose a strong typing development

framework to build robust web applications against XSS and

SQL injection. This framework leverages Haskell, a strong

typing language, to remedy the weak typing feature of

scripting languages.

Huang et al. [7] propose a tool WebSSARI that applies static

analysis into identifying vulnerabilities within web

applications. The tool employs flow-sensitive, intra-

procedural

analysis based on a lattice model. They extend the PHP

language with two type-states, namely tainted and untainted,

and track each variable’s type-state. In addition, runtime

sanitization functions are inserted where the tainted data

reaches the sinks to automatically harden the vulnerable web

application

III. METHODOLOGY

UNDERSTAND HOW A WEB APPLICATION WORKS

Web application is an appropriated application that is

executed over the Web stage. It is a basic piece of the present

Web biological community that empowers dynamic data and

administration conveyance. As appeared in Fig. 1, a web

application may comprise of code on both the server side and

the customer side. The server- side code will create dynamic

HTML pages either through execution (e.g., Java servlet,

CGI) or elucidation (e.g., PHP, JSP). Amid the execution of

the server-side code, the web application may connect with

nearby record framework or back-end database for putting

away and recovering information. The customer side code

(e.g., in JavaScript) are implanted in the HTML pages, which

is executed inside the program. It can speak with the server-

side code (i.e., AJAX) and powerfully refreshes the HTML

pages. In what tails, we portray three interesting aspects of

the web application advancement, which separate web

applications from conventional applications.

 A. Programming Language: Web application

improvement depends on web programming dialects. These

dialects incorporate scripting dialects that are outlined

particularly for web (e.g., PHP, JavaScript) and broadened

customary universally useful programming dialects (e.g.,

JSP). A recognizing highlight of many web programming

dialects is their sort frameworks. For instance, a few

scripting dialects (e.g., PHP) are progressively wrote, which

implies that the kind of a variable is resolved at runtime,

rather than arrange time. A few dialects (e.g., JavaScript) are

pitifully written, which implies that an announcement or a

capacity can be performed on an assortment of information

sorts through certain sort throwing. Such sort frameworks

enable designers to mix a few sorts of builds in one record

for runtime translation. For imposition, a PHP document may

contain both static HTML labels and PHP capacities and a

site page may install executable JavaScript code. The

portrayal of use information and code by an unstructured

arrangement of bytes is a one of a kind component of web

application that helps improve the advancement productivity.

Figure 1. Overview of Web Application

B. State Maintenance: HTTP convention is stateless, where

each web asks for is autonomous of each other. In any case,

to execute non-minor functionalities, "stateful" web

applications should be assembled over this stateless

foundation. In this way, the reflection of web session is

embraced to assist the web application with identifying

furthermore, connect a progression of web demands from a

similar client amid a specific timeframe. The condition of a

web session records the conditions from the verifiable web

asks for that will influence the future execution of the web

application. The session state can be kept up either at the

customer side (through treat, shrouded shape or URL

changing) or at the server side. In the last case, a one of a

kind identifier (session ID) is characterized to list the express

session factors put away at the server side and issued to the

customer. For instance, the greater part of web programming

dialects (e.g., PHP, JSP) offers designers a gathering of

 International Journal of Computer Sciences and Engineering Vol.5(9), Sep 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 217

capacities for dealing with the web session. For instance, in

PHP, session begin() can be called to introduce a web session

and a pre-characterized worldwide cluster $SESSION is

utilized to contain the session state. In either case, the

customer assumes an essential part in keeping up the

conditions of a web application.

C. Logic Correctness: The business rationale characterizes

the usefulness of a web application, which is particular to

every application. Such usefulness is showed as a proposed

application control stream and is typically incorporated with

the route connections of a web application. For instance,

confirmation and approval are a typical piece of the control

stream in many web applications, through which a web

application limits its delicate data and advantaged operations

from unapproved clients. As another case, web based

business sites for the most part deal with the grouping of

operations that the clients require perform amid shopping and

checkout. A web application is typically executed as a

number of free modules, each of which can be

straightforwardly air conditioning accessed in any request by

a client. This remarkable element of web applications

fundamentally entangles the requirement of the application's

control stream crosswise over various modules. This errand

should be performed through a tight joint effort of two

approaches. The principal approach, which is honed by most

web applications, is interface covering up, where just open

assets and activities of the web application are displayed as

web connections and presented to clients. The second

approach enquires express checks of the application state,

which is kept up by session factors (or determined questions

in the database), some time recently sensitive data and

operations can be accessed.

 UNDERSTAND WEB APPLICATION SECURITY PROPERTIES,

VULNERABILITIES AND ATTACK VECTORS

A protected web application needs to fulfill wanted security

properties under the given threat model. In the territory of

web application security, the accompanying risk

demonstrates is generally considered:

1) the web application itself is amiable (i.e., not facilitated or,

on the other hand possessed for vindictive purposes) and

facilitated on a trusted what's more, solidified framework

(i.e., the confide in processing base, counting OS, web

server, mediator, and so on.) ;

2) the assailant can control either the substance or the

grouping of web demands sent to the web application,

however can't straightforwardly trade off the foundation or

the application code The vulnerabilities inside web

application usage may damage the proposed security

properties and take into consideration relating fruitful

adventures.

Specifically, a protected web application should save the

following pile of security properties, as appeared in Fig. 2.

Input Validity implies the client information ought to be

validated before it can be used by the web application; state

Integrity implies the application state ought to be kept

unhampered Logic Correctness implies the application

integrity ought to be executed effectively as expected by the

engineers. The over three security properties are connected in

a way that disappointment in protecting a security property at

the lower level will influence the confirmation of the security

property at a more elevated amount. For example, if the web

application neglects to hold the info Validity property, a

cross site scripting assault can be propelled by the assailant

to take the casualty's session attack. At that point, the

assailant can capture and alter the casualty's web session,

bringing about the infringement of state honesty property. In

the accompanying areas, we portray the three security

properties and show how the one of kind highlights of web

application advancement confuse the security outline for web

applications. Logic Correctness State Integrity input Validity

Security Property Rationale Implementation State

Maintenance Programming Language Improvement Feature

Attack State violation(logic) attack XSS, SQL injection, and

so forth. CSRF, session fixation, and so forth.

Figure 2. Web Application Security Properties

A. Input Validity: Given the risk display, client input

information can't be trusted. Be that as it may, for the un-

trusted client information to be utilized as a part of the

application (e.g., forming web reaction or SQL questions),

they must be first approved. Along these lines, we allude to

this security property as input Validity property : All the

client information ought to be approved effectively to

guarantee it is used by the web application in the planned

way. The client input approval is frequently performed by

means of purification schedules, which change untrusted

client contribution to confided in information by sifting

suspicious characters or builds inside client input. While

basic on a basic level, it is non-trifling to accomplish the

fulfillment and rightness of client input sterilization,

particularly when the web application is customized utilizing

scripting dialects. To start with, since client input

information is proliferated all through the application, it must

be followed the distance to distinguish all the sterilization

focuses. Notwithstanding, the dynamic highlights of scripting

dialects must be taken care of appropriately to guarantee the

right following of client input information. Second, rectify

cleansing needs to consider the unique situation, which

 International Journal of Computer Sciences and Engineering Vol.5(9), Sep 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 218

determines how the client input is used by the application

what's more, deciphered later either by the web program or

the SQL translator. In this manner diverse settings require

unmistakable sterilization capacities. Nonetheless, the feeble

writing highlight of programming dialects makes setting

delicate cleansing testing and mistake inclined. In current

web improvement hones, cleansing schedules are normally

set by designers physically in a specially appointed way,

which can be either deficient or wrong, and in this way bring

vulnerabilities into the web application. Missing cleansing

permits vindictive client contribution to stream into trusted

web substance without approval; flawed disinfection permits

malevolent client contribution to sidestep the approval

strategy. A web application with the above vulnerabilities

neglects to accomplish the information Validity property

accordingly is powerless against a class of assaults, which

are alluded to as content infusions, information stream

assaults or information approval assaults. This sort of

assaults implants malevolent substance inside web demands,

which are used by the web application and executed later.

Illustrations of info approval assaults incorporate cross-site

scripting (XSS), SQL infusion, registry traversal, filename

incorporation, reaction part, and so forth. They are

recognized by the areas where vindictive substance get

executed. In the accompanying, we represent the most two

prevalent information approval assaults.

1) SQL Injection: A SQL infusion assault is effectively

propelled when malevolent substance inside client input

stream into SQL inquiries without adjust approval. The

database trusts the web application and executes every one of

the inquiries issued by the application. Utilizing this assault,

the aggressor can insert SQL catchphrases or administrators

inside client contribution to control the SQL inquiry structure

and result in unintended execution. Results of SQL infusions

incorporate confirmation by pass, data exposure and even the

decimation of the whole database. Intrigued per user can

allude for additional insights about SQL infusion.

2) Cross-Site Scripting: A cross-site scripting (XSS) assault is

effectively propelled when noxious substance inside client

input stream into web reactions without redress approval.

The web program translates all the web reactions returned by

the trusted web application (as per the same-source

arrangement). Utilizing this assault, the aggressor can infuse

vindictive contents into web reactions, which get executed

inside the casualty's web program. The most widely

recognized outcome of XSS is the revelation of sensitive

data, e.g., session treat robbery. XSS normally fills in as the

initial step that empowers further advanced assaults. There

are a few variations of XSS, as per how the noxious contents

are infused, including put away/steady XSS (malevolent

contents are infused into determined capacity), reflected

XSS, DOM-based XSS, content-sniffing XSS.

The most widespread vulnerabilities are Cross-Site Scripting,

Information Leakage, SQL Injection, Insufficient Transport

Layer Protection, Fingerprinting и HTTP Response Splitting

(P. 1). As a rule, Cross-Site Scripting, SQL Injection and

HTTP Response Splitting vulnerabilities are caused by

design errors, while Information Leakage, Insufficient

Transport Layer Protection and Fingerprinting are often

caused by insuffi cient administration (e.g., access control).

Fig.3

Table. 1 The probability to detect vulnerabilities depending on vulnerability

origin

S. No Vulnerability % Vulns

1. Cross-site scripting 43%

2. SQL Injection 5%

3. HTTP Response spliting 6%

4. Informtion leakage 31%

5. Path Traversal 3%

6. Content Spoofing 2%

B. State Integrity State support is the reason for building

stateful web applications, which requires a safe web

application to save the respectability of use states.

Nonetheless, The contribution of an untrusted party

(customer) in the application state support makes the

confirmation of state respectability a testing issue for web

applications. Various assault vectors focus on the

vulnerabilities inside session administration and state support

components of web applications, including treat harming

(altering the treat data), session obsession (when the session

identifier is unsurprising), session commandeering (when the

session identifier is stolen), and so on. Cross-site ask for

falsification (i.e., session riding) is a mainstream assault that

falls in this classification. In this assault, the assailant traps

the casualty into ending made web demands with the

 International Journal of Computer Sciences and Engineering Vol.5(9), Sep 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 219

casualty's substantial session identifier, in any case, on the

aggressor's sake. This could bring about the casualty's

session being altered, sensitive data uncovered (e.g., [10]),

money related misfortunes (e.g., an aggressor may

manufacture a web ask for that trains a defenceless saving

money site to exchange the casualty's cash to his record), and

so forth. To protect state respectability, various powerful

systems have been proposed [11]. Customer side state data

can be ensured by respectability confirmation through MAC

(Message Validation Code). Session identifiers should be

created with high arbitrariness (to safeguard against session

obsession) what's more, transmitted over secure SSL

convention (against session commandeering). To moderate

CSRF assaults, web solicitations can be approved by

checking headers (Referrer header, or Origin header [12]) or

related remarkable mystery tokens. Since the strategies for

safeguarding state Integrity are moderately develop,

subsequently falling past the extent of this overview.

C. Logic Correctness: Guaranteeing Logic Correctness is vital to

the working of web applications. Since the application

rationale is particular to each web application, it is difficult

to cover every one of the perspectives by one depiction.

Rather, a general depiction that spreads most regular

application functionalities is given as takes after, which we

allude to as rationale rightness property : Clients can just

access approved data and operations and are implemented to

take after the expected work process given by the web

application To execute and implement application rationale

accurately can be trying because of its state support

component and "decentralized" structure of web applications.

To begin with, interface concealing method, which takes

after the guideline of "security by lack of clarity", is clearly

insufficient in nature, which permits the assailant to reveal

shrouded joins and specifically get to unapproved data or

operations or abuse the planned work process. Second,

equivocal checking of the application state is performed by

engineers physically and in an impromptu way.

Consequently, it is likely that specific state checks are absent

on unforeseen control stream ways, because of those

numerous passage focuses of the web application. In

addition, composing right state checks can be blunder

inclined, since static security strategies as well as

additionally unique state data ought to be considered. Both

absent and flawed state checks present rationale

vulnerabilities into web applications. A web application with

rationale defects is helpless against a class of assaults, which

are normally alluded to as rationale assaults or state

infringement assaults. Since the application rationale is

particular to each web application, rationale assaults are

additionally eccentric to their particular targets. A few

assault vectors that fall (or halfway) inside this classification

incorporate validation sidesteps, parameter altering, mighty

perusing, and so forth. There are additionally application-

particular rationale assault vectors. For instance, a powerless

e-business site may enable a same coupon to be connected

various circumstances, which can be misused by the

aggressor to decrease his instalment.

IV. RESULTS AND DISCUSSION

Web applications have been advancing exceptionally quickly

with new programming models and innovations rising,

bringing about a consistently changing scene for web

application security with new difficulties, which requires

significant and maintained endeavours from security

specialists. We plot a few advancing patterns and call

attention to a few spearheading fills in as takes after. Initial,

an expanding measure of use code and rationale is moving to

the customer side, which brings new security challenges.

Since the customer side code is uncovered, the aggressor can

acquire information about the application, along these lines

more prone to trade off the server-side application state.

V. CONCLUSION AND FUTURE SCOPE

This paper gave a far reaching study of later look into brings

about the region of web application security. We portrayed

one of a kind quality of web application development,

recognized critical security properties that safe web

applications should safeguard and ordered existing works

into three noteworthy classes. We additionally brought up a

few open issues that still should be tended.

REFERENCES

[1] S. Chong, K. Vikram, and A. C. Myers, “Sif: Enforcing

confidentiality and integrity in web applications,” in

USENIX’07: Proceedings of the 16th conference on USENIX

security symposium , 2007.

[2] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng,

and X. Zheng, “Secure web applications via automatic

partitioning,” in SOSP ’07: Proceedings of the 21st ACM

SIGOPS symposium on Operating systems principles, 2007,

pp. 31–44.

[3] M. Samuel, P. Saxena, and D. Song, “Context-sensitive auto-

sanitization in web templating languages using type

qualifiers,” in CCS’11: Proceedings of the 18th ACM

conference on Computer and communications security , 2011,

pp. 587–600.

[4] G. Wassermann and Z. Su, “Sound and precise analysis of web

applications for injection vulnerabilities,” in PLDI’07:

Proceedings of the 2007 ACM SIGPLAN conference on

Programming language design and implementation , 2007, pp.

32–41.

[5] A. Nguyen-tuong, S. Guarnieri, D. Greene, J. Shirley, and D.

Evans, “Automatically hardening web applications using

precise tainting,” in Proc. of the 20th IFIP International

Information Security Conference, 2005, pp. 372–382.

[6] W. Robertson and G. Vigna, “Static enforcement of web

application integrity through strong typing,” in USENIX’09:

Proceedings of the 18th conference on USENIX security

symposium, 2009, pp. 283–298.

[7] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-

Y. Kuo, “Securing web application code by static analysis and

runtime protection,” in WWW’04: Proceedings of the 13th

 International Journal of Computer Sciences and Engineering Vol.5(9), Sep 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 220

international conference on World Wide Web , 2004, pp. 40–

52.

[8] M. Johns, “Sessionsafe: Implementing xss immune session

handling,” in ESORICS’06: Proceedings of the 11th European

Symposium On Research In Computer Security , 2006.

[9] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for

cross-site request forgery,” in CCS’08: Proceedings of the

15th ACM conference on Computer and communications

security , 2008, pp. 75–88.

[10] N. Jovanovic, E. Kirda, and C. Kruegel, “Preventing cross site

request forgery attacks,” in SecureComm’06: 2nd

International Conference on Security and Privacy in

Communication Networks , 2006, pp. 1 –10.

[11] M. Johons and J. Winter, “Requestrodeo: Client-side

protection against session riding,” in OWASP AppSec

Europe , 2006.

[12] Z. Mao, N. Li, and I. Molloy, “Defeating cross-site request

forgery attacks with browser-enforced authenticity

protection,” in FC’09: 13 th International Conference on

Financial Cryptography and Data Security , 2009, pp. 238–

255.

Authors Profile

Mr. S.K. Jewliya has completed his M.Tech(IT), M.Phil(CS), and
MCA. He is currently working as Assistant Professor at Rajasthan
Swayat Shasasn College, Tonk Road, Jaipur, INDIA. His area of
interest are OS, SE, Webdesign, PHP , Linux , Shell Programming,
C& C++, DS etc. He has 12 years of teaching experience . He has
undergone rigourus training of Linux and PHP. He has attended
many Seminars and conferences and presented several reaserach
papers.

