

 © 2018, IJCSE All Rights Reserved 270

International Journal of Computer Sciences and Engineering Open Access

 Research Paper Vol.-6, Issue-5, May 2018 E-ISSN: 2347-2693

Dynamic Load Balancing for Computational Grids using Binary Heaps

(DLBCGBH – H / D)

A. Kumar
1*

, H.Pathak
2

1*

Department of Computer Science, Gurukul Kangri Vishwavidyalaya, Haridwar (UK), India
2
Department of Computer Science, Gurukul Kangri Vishwavidyalaya, Haridwar (UK), India

*Corresponding Author: anurom_2001@rediffmail.com

Available online at: www.ijcseonline.org

Accepted: 21/May/2018, Published: 21/May/20182018

Abstract- Grid Computing is a variant of distributed system wherein the small scale computational units are aggregated to

develop a large computational machine to support complex computational problems. It poses a number of challenges for

dynamic load balancing due to a large number of heterogeneous resources and the size of data to be moved among them

thereby causing a number of issues to handle effectively. Further, load balancing problem in heterogeneous distributed

computer systems is a NP-Hard problem. Therefore, researchers are constantly devising innovative approaches to optimize the

load balancing in grid environment. In this paper, two algorithms for dynamic load balancing in computational grid viz.

DLBCGBH - H & DLBCGBH – D are being described. These algorithms have already been implemented by the authors using

GridSim 4.0 along with the comparison of the performance with the Built-in Space Shared utility of GridSim 4.0 for various

performance metrics viz. Average Consumed Time, Average Waiting Time, Average Processing Cost and Number of Tasks

Migrated.

Keywords-Grid Computing, Dynamic Load Balancing, Space Shared, Hierarchical Grid, Distributed Grid, Binary Heaps

1. INTRODUCTION

A Computational Grid is a combination of hardware and

software infrastructure to provide a dependable, consistent,

pervasive and inexpensive access to high end computational

capabilities [1]. It is a type of parallel and distributed system

that enables the selection, distribution and aggregation of

resources dynamically at runtime depending on their

availability, capability and performance. It focuses on large

scale resource sharing and distributed system integration for

effective utilization and high performance [2].

Topologically, a computational grid comprises of a set of

clusters. Each cluster owns a set of worker nodes (storage

and computing elements) that belong to a local domain i.e. a

LAN (Local Area Network). The worker nodes generally

form a heterogeneous environment due to varying processor

characteristics. Every cluster is further connected to the

global network or WAN (Wide Area Network) [3].

The grid computing concept is a special variant of distributed

computing wherein different computers within a network

share one or more resources. In this computational

environment every resource is shared to turn the pool into a

powerful supercomputer. As we know it is a classical

concept of powerful computation but it is not yet perfect.

Computer scientists and engineers are still working for

improving this technology over different phases of gird

establishment, networking and other concepts [4].

Grid computing systems works on principle of pooled

resources wherein the resources indicate the CPU (central

processing units), memory units, and storage. Basically a

single computer runs with the limited resources and having

the limitations for execution and storage. Additionally to

scale their performance need by incorporating additional

hardware for better performance poses challenges of

increased cost. On the other hand, the grid computing

enables a machine to join a computational network to scale

its performance for both the computational ability and

storage. [5].

The load balancing is a concept to normalize the load on

every resource in an infrastructure so as to enable the heavily

loaded resources to perform better during higher workload

scenarios. In this context, a load balancing technique helps to

distribute the load across different computational units,

ensures the reliability and availability of resources, and

provides the flexibility to add or remove resources into or

from the infrastructure [6].

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 271

The further organization of this paper is as follows: Section 2

presents a brief literature review on the related work. Section

3 presents the basics about load balancing in hierarchical and

distributed grid environments along with an introduction to

space shared scheduling. Section 4 presents system models

for hierarchical and distributed grid environments along with

the major characteristics of the models. Section 5 describes

the two proposed algorithms viz. DLBCGBH – H and

DLBCGBH – D. Section 6 concludes the paper along with

future directions for research.

2. RELATED WORK

Due to the distribution of a large number of resources in a

Grid environment and the size of the data to be migrated

among them, the traditional load balancing paradigms

proposed for distributed systems do not provide promising

results for Grid System. A number of factors that pose

challenges for load balancing in Grid Systems include

heterogeneity, autonomy, application diversity, dynamicity,

adaptability, scalability, resource non-dedication, resource

selection and computation – data separation [7].

Due to heterogeneity of computing nodes, jobs encounter

different execution times on different processors. Therefore,

research should address scheduling in heterogeneous

environment. The load balancing problem is to compute the

assigned task with the smallest possible makespan. The load

balancing problem is a minimization problem, to minimize

the makespan of n tasks on m computing nodes and has been

proved to be a NP-hard problem. Approximation algorithms

are used to handle NP-hard optimization problems as they

provide a near optimal solution in polynomial time. [8 - 11].

A simple load balancing approximation algorithm for

Heterogeneous Distributed Computer System (HDCS) based

on greedy paradigm is proposed in [12] wherein each task is

assigned one by one to the computing nodes by selecting the

node with minimum load. Selecting the minimum load from

the m nodes can be possible in O (1) time with the use of a

binary min-heap. A min-heap with m nodes can be used

maintain the current load of m computing nodes in HDCS.

The heap can be updated in O (log m) time for each task. As

n number of task to be assigned the running time of the

proposed algorithm is O (n log m).

A hierarchical model for computational grids is proposed in

[13] wherein the grid manager maintaining the global load

information is vulnerable to become bottleneck. A

distributed model was proposed in [14] by mapping a grid

into a forest based model wherein the local load balancing is

preferred over the global load balancing.

Load Balancing on Arrival (LBA) [15] efficiently minimizes

the response time for small-scale grids wherein system

parameters viz. job arrival rate, CPU processing rate, load on

each processor etc. and expected finish time on buddy

processors are estimated on arrival of a job to immediately

migrate the same. This algorithm also considers job transfer

cost, resource heterogeneity and network heterogeneity while

making migration decision.

A fully decentralized two-level load balancing policy for

computationally intensive tasks on a heterogeneous multi-

cluster grid environment to resolve the single point of failure

problem is proposed in [16] wherein any site manager

receives two kinds of tasks namely, remote tasks arriving

from its associated local grid manager, and local tasks

submitted directly to the site manager by local users in its

domain. This approach distributes the grid workload based

on the resources occupation ratio and the communication

cost to minimize the mean task response time.

A load balancing policy to distribute the system workload

based on the processing elements capacity to minimize the

overall job mean response time and maximize the system

utilization and throughput at the steady state is proposed in

[17] for heterogeneous grid environments.

Recent trends in load balancing and job migration research in

the domain of grid computing as discussed in an extensive

survey reveals that recently the researchers are shifting

towards hierarchical approaches for load balancing in grid

environment [18].

An extensive survey of the existing load balancing

techniques applicable for various systems depending upon

the needs of the computational Grid, the type of

environment, resources, virtual organizations and job profile

in grids is presented in [19].

In view of the aforesaid facts, load balancing in grid

environment seems to be a promising research area. In this

paper, two algorithms for effective load balancing using

binary heaps are proposed. In view of the heterogeneity

involved in the grid environment, Processing Time has been

chosen as the metric for workload estimation which is

calculated as the ratio of workload on a node to its

processing speed. For efficiency purposes the Binary Heaps

are used to maintain the workload information at the

manager level as it enables to locate the source and

destinations during a migration decision in O(1) time and can

be reorganized in O(log2n) time thereby ensuring efficient

solution.

3. BACKGROUND DISCUSSION

In this section, the load balancing under Hierarchical and

Distributed grid environments are described followed by an

overview to the load balancing in space shared environment,

as the performance of the two proposed algorithms,

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 272

described in this paper, has already been compared against

the built-in space shared utility of GridSim 4.0 [20].

3.1 Load Balancing for Hierarchical Grid Environment

In comparison to the distributed grid, hierarchical grid has a

different structure and requires a different approach for

balancing the load effectively. The hierarchical load

balancing concept uses the tree data structure to make

decision regarding the placement of tasks on Virtual

Machine. In order to utilize the resources efficiently and to

satisfy the QoS requirements of the users, several

hierarchical load balancing algorithms have been proposed

by researchers for various applications. In Hierarchical grid

environment, the nodes at different level, denoted by a tree

data structure, coordinate with the nodes at a level below the

hierarchy to make decisions. In hierarchical approach, the

scheduling and load balancing is performed at various levels.

Each level uses a scheduling algorithm to assign work to the

next lower level. Every node in the tree is balanced under the

supervision of its parent node. The hierarchical grid

infrastructure is shown in Figure – 3.1.

3.2 Load Balancing for Distributed Grid Environment

The load balancing in distributed grid applies to load

balancing on each service to connect to the attached

resources. The traditional approach for load balancing

proposes to put a load balancer in front of available resources

and the load balancer takes the responsibility of distributing

the load across resources. On the other hand, in distributed

load balancing, there are no central load balancers present.

Each client that requires some service uses that service via

local coordinator. Local coordinator is always up-to-date

with existing services i.e. whenever a new service is being

provisioned it is accordingly updated. This local coordinator

takes care of the load-balancing, so it is a client-side load-

balancing. Whenever a client makes a request, based on the

load-balancing strategy, the local coordinator distributes the

request to the attached resources. In this approach the cluster

managers perform the load balancing with a direct interaction

in their peer group and thereby avoiding the use of wide area

network. The distributed grid infrastructure is shown in

Figure – 3.2.

3.3 Load Balancing for Space Shared Environment

Due to the presence of multiple processors in a parallel and

distributed computing space sharing and time sharing can be

used for scheduling. In Space Sharing, a job is allocated a

distinct subset of processors; that is, no processor is

concurrently assigned to more than one job. Space Sharing

may be static or dynamic. In Static Space Sharing, the subset

is fixed for the lifetime of the job. However, it can change in

size and in the processors it contains in Dynamic Space

Sharing.

Scheduling multiple jobs at the same time across multiple

CPUs is called Space Sharing. The simplest space sharing

algorithm works like this: Assume that an entire group of

related threads is created at once. At the time it is created, the

scheduler checks to see if there are as many free CPUs as

there are threads. If there are, each thread is given its own

dedicated (i.e., non multi programmed) CPU and they all

start. If there are not enough CPUs, none of the threads are

started until enough CPUs are available. Each thread holds

onto its CPU until it terminates, at which time the CPU is put

back into the pool of available CPUs. If a thread blocks on

I/O, it continues to hold the CPU, which is simply idle until

the thread wakes up. When the next batch of threads appears,

the same algorithm is applied.

4. SYSTEM MODEL

This section describes the system models for load balancing

in Hierarchical and Distributed computational grid

environment as follows:

4.1 Hierarchical Computational Grid

The system model for hierarchical computational grid is

based on mapping a grid into a forest based model [20] as

shown in Figure-3.1.

Figure – 3.1: Hierarchical Grid infrastructure

Figure – 3.2: Distributed Grid infrastructure

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 273

The Grid Manager at Level 0 centralizes the Global load

information on the grid. The Site Manager at Level 1

manages a specific physical site of the grid. The Cluster

Managers at Level 2 manages a physical cluster of the grid.

The Worker Nodes linked to their respective clusters are at

Level 3. Responsibilities of the Grid Managers, Site

Managers, and cluster Managers & Worker Nodes are as

follows:

Grid Manager at Level 0:

 It maintains the workload information related to each

one of its site managers.

 It estimates the workload of the associated grid.

 It takes decision of performing inter-site load balancing

and acts accordingly.

 It communicates the load balancing decisions to the site

managers for further execution at cluster level.

Site Manager at Level 1:

 It maintains the workload information related to each

one of its cluster managers.

 It estimates the workload of the associated site and

periodically sends the related information to the grid

manager.

 It takes decision of performing inter-cluster load

balancing & acts accordingly.

 It executes the load balancing decisions communicated

by the Grid Manager.

 It communicates the load balancing decisions to the

cluster managers for further execution.

Cluster Manager at Level 2:

 It maintains the workload information related to each

one of its worker nodes.

 It estimates the workload of the associated cluster and

periodically sends the related information to the site

manager.

 It takes decision of performing intra-cluster load

balancing & performs the same.

 It communicates the load balancing decisions to the

worker nodes for further execution.

 It executes the load balancing decisions communicated

by the concerned Site Manager.

Worker Node at Level 3:

 It is responsible for execution of the incoming jobs.

 It maintains the workload related information and

periodically sends the same to Cluster Managers.

 It executes the load balancing decisions taken by the

concerned Cluster Manager.

4.2 Distributed Computational Grid

The system model for distributed computational grid as

shown in Figure –3.2 resembles the lowest two levels of

Hierarchical Model explained in the previous section with

the difference that the Cluster Managers at Level 0 are

connected to each other through Mesh Topology and interact

among themselves. The Worker Nodes linked to their

respective clusters are at Level 1. Responsibilities of the

Cluster Managers and the Worker Nodes are as follows:

Cluster Manager at Level 0:

 It maintains the workload information related to each

one of its worker nodes.

 It estimates the workload of the associated cluster and

periodically sends the related information to the other

cluster managers.

 It takes decision of performing intra-cluster load

balancing & performs the same.

 It communicates the load balancing decisions to the

worker nodes for further execution.

 It decides to perform inter-cluster Load Balancing

whenever required and performs the same with proper

communication with other Cluster Managers.

Worker Node at Level 1:

 It is responsible for execution of the incoming jobs.

 It maintains the workload related information and

periodically sends the same to Cluster Managers.

 It executes the load balancing decisions taken by the

concerned Cluster Manager.

The Cluster Managers maintain & supervise the workload of

worker nodes and communicates directly to other Cluster

Managers for implementing the Inter Cluster Load

Balancing, if required.

Level 1: Site Manager

Level 2: Cluster

Manager

Level 3: Worker

Nodes

Level 0: Grid Manager

Figure – 4.1: Hierarchical Computational Grid

Level 0:

Cluster

Manager

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 274

Major characteristics of our system model which are of

immense importance for the proposed load balancing

approaches are as follows:

1. The computing elements have different characteristics viz.

speed, period for sending load information etc. due to

heterogeneity of worker nodes.

2. Tasks are independent and non-preempt able.

3. Inter-Cluster communication costs are different due to the

heterogeneity of WANs

4. Intra-Cluster communication costs are the same due to the

similar bandwidth provided by LAN to all its worker nodes.

5. Cluster Managers can either be dedicated or have a dual

role i.e. performing task and managing cluster.

5. PROPOSED LOAD BALANCING ALGORITHMS

On the basis of the System Models for hierarchical and

distributed grids described in the previous section, the

proposed algorithms for load balancing in hierarchical and

distributed grids are described in this section wherein the

state of imbalance for an element is determined by the

standard deviation of its processing time (i.e. the metric for

workload estimation as described in Section 2) over the

processing time of the respective group (Cluster / Site /

Grid). The description of two threshold values viz. Balance

Threshold & Saturation Threshold, used in these algorithms,

is as follows:

(i) Balance Threshold: In view of the aforesaid

description, small values of standard deviation represent

the balance state of elements and to avoid unnecessary

task migration in such state, a fraction viz. Balance

Threshold is used as a simulation parameter whose value

ranges from 0 to 1.

(ii) Saturation Threshold: As the balanced state of an

element does not avoid the possibility of it being

saturated, so another threshold viz. Saturation Threshold

is needed to check whether the element has reached to

the state of saturation. In case the element has reached to

saturation state, an effort of intra-group (Cluster / Site /

Grid) balancing may result into crashing of the element

and hence should be avoided. It is a simulation

parameter whose value ranges from 0 to 1. It is

calculated as the ratio of the present workload and the

capacity of an element / group (Cluster / Site / Grid).

[A] Dynamic Load Balancing for Hierarchical

Computational Grids using Binary Heaps (DLBCGBH–

H)

As shown in the proposed model for Hierarchical Grids in

the previous section, the load balancing is performed at three

levels as per the algorithms described below:

1. INTRA-CLUSTER-LOAD-BALANCING

Input: Workload Information about each worker node

belonging to the Cluster, Various Threshold Values

Output: Load Balancing Fail or Success

Process:

1. All the nodes send their workload information to the

corresponding Cluster Managers.

2. Cluster Managers compute the Processing Time of

Nodes & the Cluster, Cluster Capacity, and the Standard

Deviation of the nodes‟ processing time over processing

time of the respective cluster.

3. Cluster Managers send the workload information to the

respective Site Managers.

4. In view of the values computed in Step 2, Balance

Threshold & Saturation Threshold, the Cluster Manager

decides the State of Cluster as Balanced, Saturated, or

Imbalanced.

5. For Imbalanced & Saturated Clusters, the nodes are

classified as Overloaded, Under loaded, or Balanced

6. Cluster Managers create the Max-Heap of Overloaded

nodes and Min-Heap of under loaded Nodes on Load

Index (i.e. Processing Time) for the nodes.

7. If the Cluster is Not-Saturated OR total load causing

overloading of the Overloaded nodes of the Cluster IS

LESS THAN the total load causing underloading of the

Underloaded nodes of the Cluster

Then

INTRA-CLUSTR-TASK-TRANSFER ()

Else

INTRA-SITE-LOAD-BALANCING ()

1.1 INTRA-CLUSTER-TASK-TRANSFER

Input: Max-Heap of Overloaded nodes, Min-Heap of

underloaded nodes

Output: Intra-Cluster Task Migration

Process:

1. While the existence of Max-Heap of Overloaded Nodes

& Min-Heap of Under-loaded Nodes at the Cluster

Figure – 4.2: Distributed Computational Grid

Level 1: Worker Nodes

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 275

Manager‟s level, the most suitable task from the root of

Max-Heap is transferred to the root of Min-Heap

2. The loads of the two nodes affected in Step 1 are

updated and the heaps at the respective Cluster Manager

are reorganized.

2. INTRA-SITE-LOAD-BALANCING

Input: Workload Information about each Cluster belonging to

the site, Various Threshold Values

Output: Load Balancing Fail or Success

Process:

1. All the Clusters send their workload information to the

corresponding Site Managers.

2. Site Managers compute the Processing Time of Clusters

& the Site, Site Capacity, and the Standard Deviation of

the Clusters‟ processing time over processing time of the

respective Site.

3. Site Managers also maintain a matrix of Communication

Cost between each pair of Clusters.

4. Site Managers send the workload information to the

Grid Manager.

5. In view of the values computed in Step 2, Balance

Threshold & Saturation Threshold, the Site Manager

decides the State of Site as Balanced, Saturated, or

Imbalanced.

6. For Imbalanced & Saturated Sites, the Clusters are

classified as Overloaded, Under-loaded, or Balanced

7. Site Managers create the Max-Heap of Overloaded

Clusters and Min-Heap of Under-loaded Clusters on

Load Index (i.e. Processing Time) for the nodes.

8. If the Site is Not-Saturated OR total load causing

overloading of the Overloaded Clusters of the Site IS

LESS THAN the total load causing under loading of the

Under loaded Clusters of the Site

Then

INTER-CLUSTER-TASK-TRANSFER ()

Else

INTRA-GRID-LOAD-BALANCING ()

2.1 INTER-CLUSTER-TASK-TRANSFER

Input: Max-Heap of Overloaded nodes, Min-Heap of

underloaded nodes, and Matrix of Communication Cost

between Clusters

Output: Inter-Cluster Task Migration

Process:

1. While the existence of Max-Heap of Overloaded Nodes

at Cluster Manager, it locates a Cluster Manager with

minimum inter-cluster Communication Cost having

Min-Heap of Under-loaded Nodes, the most suitable

task (i.e. the one with the largest remaining processing

time on the current node) from the root of Max-Heap is

transferred to the root of Min-Heap subject to the

following condition for avoiding unnecessary task

migration: (Latency of Task „x‟ in Source Node + Cost

of Transfer) < Latency of Task „x‟ in Destination Node

2. The loads of the two nodes affected in Step 1 are

updated and the two heaps at the respective Cluster

Managers are reorganized.

3. INTRA-GRID-LOAD-BALANCING

This algorithm performs global load balancing among all

sites of the grid and is used in the extreme case when all the

site managers fail to locally balance their load. It is same as

Intra-Site Load Balancing with the following two

differences:

1. In the absence of any higher level, grid manager need

not send workload information.

2. There is no need to test that whether load balancing has

resulted after the execution of this algorithm as there is

no other alternative.

[B] Dynamic Load Balancing for Distributed

Computational Grids using Binary Heaps (DLBCGBH –

D)

In the proposed load balancing algorithm for distributed

grids, the cluster managers perform the load balancing with a

direct interaction in their peer group and thereby avoiding the

use of wide area network. The algorithm is described as

follows:

1. INTRA-CLUSTER-LOAD-BALANCING ()

Input: Workload information from worker nodes

Output: Task Migration Decision

Process:

1. All the nodes send their workload information to the

corresponding Cluster Managers.

2. Cluster Managers compute the Processing Time of

Nodes & the Cluster, Cluster Capacity, and the Standard

Deviation of the nodes‟ processing time over processing

time of the respective cluster.

3. Cluster Managers also maintain a matrix of

Communication Cost between each pair of Clusters.

4. Cluster Managers send the workload information to the

other Cluster Managers.

5. In view of the values computed in Step 2, Balance

Threshold & Saturation Threshold, the Cluster Manager

decides the State of Cluster as Balanced, Saturated, or

Imbalanced.

6. For Imbalanced & Saturated Clusters, the nodes are

classified as Overloaded, Under-loaded, or Balanced

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 276

7. Cluster Managers create the Max-Heap of Overloaded

nodes and Min-Heap of Under-loaded Nodes on Load

Index (i.e. Processing Time) for the nodes.

8. If the Cluster is Not-Saturated OR total load causing

overloading of the Overloaded nodes of the Cluster IS

LESS THAN the total load causing under loading of the

Under loaded nodes of the Cluster

Then

 INTRA-CLUSTER TASK TRANSFER ()

Else

INTER-CLUSTER TASK TRANSFER ()

1.1 INTRA-CLUSTER-TASK-TRANSFER

Input: Max-Heap of Overloaded nodes, Min-Heap of Under-

loaded nodes

Output: Intra-Cluster Task Migration

Process:

1. While the existence of Max-Heap of Overloaded Nodes

& Min-Heap of under-loaded Nodes at the Cluster

Manager‟s level, the most suitable task from the root of

Max-Heap is transferred to the root of Min-Heap

2. The loads of the two nodes affected in Step 1 are

updated and the heaps at the respective Cluster Manager

are reorganized.

1.2 INTER-CLUSTER TASK TRANSFER

Input: Max-Heap of Overloaded nodes, Min-Heap of

Underloaded nodes, and Matrix of Communication Cost

between Clusters

Output: Inter-Cluster Task Migration

Process:

1. While the existence of Max-Heap of Overloaded Nodes

at Cluster Manager, it locates a Cluster Manager with

minimum inter-cluster Communication Cost having

Min-Heap of Underloaded Nodes, the most suitable task

(i.e. the one with the largest remaining processing time

on the current node) from the root of Max-Heap is

transferred to the root of Min-Heap subject to the

following condition for avoiding unnecessary task

migration: (Latency of Task „x‟ in Source Node + Cost

of Transfer) < Latency of Task „x‟ in Destination Node

2. The loads of the two nodes affected in Step 1 are

updated and the two heaps at the respective Cluster

Managers are reorganized.

6. CONCLUSION AND FUTURE SCOPE

In this paper two algorithms are described for solving the

problem of load balancing in grid environment. Firstly, in the

Hierarchical Algorithm, multiple authorities are required for

managing and balancing the load in effective manner.

Secondly, in the Distributed Algorithm, the local authority is

responsible for balancing the load effectively.

Both of these algorithms have already been implemented

using GridSim 4.0 for a comparison of simulation results

with built-in space shared utility of GridSim 4.0 in view of

the various performance metrics viz. Average Consumed

Time, Average Processing Cost, Average Waiting Time, and

Number of Tasks Migrated. It has been observed from the

comparison of performance metrics that both of the proposed

algorithms outperform the built-in space shared utility of

GridSim 4.0. Further, the distributed algorithm outperforms

the hierarchical one on all the four performance metrics [20].

In future, the proposed hierarchical and distributed

algorithms can be enhanced for performance and fault

tolerance using soft computing techniques. Improvements

can also be tried by taking into account the characteristics of

task viz. Resource Requirements, CPU Bound, Deadline etc.

during its transfer to the best suited node in the grid

environment. Further, the complexity of the proposed

algorithms can mathematically be analyzed.

REFERENCES

[1] I.Foster, C.Kesselman, J.M.Nick, and S.Tuecke, “Grid

services for distributed system integration”, IEEE

Computer, vol. 35, num. 6, pages 37-46, 2002.

[2] Tarek Helmy, Hamdi Al-Jamimi, Bahar Ahmed,

Hamzah Loqman, “Fuzzy Logic – Based Scheme for

Load Balancing in Grid Services”, A Journal of

Software Engineering and Applications, 5, pages 149-

156, 2012.

[3] K.Lu, R.Subrata, and A.Y.Zomaya, “An Efficient Load

Balancing Algorithm for Heterogeneous Grid Systems

Considering Desirability of Grid Sites”, Proc. 25
th

 IEEE

Int. Performance Computing and Comm. Conf. (IPCCC

‟06), 2006.

[4] Gilles Fedak, “Contributions to Desktop Grid

Computing”, University of Lyon, 28 Mai 2015.

[5] P. K. Suri &Sunita Rani, “Resource Management in

Grid Computing: A Review”, Global Journal of

Computer Science and Technology, Network, Web &

Security, Volume 13 Issue 17 Version 1.0 Year 2013.

[6] Nada M. Al Sallami, Ali Al daoud, Sarmad A. Al

Alousi, “Load Balancing with Neural Network”,

International Journal of Advanced Computer Science

and Applications,Vol. 4, No. 10, 2013.

[7] D.K. Patel et al., “Survey of load balancing techniques

for grid”, Journal of Network and Computer

Applications, 65, 103–119, 2016.

[8] J. Kleinberg and E. Tardos, “Algorithm Design”,

Pearson Education Inc., 2006.

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 277

[9] A. Zomaya and Y. Teh, “Observations on using genetic

algorithms for dynamic load-balancing”, Parallel and

Distributed Systems, IEEETransactions on, vol. 12, no.

9, pp. 899–911, 2001.

[10] D. S. Hochbaum, “Approximation Algorithms for NP-

Hard Problems”, Thomson Asia Pte Ltd., 2003.

[11] M. Garey and D. Johnson, “Computing and

Intractability, A Guide to the Theory of NP-

Completeness”, New York: W.H. Freeman and

Company, 1979.

[12] Bibhudatta Sahoo, Sanjay Kumar Jena, Sudipta

Mahapatra, “Load Balancing in Heterogeneous

Distributed Computing Systems using Approximation

Algorithm”, Proceedings of the International

Conference on Parallel and Distributed Processing

Techniques and Applications (PDPTA); Athens : 38-

43.

[13] Yagoubi B., “Modele d‟equilibrage de charge pour les

grilles de calcul”, Revue Africaine de la Recherche en

Informatique et Mathematiques Appliquees: ARIMA,

vol. 7, pages 1-19, 2007.

[14] Yagoubi B., Meddeber M., “Distributed Load Balancing

Model for Grid Computing”, ARIMA, vol. 12, pages 43-

60, 2010.

[15] E. Saravanakumar and P. Gomathy,"A novel load

balancing algorithm for computational grid", Int. J. of

Computational Intelligence Techniques, vol. 1, no. 1,

2010.

[16] El-Zoghdy, S. F., “A hierarchical load balancing policy

for grid computing environment”, International Journal

of Computer Network and Information Security, Volume

5, pages 1–12, 2012.

[17] El-Zoghdy S.F., “A capacity-based load balancing and

job migration algorithm for heterogeneous

Computational grids”, International Journal of Computer

Networks & Communications (IJCNC) Vol.4, No.1, pp.

113-125, 2012.

[18] Neeraj Rathore, Inderveer Chana, “Load Balancing and

Job Migration Techniques in Grid: A Survey of Recent

Trends”, Wireless Pers Commun, Springer

Science+Business Media New York 2014.

[19] Deepak Kumar Patel, Devashree Tripathy, C. R.

Tripathy, “Survey of load balancing techniques for

grid”,Journal of Network and Computer Applications,

Volume 65 Issue C, pages 103-119, April 2016.

[20] Anuj Kumar, Heman Pathak, “A Comparative Study of

Grid Load Balancing”, International Journal of

Computer Applications (IJCA), 179 (18): 25-33,

February 2018.

Author Profiles

Mr. Anuj Kumar pursued M.Sc.

(Computer Science) from

G.B.Pant University of

Agriculture & Technology,

Pantnagar and PGDM from Shri

Ram Murti Smarak College of

Engineering & Technology,

Bareilly. He is currently working

as Associate Professor,

Department of Computer

Applications, Shri Ram Murti Smarak College of

Engineering & Technology, Bareilly. He is pursuing Ph.D. in

Computer Science from Department of Computer Science,

Faculty of Technology, Gurukul KangriVishwavidyalaya,

Haridwar, India. His area of interest in teaching and research

include Algorithms, Soft Computing and Distributed

Systems.

Dr. Heman Pathak pursued

M.Sc. (Computer Science) from

BHU, Varanasi and Ph.D. in

Computer Science from Gurukul

Kangri Vishwavidyalaya,

Haridwar. She is currently

working as Associate Professor,

Department of Computer

Science, Faculty of Technology,

Kanya Gurukul Campus,

Dehradun (Second Campus of Gurukul

KangriVishwavidyalaya, Haridwar, India). During her

teaching experience of 19 years and research experience of

10 years, she has published more than 30 research papers in

reputed International & National Journals and has attended

12 International and 08 National conferences. Her areas of

interest in research include Distributed Systems.

https://search.proquest.com/pubidlinkhandler/sng/pubtitle/Proceedings+of+the+International+Conference+on+Parallel+and+Distributed+Processing+Techniques+and+Applications+$28PDPTA$29/$N/1976343/OpenView/1492717611/$B/5F897EDD2BBB4A3CPQ/1;jsessionid=94DD94880B5B39F9C9BB55B38372C234.i-013a08dc60fc48914
https://search.proquest.com/pubidlinkhandler/sng/pubtitle/Proceedings+of+the+International+Conference+on+Parallel+and+Distributed+Processing+Techniques+and+Applications+$28PDPTA$29/$N/1976343/OpenView/1492717611/$B/5F897EDD2BBB4A3CPQ/1;jsessionid=94DD94880B5B39F9C9BB55B38372C234.i-013a08dc60fc48914
https://search.proquest.com/pubidlinkhandler/sng/pubtitle/Proceedings+of+the+International+Conference+on+Parallel+and+Distributed+Processing+Techniques+and+Applications+$28PDPTA$29/$N/1976343/OpenView/1492717611/$B/5F897EDD2BBB4A3CPQ/1;jsessionid=94DD94880B5B39F9C9BB55B38372C234.i-013a08dc60fc48914

