
 © 2017, IJCSE All Rights Reserved 33

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-5, Issue-11 E-ISSN: 2347-2693

Efficient Processing and Optimization of Queries with Set Predicates using

Filtered Bitmap Index

A.Regita Thangam
1*

, S.John Peter
2

1*
Department of Computer Science, St.Xavier‟s College, Palayamkottai, India

² Department of Computer Science, St.Xavier‟s College, Palayamkottai, Tamil Nadu, India

*Corresponding Author: regitaraja@gmail.com, Tel.: +91-98426-08882

Available online at: www.ijcseonline.org

Received: 17/Oct/2017, Revised: 29/Oct/2017, Accepted: 20/Nov/2017, Published: 30/Nov/2017

Abstract— Query optimization is a common task performed by database administrators and application designers in order to

tune the overall performance of the database system. In several applications, the currently available Database Management

System is inadequate to support the comparison between the group of tuples with their attributes and values. Currently,

databases are used in almost all corporate and business applications that handle a huge amount of data. The complex SQL

queries consist of scalar-level operations are often formed to obtain even very simple set-level semantics. Such queries are not

only difficult to write but also challenging for a database engine to optimize. To overcome this problem, in this paper we

developed an effective algorithm using Filtered Bitmap Index Approach for processing queries with set predicates. It

eliminates the necessity of processing the entire Bitmap array index for the required tables and speeds up the query processing

significantly. Experimental results show that our approach outperforms the existing algorithm to process queries with set

predicates.

Keywords: Bitmap array Index, Set predicates, Set-level semantics, SQL, Filtered Bitmap index, Processing queries,

Optimizing queries.

I. INTRODUCTION

Query processing is the process of translating a query

expressed in a high-level language such as SQL into low-

level data manipulation operations. Query Optimization refers

to the process by which the best execution strategy for a given

query is found from a set of alternatives.

In recent days, the demand of querying the data in the data

warehouse and OLAP applications with the semantics of set-

level comparison is very high. Suppose we want to find the

clients who watched the match on the set of particular days on

the given world cup match database. Dates of each candidate

that is set of values are compared against the dates in the

query condition. Such sets are dynamically formed. Such

process of set level comparisons can be performed using

currently available SQL syntax and semantics without

proposed system [25]. If the set level comparisons performed

using currently available SQL syntax, resulting query may be

more and more complex. Such complex query becomes a

difficult for the user to formulate, which results in too much

costly evaluation [17].

The scalar-level implication in SQL becomes progressively

important to support a new group of operation that needs set-

level contrast semantics. That is matching a tuples group with

multiple values. Complicated queries of SQL constructed

using scalar-level operation are frequently formed to get even

simplest set-grade semantics. These queries are not only

challenging to write but also difficult with regard to database

engine optimization. So they may result in the expensive

evaluation.

The query syntax also allows comparing the sets defined on

multiple attributes. A query with multiple set predicates can

be supported for Boolean Operators such as AND, OR and

NOT and the aggregate functions that are defined by the

database server, such as AVG, SUM, and COUNT.

The SQL query to find the candidates with skills “Java

programming” and “Web services”, as follows:

SELECT id FROM Resumes GROUP BY id HAVING

SET(skill) CONTAIN {‟Java‟, ‟Web services‟}

Given the above query, after grouping, a dynamic set of

values on the attribute skill is formed for each unique id, and

the groups whose corresponding SET (skill) contain both

“Java programming” and “Web services” are returned as

query answers.

The SQL query to find the articles with the authors Mary and

James only. For this query, the EQUAL operator can be used

as below:

SELECT id, articlename FROM Articles GROUP BY id

HAVING SET(author) EQUAL {‟Mary‟, „James‟}

For the decision making example, suppose we have a table

Ratings (department, avg_rating, month, year). The following

exemplary query finds the departments whose monthly

average ratings in 2016 have always been poor (assuming the

rating is from 1 to 5):

mailto:regitaraja@gmail.com

 International Journal of Computer Sciences and Engineering Vol.5(11), Nov 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 34

SELECT department FROM Ratings WHERE year = 2016

GROUP BY department HAVING SET(avg_rating)

CONTAINED BY {1, 2}

In this query, CONTAINED BY is used to capture the set-

level condition. Without the explicit notion of set predicates,

the query semantics may be captured by using sub-queries

connected by SQL set operations (UNION, INTERSECT,

EXCEPT), in coordination with join and GROUP BY. Such

queries may be quite complex for users to formulate which

results in the too much costly evaluation. On the contrary, the

set predicate constructs according to embodiments of the

present invention explicitly enable set-level comparisons. The

concise syntax makes query formulation simple and also

facilitates the efficient native support of such queries in a

query engine.

This paper is organized as follows. Section I contains the

introduction of query processing, the related work laying the

stage for our approach is discussed in section II. The

proposed FILTERED BITMAP INDEX algorithm is

explained in section III. The experimental results and

comparison of the proposed algorithm with the state-of-the-

art algorithm is described in section IV. Eventually, section V

concludes this paper and highlights some future directions.

II. RELATED WORK

Query Optimization refers to the process by which the best

execution strategy for a given query is found from a set of

alternatives. There is a high demand for querying data with

the semantics of set-level comparisons. Users can

dynamically form set level comparisons without any

limitation caused by database schema for set predicates. In

many applications, there is a need to integrate data and

operations that are external to the database. Access to such

external data is provided by a set of interface routines. Surajit

Chaudhuri and Kyuseok Shim [3] described a comprehensive

approach for optimization in the presence of foreign

functions. They provided a declarative rewrite rule system

which can be used to express the semantics of foreign

functions and also provided an algorithm to enumerate the

equivalent queries.

A Rule-based Multi-Query Optimization framework, called

RUMOR was presented by Mingsheng Hong et al. [18]. It

extends the rule-based query optimization and query-plan-

based processing model used by the current RDBMS and

stream systems. RUMOR provided a modular and extensible

framework, enabling new optimization techniques to be

developed and incorporated incrementally into the system. It

also integrated the new and existing Multi-Query

Optimization techniques for relational stream engines and for

event engines. The importance of Multi-Query Optimization

in the context of relational database query processing is

explained by J.Chen et al. [4].

An extension of traditional query rewrite techniques was

proposed by Albrecht et al. [5]. Derivability of

multidimensional aggregates is the condition that has to be

fulfilled to compute the result of an aggregate query based on

the values of one or more aggregate views. They presented

the conditions for derivability in a large number of relevant

cases which go beyond previous approaches.

Ying Wah Teh et al. [6] introduced the various query

processing techniques that are used in Data Warehousing

queries. They compared the performance of the different

query processing techniques and proposed a recommendation

for Database Management Systems to select the most cost-

effective query processing techniques based on the cost

model. In relational databases, universal quantification is

implemented by the division operator (represented by ÷) of

the relational algebra. The optimal algorithm for the division

operator with all possible inputs was identified by Ralf

Rantzaua et al. [8].

Rank join operators combine objects of two or more relations

and output the k- combinations with the highest aggregate

score. The rank join problem [13] has been dealt in the

literature by extending rank aggregation algorithms [9] to the

case of join in the setting of relational databases. The Cost-

Aware with Random and Sorted access (CARS) pulling

strategy was proposed by Davide Martinenghi et al. [22] for

retrieving the k- combinations with the highest aggregate

score that can be formed by joining the results of

heterogeneous search engines. They optimized such a strategy

with respect to an additive cost model that considers both

sorted access and random access.

The efficient integration of preference querying into standard

database technology is an important issue. Bernd Hafenrichter

et al. [14] proposed a novel approach for relational preference

query optimization based on algebraic transformations. The

preference queries can be evaluated by preference relational

algebra, extending classical relational algebra by two new

preference operators. They have provided a series of novel

transformation laws for preference relational algebra that are

the key to algebraic optimization.

The distributed query optimization is one of the hardest

problems in the database area [15]. For a given SQL query,

there is more than one possible algebraic query. Some of

these algebraic queries are better than others. The quality of

an algebraic query is defined in terms of expected

performance.

B.Sujatha et al. [27] proposed a search application that

enables keyword-based search in the available relational

database. She employed several techniques to be able to

retrieve meaningful answers to queries consisting of multiple

keywords.

Truly Adaptive Optimization (TAO) is a new approach to

query optimization proposed by Giovanni Maria Sacco [16].

 International Journal of Computer Sciences and Engineering Vol.5(11), Nov 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 35

TAO is a unifying framework for query optimization

problems. This method was applied to query optimization for

databases distributed over a broadcast network and provided

better performance.

Modern database systems use a query optimizer to identify

the most efficient plan to execute declarative SQL queries.

The role of query optimizers is critical for the decision-

support queries featured in data warehousing and data mining

applications. Pawan Meena et al. [19] proposed an

abstraction of the architecture of a query optimizer and the

technical constraints of advanced issues in query

optimization.

A global index based optimization strategy for range query

and analysis was proposed by Hui Zhao et al. [20] and they

do some tests to evaluate the correctness and efficiency at the

end. The strategy was first checking whether user requests

can be optimized by using the global index knowledge.

Christian Politz et al. [23] explained the problem of ranking

under budgets on loading and computational costs and

introduced a budget-aware learning to rank approach that

limits the cost for evaluating a ranking model. The evaluation

of their proposed solution of the optimization task showed

better results compared with state-of-the-art budget aware

ranking methods.

The optimization issues in distributed databases were

addressed by Swati Jain et al. [24]. They explored the major

principles of query optimization process with volcano query

optimization. In order to examine the role of query

optimization process in RDBMS, they proposed both static

and dynamic process of optimization as well as all the general

aspects of query optimization.

Aggregate function based technique and Bitmap index based

technique was proposed by Chengkai Li et al. [25] to process

the query with set predicates. Aggregate function based

technique processes set predicates in the normal way as

processing conventional aggregate function. The second

technique is more efficient because it focuses on only those

tuples which satisfy query condition and bitmaps of

appropriate columns. Such index structure is applicable to

many different types of attributes. This technique processes

queries such as selections, joins, multi-attribute grouping etc.

Jayant Rajurkar and T. Khan [26] developed a bitmap pruning

strategy by using Word Aligned Hybrid (WAH) compression

for processing queries which eliminates the necessity of

scanning and processing the entire data set. This technique is

used for optimizing queries with set predicates. The set

predicates have several advantages than the set-valued

attributes together with set containment joins which can

support set-level comparisons.

III. FILTERED BITMAP INDEX APPROACH

A. Set Predicates

The SQL syntax is extended to support set predicates. Since a

set predicate compares a group of tuples to a set of values, it

fits well into GROUP BY and HAVING clauses. Specifically,

in a HAVING clause, there is a Boolean expression over

multiple regular aggregate predicates and set predicates

connected by logic operators AND, OR and NOT.

The syntax of a set predicate is

SET(v1, . . . , vm)

CONTAIN | CONTAINED BY | EQUAL

{(v1
1
, . . . , vm

1
), …. , (v1

n
, . . . , vm

 n
) }where vi

j ∈ Dom(vi).

The set predicates allow sets to be dynamically formed

through GROUP BY and support CONTAIN, CONTAINED

BY and EQUAL. Below are several example queries with set

predicates over the UserAccounts data table. The sample data

for user bank balance is specified in Table-1. Each tuple

records information such as the UserId, Bank,

BalanceAmount.

Table-1 User Bank Balance information

UserId Bank BalanceAmount

1 KVB 10000

1 TMB 12000

2 TMB 20000

2 ICICI 40000

3 KVB 18000

3 TMB 12000

3 LVB 11000

Example: 1

To find the total BalanceAmount for the users who have

accounts in the banks KVB, TMB.

SELECT UserId, SUM(BalanceAmount) FROM

UserAccounts GROUP BY UserId HAVING SET(Bank)

CONTAIN {„KVB‟,‟TMB‟}

It identifies the users who have accounts in both banks KVB,

TMB. The results are userid 1 and 3. The keyword

CONTAIN represents a superset relationship, i.e., the set

variable SET(Bank) is a superset of {„KVB‟,‟TMB‟}

Example: 2

To find the total BalanceAmount of users who have only

accounts in KVB, TMB and ICICI.

SELECT UserId, SUM(BalanceAmount) FROM

UserAccounts GROUP BY UserId HAVING SET(Bank)

CONTAINED BY {„KVB‟,‟TMB‟,‟ICICI‟}

We use CONTAINED BY for the reverse of CONTAIN, i.e.,

the subset relationship. It selects all the users whose accounts

are only within KVB and TMB. The results are userid 1and 2.

 International Journal of Computer Sciences and Engineering Vol.5(11), Nov 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 36

Example: 3

To find the total BalanceAmount for the users who have

accounts in the banks KVB, TMB, but nothing else.

SELECT UserId, SUM(BalanceAmount) FROM

UserAccounts GROUP BY UserId HAVING SET(Bank)

EQUAL {„KVB‟,‟TMB‟}

We use EQUAL to represent the equal relationship in set

theory. It selects all the users whose banks are equal to KVB

and TMB. Its result contains only userid 1.

In many cases, the semantics of group-level comparisons may

be stated by using the current available given SQL syntax

without suggested extension. But the queries resulting will be

increasingly complicated than required. A significance to be

noted is that complicated queries can be difficult to create for

users. More important, such complicated queries may prove

to be tough for DBMS in optimizing, and this leads to

expensive evaluation that is unnecessary [21]. The query

plans resulting from these may involve certain multiple inner

queries involving grouping as well as set processes. The

suggested syntax with set predicates empowers direct stating

of group-level comparisons within SQL, and this makes the

formulation of query easy. It also fosters effective support to

such queries.

B. Proposed Approach

This paper focuses on relational data model and architecture.

The Filtered bitmap index based approach is proposed for

processing queries with set predicates. Performance of

previously available algorithms suffers from processing

unwanted query conditions. In our proposed algorithm the

groups and corresponding sets are dynamically formed

according to query needs. It supports the set predicate

operators CONTAIN, CONTAINED BY and EQUAL. In our

algorithm, we first find the search pattern bitmap index of the

given query. Then during query processing, some filtered

conditions are applied for equal and contained by operators to

skip the unnecessary checking which helps us to reduce the

iterations.

Our approach is based on bitmap index based technique.

There exists a bitmap for each unique attribute value. The

vector length equals the number of tuples in the indexed

relation. In the vector for value x of attribute v, its ith bit is

set to 1 if the ith tuple has value x on attribute v. Complex

selection queries can be efficiently answered by bitwise

operations over bit vectors. Moreover, bitmap indices enable

efficient computation of aggregates (e.g., SUM and COUNT).

The idea of using the bitmap index to process set predicates is

in line with the aforementioned intuition of processing set

level comparison by a one-pass iteration of tuples (i.e., their

corresponding bits in bit vectors).

This method brings several advantages by leveraging the

distinguishing characteristics of bitmap index:

1. Bitmap index vector is created only for the attributes

specified in the query.

2. Bitmap index gives us the ability to skip irrelevant tuples.

3. The filtered Bitmap index conditions are applied to reduce

the iterations.

4. Results are computed using our algorithm and these results

are compared according to time to access those records from

the tables.
Table-2 Bitmap index and the Bit Slice Index

Userid Bank

B1 B0 KVB TMB ICICI LVB

0 1 1 0 0 0

0 1 0 1 0 0

1 0 0 1 0 0

1 0 0 0 1 0

1 1 1 0 0 0

1 1 0 1 0 0

1 1 0 0 0 1

The Bitmap index and the Bit Slice Index for the sample data

in Table-1 are represented in Table-2 which is used in our

algorithm. The bitmap index-based approach only needs

bitmap indices on individual attributes. Based on single-

attribute indices, it copes with general queries, dynamic

groups, joins, selection conditions, multiattribute grouping,

and multiple set predicates. It does not require the

precomputed index for join/selection results or combination

of attributes. The particular type of bitmap index we use is the

bit-sliced index (BSI) [7] for numeric fields and Bitmap index

(BI) for character type fields. Given a numeric attribute on

integers or floating-point numbers, BSI directly captures the

binary representations of attribute values. The tuples‟ values

on an attribute are represented in binary format and kept in bit

vectors. The advantage of BSI is that it indexes high-

cardinality attributes with a small number of bit vectors, thus

improves query performance if grouping or aggregation is on

such high-cardinality attributes.

In the existing Bitmap index based algorithm [25], the

process of matching techniques is applied for all the records

and it is a very time-consuming process. But in our algorithm,

Filtered bitmap index conditions are applied to reduce the

number of records to be compared and it will do the process

very efficiently with reduced time complexity.

The sketch of the algorithm is as below. It is used to evaluate

the queries with set predicates containing the three kinds of

set operators {⊇, ⊆, =}. In the first step, it finds the search

pattern SP of the condition values CV1, CV2 ,… CVn on

attribute V specified in the query. Given each value Vi in

condition attribute V, it obtains a bit vector SP[i] , where the

ith bit is set (i.e., having value 1) if the value Vi is present in

 International Journal of Computer Sciences and Engineering Vol.5(11), Nov 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 37

the condition values. The aggregate values are calculated and

stored in the array A for the qualified groups. The groupid for

each tuple is stored in the hash table GID and the validity of

the group is stored in the hash table G.

All the set bits in the search pattern for the condition specified

in the given query should be matched with the corresponding

values of the searched field of each record for the operators

EQUAL (=) and CONTAIN (⊇). If anyone of the condition

fields doesn‟t match, then further checking will be skipped

for the current record and the time complexity will be

reduced.

Algorithm: Filtered Bitmap Index-Based approach

Input:

Table R(g,a,v) with t tuples,

Query Q = ϒg,⊕a V op {CV1,……CVK}

Output:

Qualified groups g and their aggregate values ⊕a

/* SP - search pattern array

G – Hash table for storing group validity

A - Aggregate value array

GID – Hash table of size t, storing groupId of each tuple

BI_V - Bitmap Index for the set predicate column */

Steps:

/* Step 1. Find the search pattern in the predicates */

1. For each value of the set predicate column V, i from

1 to n do

2. SP[i] = 0

3. For each condition value CVi in CV, i from 1 to k do

4. SP[FieldPosition(CVi)] = 1

/* Step 2. Get the groupid for each tuple */

5. For each bit slice Bi in BSI(g), i from 0 to s-1 do

6. For each set bit bk in bit vector Bi do

7. GID[k] = GID[k] + 2
i

/* Step 3. Find the qualified groups by applying

Filtered BI */

8. For each distinct groupid g from GID do

9. For each row in BI_V belongs to

 group g do

10. For each bit in SP, j from 1 to n do

11. If SP[j] = 1 and BI_V[j] = 1 then

12. count = count + 1

13. A[g]=A[g] ⊕ a

14. Else If (SP[j] <> BI_V[j]) and

(op ∈ {=} or op ∈ {⊇}) then

15. G[g] = false

16. goto Label1

17. End if

18. End for

19. End for

20. If op ∈ {⊇} and count >= length(SP=1)

21. G[g] = true

22. Else if op ∈ {⊆} and (count >0 and

 count <= length(SP=1))

23. G[g] = true

24. Else if op ∈ {=} and (count =

 length(SP=1))

25. G[g] = true

26. Else

27. G[g] = false

28. End if

29. Label1:

30. End for
/* Step 4. Output qualified groups and their

aggregate values */

31. For every group g in hash table G do

32. If G[g] = true then

33. Output (g, A[g])

34. End for

In Step 2, it gets the groupIds for tuples in R, by querying

BSI(g). The groupIds are calculated by iterating through the

slices of BSI(g) and summing up the corresponding values for

tuples with bits set in these vectors. i.e., BSI(clientid) in our

example and store it in the hash table GID. The algorithm

outline covers all three set operators, although the details

differ, as explained below. In Step 3, it finds the qualified

groups by applying Filtered Bitmap Index conditions and it

calculates the aggregate value of the attribute (⊕ a) from

each tuple. The aggregate value of attribute a is calculated in

line number 13.

CONTAIN (⊇): It is the superset condition operator in set

predicates. Since the condition values are bind in the search

pattern, each record is matched against the search pattern bits

and the count is incremented if the match occurs. If the count

is greater than or equal to the no of set bits in search pattern

string then we set this current group as valid (Line 20). We

use the hash table G to record the Boolean indicators for

qualified groups.

CONTAINED BY (⊆): Each record is matched against the

search pattern bits and the count is incremented if the match

occurs. Since it is the subset condition operator, apply the

filtered bitmap index condition, i.e. the count value should be

within the length of the set bits in the search pattern (Line

22). If the condition fails then the unnecessary looping is

avoided and the time complexity is reduced.

EQUAL (=): In equal operator, all the conditions should be

matched. Apply the filtered bitmap index condition to exit

from the loop if anyone condition fails (Line 24). Thus

reduces the time complexity of the process.

IV. RESULTS AND DISCUSSION

The experiments are performed on the Intel I3 processor with

4GB RAM memory. The proposed algorithm uses the Filtered

bitmap index based technique. The efficiency of this

algorithm is proved by using benchmark dataset worldcup-98

which is collected from the website

 International Journal of Computer Sciences and Engineering Vol.5(11), Nov 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 38

http://ita.ee.lbl.gov/html/contrib/WorldCup.html. The

WorldCup98 dataset contains 1,352,804,107 tuples, which

correspond to all the access requests made to the 1998 World

Cup website between April 30, 1998 and July 26, 1998. Each

tuple has information such as the time of the request, the type

of the requested file, the file size, the server that handled the

request, the client identifier (which maps to an IP address)

and so on. The Filtered bitmap index based method, denoted

as the FilteredBI algorithm is implemented using Matlab.

Queries: We designed two types of queries on this dataset as

follows:

Query Type: 1

To find the total traffics for clients who had visited in two

consecutive days- July 18th, July 19th.

SELECT clientID, SUM(Bytes) GROUP BY clientId

HAVING SET(date) CONTAIN {0718,0719}

It identifies the clients who visited in both days July 18th,

July 19th. The keyword CONTAIN represents a superset

relationship, i.e., the set variable SET(date) is a superset of

{0718,0719}

Query Type: 2

To find the total traffics of clients who had accessed file types

HTML(1), JPG(2), and GIF(3), but nothing else.

SELECT clientID, SUM(Bytes) GROUP BY clientId

HAVING SET(type) EQUAL {1,2,3}

We use EQUAL to represent the equal relationship in set

theory. It selects all the clients whose file types are equal to 1,

2 and 3.

Results: The results on the WorldCup98 dataset under

different query complexities for querytype1 and querrytype2

are shown in Table 3 and Table 4. We observed that the

significant performance gains of the proposed Filtered Bitmap

index method on the billion-tuple dataset. The number of

values in the set predicate is changed as 25, 75 and 100

percent of the distinct attribute values in the original dataset.

The results are shown in Fig. 1.

Table-3 Execution time with different query complexities for querytype1

QTYPE-1

QC Bitmap FBitmap

25% 1289 secs 675 secs

75% 1260 secs 701 secs

100% 1272 secs 758 secs

Table-4 Execution time with different query complexities for querytype2

QTYPE-2

QC Bitmap FBitmap

25% 1274 secs 741 secs

75% 1272 secs 786 secs

100% 1297 secs 1170 secs

Fig.1 Execution time of bitmap on the WorldCup98 dataset under different
query complexities for querytype1 and querytype2.

It is further investigated with different data sizes. The number

of tuples is changed as 25, 50, 75 and 100 percent of the

original dataset. The results with various data sizes are shown

in Table 5 and Table 6 with Fig. 2. From Fig.1 and Fig.2, it

shows that Filtered Bitmap Index-Based approach is more

efficient than existing Bitmap algorithm [25].

Table-5 Execution time with different data sizes for querytype1

QTYPE-1

Data Size Bitmap FBitmap

25% 158 secs 96 secs

50% 162 secs 91 secs

75% 158 secs 94 secs

100% 154 secs 93 secs

Table-6 Execution time with different data sizes for querytype2

QTYPE-2

Data Size Bitmap FBitmap

25% 1269 secs 1155 secs

50% 1271 secs 1166 secs

75% 1273 secs 1162 secs

100% 1274 secs 1161 secs

Fig.2 Execution time of bitmap on the WorldCup98 dataset under different

data sizes for querytype1 and querytype2.

V. CONCLUSIONS

This paper presents an efficient algorithm Filtered bitmap

index based approach for processing queries with set

predicates. This proposed algorithm has the benefits of saving

disk access and the computation time was reduced by

reducing the number of iterations. In this algorithm, the

groups and the corresponding sets are formed according to the

query needs which results in speeds up the query processing.

In future study another enhanced algorithm to be proposed to

tackle the problems of processing the query with multiple set

predicates in Data warehouse environment. For handling the

growing number of large data warehouses for decision

support applications, efficiently executing aggregate queries

are becoming increasingly important.

 International Journal of Computer Sciences and Engineering Vol.5(11), Nov 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 39

REFERENCES

[1] S. Helmer and G. Moerkotte, “Evaluation of Main Memory Join

Algorithms for Joins with Set Comparison Join Predicates,” Proc.

Int‟l Conf. Very Large Databases (VLDB), 1996.

[2] K. Ramasamy, J. Patel, R. Kaushik, and J. Naughton, “Set

Containment Joins: The Good the Bad and the Ugly,” Proc. 26
th

Int‟l Conf. Very Large Data Bases (VLDB), 2000.

[3] Surajit Chaudhuri, Kyuseok Shim, “Query optimization in the

presence of Foreign functions”, Published in the Proceedings of the

19th International Conference on Very Large Data Bases 03/2000;

 [4] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ, “A

scalable continuous query system for internet databases”,

Published in Proc. SIGMOD, pages 379–390, 2000.

[5] J. Albrecht, W. Hümmer, W. Lehner, L. Schlesinger, “Query

Optimization By Using Derivability In a Data Warehouse

Environment”, Published in the Proceedings of the 3rd ACM

international workshop on Data warehousing and OLAP, DOLAP -

2000, pages 49-56.

[6] Ying Wah Teh, A. B. Zaitun, “Query Processing Techniques in Data

Warehousing Using Cost Model”, Published in the Electronic

Journal of Information Systems in developing Countries, Volume

3, 2000.

[7] D. Rinfret, P. O‟Neil, and E. O‟Neil, “Bit-Sliced Index Arithmetic,”

Proc. ACM SIGMOD Int‟l Conf. Management of Data, pp. 47-

57,2001.

[8] Ralf Rantzaua, Leonard D,. Shapirob, Bernhard Mitschanga and

Quan Wangc, “Algorithms and Applications for Universal

Quantification in Relational Databases”, Published in Information

Systems, Special issue: Best papers from EDBT 2002, Volume 28,

Issue 1-2, 01 March 2003.

[9] R. Fagin, A. Lotem, and M. Naor, “Optimal Aggregation Algorithms

for Middleware”, Published in Computer and System Sciences, vol.

66, no. 4, pp. 614-656, 2003.

[10] M. A. Hammad, M. J. Franklin, W. G. Aref, and A. K.Elmagarmid,

“Scheduling for shared window joins over datastreams”, published

in Proc. VLDB, pages 297–308, 2003.

[11] N. Mamoulis, “Efficient Processing of Joins on Set-Valued

Attributes,” Proc. ACM SIGMOD Int‟l Conf. Management of

Data,pp. 157-168, 2003.

[12] S. Melnik and H. Garcia-Molina, “Adaptive Algorithms for Set

Containment Joins,” ACM Trans. Database Systems, vol. 28, no.

1,pp. 56-99, 2003.

[13] I.F. Ilyas, W.G. Aref, and A.K. Elmagarmid, “Supporting Top-k

Join Queries in Relational Databases”, Published in VLDB J., vol.

13, no. 3, pp. 207-221, 2004.

[14] Bernd Hafenrichter, Werner Kießling, “Optimization of Relational

Preference Queries”, published in Proc. ADC '05 Proceedings of

the 16th Australasian database conference - Volume 39.

[15] Alaa Aljanaby, Emad Abuelrub, Jordan and Mohammed Odeh, “A

Survey of Distributed Query Optimization”, published in The

International Arab Journal of Information Technology, Vol. 2, No.

1, January 2005.

[16] Giovanni Maria Sacco, “Truly Adaptive Optimization: The Basic

Ideas”, published in Database and Expert Systems

Applications(DEXA), volume 4080 of Lecture Notes in Computer

Science, page 751-760, Springer, 2006.

[17] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig

Latin: A Not-so-Foreign Language for Data Processing,” Proc.

ACM SIGMOD Int‟l Conf. Management of Data, pp. 1099-1110,

2008.

[18] Mingsheng Hong, Mirek Riedewald, Christoph Koch, Johannes

Gehrke, Alan Demers, “Rule-Based Multi-Query Optimization”,

Published in Proce..

[19] Pawan Meena, Arun Jhapate & Parmalik Kumar, "Framework for

Query Optimization", published in the International Journal of

Computer Science and Information Security, Vol. 9, No. 10,

October 2011.

[20] Hui Zhao, Shuqiang Yang, Zhikun Chen, Songcang Jin, Hong Yin

and Long Li, ”MapReduce model-based optimization of range

queries”, Published in 2012, 9th International Conference on Fuzzy

Systems and Knowledge Discovery (FSKD 2012).

[21] Bin He,Hui-l Hsiao, Member IEEE, Ziyang Liu ,Yu Huang,and Yi

Chen,Member,IEEE, “Efficient Iceberg Query Evaluation Using

Comressed Bitmap Index”, IEEE Transactionson K1nowledge and

Data Engineering , Vol. 24, No. 9, SEPTEMBER 2012.

[22] Davide Martinenghi and Marco Tagliasacchi, ” Cost-Aware Rank

Join with Random and Sorted Access”, Published in the IEEE

Transactions On Knowledge And Data Engineering, VOL. 24, NO.

12, DECEMBER 2012.

[23] Christian Politz and Ralf Schenkel,” Ranking under tight budgets”,

Published in 2012 23rd International Workshop on Database and

Expert Sytems Applications.

[24] Swati Jain and Paras Nath Barwal, “Performance Analysis of

Optimization Techniques for SQL Multi Query Expressions over

Text Databases in RDBMS”, Published in the International Journal

of Information & Computation Technology, Volume 4, no. 8, 2014.

[25] Chengkai Li, Bin He, Ning Yan, Muhammad Assad Safiullah ”Set

Predicates in SQL: Enabling Set-Level Comparisons for

Dynamically Formed Groups” IEEE Transactions on Knowledge

and Data Engineering , Vol. 26, No. 2, FEBRYARY 2014.

[26] Jayant Rajurkar1 T. Khan2, "A System for Query Processing and

Optimization in SQL for Set Predicates using Compressed Bitmap

Index", International Journal for Scientific Research &

Development Vol. 3, Issue 02, 2015.

[27] A.K. Dwivedi1, A.K. Sharma,“A Framework For Processing

Keyword-Based Queries In Relational Databases For Exact

Record”, International Journal of Computer Sciences and

Engineering, Vol. 2, issue 8, 2014.

Authors Profile

Mrs. A.Regita Thangam is working as Assistant

Professor in Centre for Information Technology &

Engineering, M.S. University, Tirunelveli. She

earned his M.C.A. degree from M.S. University,

Tirunelveli. She also earned his M.Phil from

Alagappa University, Karaikudi. Now She is doing

Ph.D. in Computer Applications at St.Xavier‟s

College, Palayamkottai, Tirunelveli. She has published research

papers in International and National journals.

Dr. S.John Peter earned his M.Sc. and M.Phil. from

Bhradhidasan University, Trichirappli. The M.S

University, Tirunelveli awarded his Ph.D. degree in

Computer Science for his research in Data Mining.

He is the Head of the department of computer

science, and the Director of the computer science

research center, St. Xavier‟s College (Autonomous), Palayamkottai,

Tirunelveli. The M.S. University, Tirunelveli has recognized him as

a research guide. He has published research papers in International,

National journals and conference proceedings. He has organized

Conferences and Seminars at the National level.

http://link.springer.com/book/10.1007/11827405
http://link.springer.com/book/10.1007/11827405

