
 © 2017, IJCSE All Rights Reserved 305

International Journal of Computer Sciences and Engineering Open Access

Review Paper Volume-5, Issue-12 E-ISSN: 2347-2693

The Real Time Big Data Processing Framework: Advantages and

Limitations

Vairaprakash Gurusamy

1
, S. Kannan

2*
, K. Nandhini

3

1
Department of Computer Applications, School of IT, Madurai Kamaraj University, Madurai, India

2*
 Department of Computer Applications, School of IT, Madurai Kamaraj University, Madurai, India

3
Technical Support Engineer, Concentrix India Pvt Ltd, Chennai, India

*Corresponding Author: skannanmku@gmail.com

Available online at: www.ijcseonline.org

Received: 11/Nov/2017, Revised: 24/Nov/2017, Accepted: 16/Dec/2017, Published: 31/Dec/2017

Abstract ---Big data is a blanket term for the non-traditional strategies and technologies needed to gather, organize, process,

and gather insights from large datasets. While the problem of working with data that exceeds the computing power or storage

of a single computer is not new, the pervasiveness, scale, and value of this type of computing have greatly expanded in recent

years. In this paper, we will take a look at one of the essential components of a big data system: processing frameworks.

Processing frameworks compute over the data in the system, either by reading from non-volatile storage or as it is ingested into

the system. Computing over data is the process of extracting information and insight from large quantities of individual data

points.

Keywords- Big Data, Hadoop, HDFS, Spark, Storm, Flink, Samza

I. INTRODUCTION

Processing frameworks and processing engines are

responsible for computing over data in a data system. While

there is no authoritative definition setting apart "engines"

from "frameworks", it is sometimes useful to define the

former as the actual component responsible for operating on

data and the latter as a set of components designed to do the

same. For instance, Apache Hadoop can be considered a

processing framework with MapReduce as its default

processing engine. Engines and frameworks can often be

swapped out or used in tandem. For instance, Apache Spark,

another framework, can hook into Hadoop to replace

MapReduce. This interoperability between components is one

reason that big data systems have great flexibility. While the

systems which handle this stage of the data life cycle can be

complex, the goals on a broad level are very similar: operate

over data in order to increase understanding, surface patterns,

and gain insight into complex interactions. To simplify the

discussion of these components, we will group these

processing frameworks by the state of the data they are

designed to handle. Some systems handle data in batches,

while others process data in a continuous stream as it flows

into the system. Still, others can handle data in either of these

ways. We will introduce each type of processing as a concept

before diving into the specifics and consequences of various

implementations. In the following section, We will cover the

following frameworks:

1. Batch-only frameworks:

i. Apache Hadoop

2. Stream-only frameworks:

i. Apache Storm

ii. Apache Samza

3. Hybrid frameworks:

i. Apache Spark

ii. Apache Flink

II. BATCH PROCESSING SYSTEMS

Batch processing has a long history of the big data world.

Batch processing involves operating over a large, static

dataset and returning the result at a later time when the

computation is complete. The datasets in batch processing are

1. bounded: batch datasets represent a finite collection

of data

2. persistent: data is almost always backed by some

type of permanent storage

3. large: batch operations are often the only option for

processing extremely large sets of data

Batch processing is well-suited for calculations where access

to a complete set of records is required. For instance, when

calculating totals and averages, datasets must be treated

holistically instead of as a collection of individual records.

These operations require that state is maintained for the

duration of the calculations.

Tasks that require very large volumes of data are often best

handled by batch operations. Whether the datasets are

https://www.digitalocean.com/community/tutorials/hadoop-storm-samza-spark-and-flink-big-data-frameworks-compared#apache-hadoop
https://www.digitalocean.com/community/tutorials/hadoop-storm-samza-spark-and-flink-big-data-frameworks-compared#apache-storm
https://www.digitalocean.com/community/tutorials/hadoop-storm-samza-spark-and-flink-big-data-frameworks-compared#apache-samza
https://www.digitalocean.com/community/tutorials/hadoop-storm-samza-spark-and-flink-big-data-frameworks-compared#apache-spark
https://www.digitalocean.com/community/tutorials/hadoop-storm-samza-spark-and-flink-big-data-frameworks-compared#apache-flink

 International Journal of Computer Sciences and Engineering Vol. 5(12), Dec 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 306

processed directly from permanent storage or loaded into

memory, batch systems are built with large quantities in mind

and have the resources to handle them. Because batch

processing excels at handling large volumes of persistent

data, it frequently is used with historical data.

The trade-off for handling large quantities of data is longer

computation time. Because of this, batch processing is not

appropriate in situations where processing time is especially

significant.

Apache Hadoop

Apache Hadoop is a processing framework that exclusively

provides batch processing. Hadoop was the first big data

framework to gain significant traction in the open-source

community. Based on several papers and presentations by

Google about how they were dealing with tremendous

amounts of data at the time, Hadoop reimplemented the

algorithms and component stack to make large-scale batch

processing more accessible.

Modern versions of Hadoop are composed of several

components or layers, that work together to process batch

data:

 HDFS: HDFS is the distributed file system layer

that coordinates storage and replication across the

cluster nodes. HDFS ensures that data remains

available in spite of inevitable host failures. It is

used as the source of data, to store intermediate

processing results, and to persist the final calculated

results.

 YARN: YARN, which stands for Yet Another

Resource Negotiator, is the cluster coordinating

component of the Hadoop stack. It is responsible for

coordinating and managing the underlying resources

and scheduling jobs to be run. YARN makes it

possible to run much more diverse workloads on a

Hadoop cluster than was possible in earlier iterations

by acting as an interface to the cluster resources.

 MapReduce: MapReduce is Hadoop's native batch

processing engine.

Batch Processing Model

The processing functionality of Hadoop comes from the

MapReduce engine. MapReduce's processing technique

follows the map, shuffle, reduce algorithm using key-value

pairs.

The basic procedure involves:

 Reading the dataset from the HDFS file system

 Dividing the dataset into chunks and distributed

among the available nodes

 Applying the computation on each node to the

subset of data (the intermediate results are written

back to HDFS)

 Redistributing the intermediate results to group by

key

 "Reducing" the value of each key by summarizing

and combining the results calculated by the

individual nodes

 Write the calculated final results back to HDFS

Advantages and Limitations

Because this methodology heavily leverages permanent

storage, reading and writing multiple times per task, it tends

to be fairly slow. On the other hand, since disk space is

typically one of the most abundant server resources, it means

that MapReduce can handle enormous datasets. This also

means that Hadoop's MapReduce can typically run on less

expensive hardware than some alternatives since it does not

attempt to store everything in memory. MapReduce has

incredible scalability potential and has been used in

production on tens of thousands of nodes.

As a target for development, MapReduce is known for having

a rather steep learning curve. Other additions to the Hadoop

ecosystem can reduce the impact of this to varying degrees,

but it can still be a factor in quickly implementing an idea on

a Hadoop cluster.

Hadoop has an extensive ecosystem, with the Hadoop cluster

itself frequently used as a building block for other software.

Many other processing frameworks and engines have Hadoop

integrations to utilize HDFS and the YARN resource

manager.

Summary

Apache Hadoop and its MapReduce processing engine offer a

well-tested batch processing model that is best suited for

handling very large datasets where time is not a significant

factor. The low cost of components necessary for a well-

functioning Hadoop cluster makes this processing

inexpensive and effective for many use cases. Compatibility

and integration with other frameworks and engines mean that

Hadoop can often serve as the foundation for multiple

processing workloads using diverse technology.

III. STREAM PROCESSING SYSTEMS

Stream processing systems compute over data as it enters

the system. This requires a different processing model than

the batch paradigm. Instead of defining operations to apply to

an entire dataset, stream processors define operations that

will be applied to each individual data item as it passes

through the system.

The datasets in stream processing are considered

"unbounded". This has a few important implications:

 The total dataset is only defined as the amount of

data that has entered the system so far.

 International Journal of Computer Sciences and Engineering Vol. 5(12), Dec 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 307

 The working dataset is perhaps more relevant and is

limited to a single item at a time.

 Processing is event-based and does not "end" until

explicitly stopped. Results are immediately available

and will be continually updated as new data arrives.

Stream processing systems can handle a nearly unlimited

amount of data, but they only process one (true stream

processing) or very few (micro-batch processing) items at a

time, with the minimal state being maintained in between

records. While most systems provide methods of maintaining

some state, stream processing is highly optimized for more

functional processing with few side effects.

Functional operations focus on discrete steps that have

limited state or side-effects. Performing the same operation

on the same piece of data will produce the same output

independent of other factors. This kind of processing fits well

with streams because state between items is usually some

combination of difficult, limited, and sometimes undesirable.

So while some type of state management is usually possible,

these frameworks are much simpler and more efficient in

their absence.

This type of processing lends itself to certain types of

workloads. Processing with near real-time requirements is

well served by the streaming model. Analytics, server or

application error logging, and other time-based metrics are a

natural fit because reacting to changes in these areas can be

critical to business functions. Stream processing is a good fit

for data where you must respond to changes or spikes and

where you're interested in trends over time.

Apache Storm

Apache Storm is a stream processing framework that focuses

on extremely low latency and is perhaps the best option for

workloads that require near real-time processing. It can

handle very large quantities of data with and deliver results

with less latency than other solutions.

Stream Processing Model

Stream processing works by orchestrating DAGs (Directed

Acyclic Graphs) in a framework it calls topologies. These

topologies describe the various transformations or steps that

will be taken on each incoming piece of data as it enters the

system.

The topologies are composed of:

 Streams: Conventional data streams. This is

unbounded data that is continuously arriving at the

system.

 Spouts: Sources of data streams at the edge of the

topology. These can be APIs, queues, etc. that

produce data to be operated on.

 Bolts: Bolts represent a processing step that

consumes streams, applies an operation to them, and

outputs the result as a stream. Bolts are connected to

each of the spouts and then connect to each other to

arrange all of the necessary processing. At the end of

the topology, final bolt output may be used as an

input for a connected system.

The idea behind Storm is to define small, discrete operations

using the above components and then compose them into a

topology. By default, Storm offers at-least-once processing

guarantees, meaning that it can guarantee that each message

is processed at least once, but there may be duplicates in

some failure scenarios. Storm does not guarantee that

messages will be processed in order.

In order to achieve exactly-once, stateful processing, an

abstraction called Trident is also available. To be explicit,

Storm without Trident is often referred to as Core Storm.

Trident significantly alters the processing dynamics of Storm,

increasing latency, adding a state to the processing, and

implementing a micro-batching model instead of an item-by-

item pure streaming system.

Storm users typically recommend using Core Storm

whenever possible to avoid those penalties. With that in

mind, Trident's guarantee to processes items exactly once is

useful in cases where the system cannot intelligently handle

duplicate messages. Trident is also the only choice within

Storm when you need to maintain state between items, like

when counting how many users click a link within an hour.

Trident gives Storm flexibility, even though it does not play

to the framework's natural strengths.

Trident topologies are composed of:

 Stream batches: These are micro-batches of stream

data that are chunked in order to provide batch

processing semantics.

 Operations: These are batch procedures that can be

performed on the data.

Advantages and Limitations

The storm is probably the best solution currently available for

near real-time processing. It is able to handle data with

extremely low latency for workloads that must be processed

with minimal delay. The storm is often a good choice when

processing time directly affects user experience, for example

when feedback from the processing is fed directly back to a

visitor's page on a website.

Storm with Trident gives you the option to use micro-batches

instead of pure stream processing. While this gives users

greater flexibility to shape the tool for an intended use, it also

tends to negate some of the software's biggest advantages

 International Journal of Computer Sciences and Engineering Vol. 5(12), Dec 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 308

over other solutions. That being said, having a choice for the

stream processing style is still helpful.

Core Storm does not offer to order guarantees of messages.

Core Storm offers at-least-once processing guarantees,

meaning that processing of each message can be guaranteed

but duplicates may occur. Trident offers exactly-once

guarantees and can offer to order between batches, but not

within.

In terms of interoperability, Storm can integrate with

Hadoop's YARN resource negotiator, making it easy to hook

up to an existing Hadoop deployment. More than most

processing frameworks, Storm has very wide language

support, giving users many options for defining topologies.

Summary

For pure stream processing workloads with very strict latency

requirements, Storm is probably the best mature option. It can

guarantee message processing and can be used with a large

number of programming languages. Because Storm does not

do batch processing, you will have to use additional software

if you require those capabilities. If you have a strong need for

exactly-once processing guarantees, Trident can provide that.

However, other stream processing frameworks might also be

a better fit at that point.

Apache Samza

Apache Samza is a stream processing framework that is

tightly tied to the Apache Kafka messaging system. While

Kafka can be used by many stream processing systems,

Samza is designed specifically to take advantage of Kafka's

unique architecture and guarantees. It uses Kafka to provide

fault tolerance, buffering, and state storage.

Samza uses YARN for resource negotiation. This means that

by default, a Hadoop cluster is required (at least HDFS and

YARN), but it also means that Samza can rely on the rich

features built into YARN.

Stream Processing Model

Samza relies on Kafka's semantics to define the way that

streams are handled. Kafka uses the following concepts when

dealing with data:

 Topics: Each stream of data entering a Kafka system

is called a topic. A topic is basically a stream of

related information that consumers can subscribe to.

 Partitions: In order to distribute a topic among

nodes, Kafka divides the incoming messages into

partitions. The partition divisions are based on a key

such that each message with the same key is

guaranteed to be sent to the same partition.

Partitions have guaranteed to order.

 Brokers: The individual nodes that make up a Kafka

cluster are called brokers.

 Producer: Any component writing to a Kafka topic

is called a producer. The producer provides the key

that is used to partition a topic.

 Consumers: Consumers are any component that

reads from a Kafka topic. Consumers are responsible

for maintaining information about their own offset,

so that they are aware of which records have been

processed if a failure occurs.

Because Kafka is represented an immutable log, Samza deals

with immutable streams. This means that any transformations

create new streams that are consumed by other components

without affecting the initial stream.

Advantages and Limitations

Samza's reliance on a Kafka-like queuing system at first

glance might seem restrictive. However, it affords the system

some unique guarantees and features not common in other

stream processing systems.

For example, Kafka already offers replicated storage of data

that can be accessed with low latency. It also provides a very

easy and inexpensive multi-subscriber model to each

individual data partition. All output, including intermediate

results, is also written to Kafka and can be independently

consumed by downstream stages.

In many ways, this tight reliance on Kafka mirrors the way

that the MapReduce engine frequently references HDFS.

While referencing HDFS between each calculation leads to

some serious performance issues when batch processing, it

solves a number of problems when stream processing.

Samza's strong relationship to Kafka allows the processing

steps themselves to be very loosely tied together. An arbitrary

number of subscribers can be added to the output of any step

without prior coordination. This can be very useful for

organizations where multiple teams might need to access

similar data. Teams can all subscribe to the topic of data

entering the system, or can easily subscribe to topics created

by other teams that have undergone some processing. This

can be done without adding additional stress on load-sensitive

infrastructure like databases.

Writing straight to Kafka also eliminates the problems of

backpressure. Backpressure is when load spikes cause an

influx of data at a rate greater than components can process in

real time, leading to processing stalls and potentially data

loss. Kafka is designed to hold data for very long periods of

time, which means that components can process at their

convenience and can be restarted without consequence.

Samza is able to store state, using a fault-tolerant

checkpointing system implemented as a local key-value store.

This allows Samza to offer an at-least-once delivery

 International Journal of Computer Sciences and Engineering Vol. 5(12), Dec 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 309

guarantee, but it does not provide accurate recovery of

aggregated state (like counts) in the event of a failure since

data might be delivered more than once.

Samza offers high-level abstractions that are in many ways

easier to work with than the primitives provided by systems

like Storm. Samza only supports JVM languages at this time,

meaning that it does not have the same language flexibility as

Storm.

Summary

Apache Samza is a good choice for streaming workloads

where Hadoop and Kafka are either already available or

sensible to implement. Samza itself is a good fit for

organizations with multiple teams using (but not necessarily

tightly coordinating around) data streams at various stages of

processing. Samza greatly simplifies many parts of stream

processing and offers low latency performance. It might not

be a good fit if the deployment requirements aren't

compatible with your current system, if you need extremely

low latency processing, or if you have strong needs for

exactly-once semantics.

IV. HYBRID PROCESSING SYSTEMS: BATCH AND

STREAM PROCESSORS

Some processing frameworks can handle both batch and

stream workloads. These frameworks simplify diverse

processing requirements by allowing the same or related

components and APIs to be used for both types of data.

As you will see, the way that this is achieved varies

significantly between Spark and Flink, the two frameworks

we will discuss. This is a largely a function of how the two

processing paradigms are brought together and what

assumptions are made about the relationship between fixed

and unfixed datasets.

While projects focused on one processing type may be a close

fit for specific use-cases, the hybrid frameworks attempt to

offer a general solution for data processing. They not only

provide methods for processing over data, they have their

own integrations, libraries, and tools for doing things like

graph analysis, machine learning, and interactive querying.

A. Apache Spark

Apache Spark is a next generation batch processing

framework with stream processing capabilities. Built using

many of the same principles of Hadoop's MapReduce engine,

Spark focuses primarily on speeding up batch processing

workloads by offering full in-memory computation and

processing optimization.

Spark can be deployed as a standalone cluster (if paired with

a capable storage layer) or can hook into Hadoop as an

alternative to the MapReduce engine.

Batch Processing Model

Unlike MapReduce, Spark processes all data in-memory,

only interacting with the storage layer to initially load the

data into memory and at the end to persist the final results.

All intermediate results are managed in memory.

While in-memory processing contributes substantially to

speed, Spark is also faster on disk-related tasks because of

holistic optimization that can be achieved by analyzing the

complete set of tasks ahead of time. It achieves this by

creating Directed Acyclic Graphs, or DAGs which represent

all of the operations that must be performed, the data to be

operated on, as well as the relationships between them, giving

the processor a greater ability to intelligently coordinate

work.

To implement an in-memory batch computation, Spark uses a

model called Resilient Distributed Datasets, or RDDs, to

work with data. These are immutable structures that exist

within memory that represent collections of data. Operations

on RDDs produce new RDDs. Each RDD can trace its

lineage back through its parent RDDs and ultimately to the

data on disk. Essentially, RDDs are a way for Spark to

maintain fault tolerance without needing to write back to disk

after each operation.

Stream Processing Model

Stream processing capabilities are supplied by Spark

Streaming. Spark itself is designed with batch-oriented

workloads in mind. To deal with the disparity between the

engine design and the characteristics of streaming workloads,

Spark implements a concept called micro-batches*. This

strategy is designed to treat streams of data as a series of very

small batches that can be handled using the native semantics

of the batch engine.

Spark Streaming works by buffering the stream in sub-second

increments. These are sent as small fixed datasets for batch

processing. In practice, this works fairly well, but it does lead

to a different performance profile than true stream processing

frameworks.

Advantages and Limitations

The obvious reason to use Spark over Hadoop MapReduce is

speed. Spark can process the same datasets significantly

faster due to its in-memory computation strategy and its

advanced DAG scheduling.

Another of Spark's major advantages is its versatility. It can

be deployed as a standalone cluster or integrated with an

existing Hadoop cluster. It can perform both batch and stream

 International Journal of Computer Sciences and Engineering Vol. 5(12), Dec 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 310

processing, letting you operate a single cluster to handle

multiple processing styles.

Beyond the capabilities of the engine itself, Spark also has an

ecosystem of libraries that can be used for machine learning,

interactive queries, etc. Spark tasks are almost universally

acknowledged to be easier to write than MapReduce, which

can have significant implications for productivity.

Adapting the batch methodology for stream processing

involves buffering the data as it enters the system. The buffer

allows it to handle a high volume of incoming data,

increasing overall throughput, but waiting to flush the buffer

also leads to a significant increase in latency. This means that

Spark Streaming might not be appropriate for processing

where low latency is imperative.

Since RAM is generally more expensive than disk space,

Spark can cost more to run than disk-based systems.

However, the increased processing speed means that tasks

can complete much faster, which may completely offset the

costs when operating in an environment where you pay for

resources hourly.

One other consequence of the in-memory design of Spark is

that resource scarcity can be an issue when deployed on

shared clusters. In comparison to Hadoop's MapReduce,

Spark uses significantly more resources, which can interfere

with other tasks that might be trying to use the cluster at the

time. In essence, Spark might be a less considerate neighbor

than other components that can operate on the Hadoop stack.

Summary

A spark is a great option for those with diverse processing

workloads. Spark batch processing offers incredible speed

advantages, trading off high memory usage. Spark Streaming

is a good stream processing solution for workloads that value

throughput over latency.

B. Apache Flink

Apache Flink is a stream processing framework that can also

handle batch tasks. It considers batches to simply be data

streams with finite boundaries, and thus treats batch

processing as a subset of stream processing. This stream-first

approach to all processing has a number of interesting side

effects.

This stream-first approach has been called the Kappa

architecture, in contrast to the more widely known Lambda

architecture (where batching is used as the primary

processing method with streams used to supplement and

provide early but unrefined results). Kappa architecture,

where streams are used for everything, simplifies the model

and has only recently become possible as stream processing

engines have grown more sophisticated.

Stream Processing Model

Flink's stream processing model handles incoming data on an

item-by-item basis as a true stream. Flink provides its

DataStream API to work with unbounded streams of data.

The basic components that Flink works with are:

 Streams are immutable, unbounded datasets that

flow through the system

 Operators are functions that operate on data

streams to produce other streams

 Sources are the entry point for streams entering the

system

 Sinks are the place where streams flow out of the

Flink system. They might represent a database or a

connector to another system

Stream processing tasks take snapshots at set points during

their computation to use for recovery in case of problems. For

storing state, Flink can work with a number of state backends

depending on varying levels of complexity and persistence.

Additionally, Flink's stream processing is able to understand

the concept of "event time", meaning the time that the event

actually occurred, and can handle sessions as well. This

means that it can guarantee ordering and grouping in some

interesting ways.

Batch Processing Model

Flink's batch processing model in many ways is just an

extension of the stream processing model. Instead of reading

from a continuous stream, it reads a bounded dataset off of

persistent storage as a stream. Flink uses the exact same

runtime for both of these processing models.

Flink offers some optimizations for batch workloads. For

instance, since batch operations are backed by persistent

storage, Flink removes snapshotting from batch loads. Data is

still recoverable, but normal processing completes faster.

Another optimization involves breaking up batch tasks so that

stages and components are only involved when needed. This

helps Flink play well with other users of the cluster.

Preemptive analysis of the tasks gives Flink the ability to also

optimize by seeing the entire set of operations, the size of the

dataset, and the requirements of steps coming down the line.

Advantages and Limitations

Flink is currently a unique option in the processing

framework world. While Spark performs batch and stream

processing, its streaming is not appropriate for many use

cases because of its micro-batch architecture. Flink's stream-

first approach offers low latency, high throughput, and real

entry-by-entry processing.

Flink manages many things by itself. Somewhat

unconventionally, it manages its own memory instead of

relying on the native Java garbage collection mechanisms for

 International Journal of Computer Sciences and Engineering Vol. 5(12), Dec 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 311

performance reasons. Unlike Spark, Flink does not require

manual optimization and adjustment when the characteristics

of the data it processes change. It handles data partitioning

and caching automatically as well.

Flink analyzes its work and optimizes tasks in a number of

ways. Part of this analysis is similar to what SQL query

planners do within relationship databases, mapping out the

most effective way to implement a given task. It is able to

parallelize stages that can be completed in parallel while

bringing data together for blocking tasks. For iterative tasks,

Flink attempts to do computation on the nodes where the data

is stored for performance reasons. It can also do "delta

iteration", or iteration on only the portions of data that have

changed.

In terms of user tooling, Flink offers a web-based scheduling

view to easily manage tasks and view the system. Users can

also display the optimization plan for submitted tasks to see

how it will actually be implemented on the cluster. For

analysis tasks, Flink offers SQL-style querying, graph

processing and machine learning libraries, and in-memory

computation.

Flink operates well with other components. It is written to be

a good neighbor if used within a Hadoop stack, taking up

only the necessary resources at any given time. It integrates

with YARN, HDFS, and Kafka easily. Flink can run tasks

written for other processing frameworks like Hadoop and

Storm with compatibility packages.

One of the largest drawbacks of Flink at the moment is that it

is still a very young project. Large-scale deployments in the

wild are still not as common as other processing frameworks

and there hasn't been much research into Flink's scaling

limitations. With the rapid development cycle and features

like the compatibility packages, there may begin to be more

Flink deployments as organizations get the chance to

experiment with it.

Summary

Flink offers both low latency stream processing with support

for traditional batch tasks. Flink is probably best suited for

organizations that have heavy stream processing requirements

and some batch-oriented tasks. Its compatibility with native

Storm and Hadoop programs, and its ability to run on a

YARN-managed cluster can make it easy to evaluate. Its

rapid development makes it worth keeping an eye on.

V. CONCLUSION

There are plenty of options for processing within a big data

system.

For batch-only workloads that are not time-sensitive, Hadoop

is a good choice that is likely less expensive to implement

than some other solutions.

For stream-only workloads, Storm has wide language support

and can deliver very low latency processing, but can deliver

duplicates and cannot guarantee to order in its default

configuration. Samza integrates tightly with YARN and

Kafka in order to provide flexibility, easy multi-team usage,

and straightforward replication and state management.

For mixed workloads, Spark provides high-speed batch

processing and micro-batch processing for streaming. It has

wide support, integrated libraries and tooling, and flexible

integrations. Flink provides true stream processing with batch

processing support. It is heavily optimized, can run tasks

written for other platforms, and provides low latency

processing, but is still in the early days of adoption.

The best fit for your situation will depend heavily upon the

state of the data to process, how time-bound your

requirements are, and what kind of results you are interested

in. There are trade-offs between implementing an all-in-one

solution and working with tightly focused projects, and there

are similar considerations when evaluating new and

innovative solutions over their mature and well-tested

counterparts.

REFERENCES

[1] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A.

Heise, O. Kao, M. Leich, U. Leser, V. Markl, F. Naumann, M.

Peters, A. Rheinlander, M. J. Sax, S. Schelter, M. Hoger, K.

Tzoumas, and D. Warneke. The stratosphere platform for big data

analytics. The VLDB Journal, 23(6):939-964, 2014.

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop

Distributed File System. In IEEE MSST, 2010.

[3] S. Aridhi and E. M. Nguifo. Big graph mining: Frameworks and

techniques. Big Data Research, 6:1-10, 2016.

[4] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. The hadoop

approach to large-scale iterative data analysis. The VLDB Journal,

21(2):169-190, Apr. 2012.

[5] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K.

Tzoumas. Apache inkTM: Stream and batch processing in a single

engine. IEEE Data Eng. Bull., 38(4):28-38, 2015.

[6] J. Dean and S. Ghemawat. MapReduce: simpli_ed data processing

on large clusters. Commun. ACM, 51(1):107-113, 2008.

[7] D. Eadline. Hadoop 2 Quick-Start Guide: Learn the Essentials of Big

Data Computing in the Apache Hadoop 2 Ecosystem. Addison-

Wesley Professional, 1st edition, 2015.

[8] B. Elser and A. Montresor. An evaluation study of bigdata

frameworks for graph processing. In IEEE International

Conference on Big Data, pages 60-67, 2013.

[9] A. Gandomi and M. Haider. Beyond the hype: Big data concepts,

methods, and analytics. International Journal of Information

Management, 35(2):137-144, 2015.

 International Journal of Computer Sciences and Engineering Vol. 5(12), Dec 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 312

[10] R. Li, H. Hu, H. Li, Y. Wu, and J. Yang. Mapreduce parallel

programming model: A state-of-the-art survey. International

Journal of Parallel Programming, pages 1-35, 2015.

[11] X. Liu, N. Iftikhar, and X. Xie. Survey of real-time processing

systems for big data. In Proceedings of the 18th International

Database Engineering & Applications Symposium, pages 356-361.

ACM, 2014.

[12] D. Singh and C. K. Reddy. A survey on platforms for big data

analytics. Journal of Big Data, 2(1):8, 2014.

[13] M. Tatineni, X. Lu, D. Choi, A. Majumdar, and D. K. D. Panda.

Experiences and bene_ts of running rdma hadoop and spark on

sdsc comet. In Proceedings of the XSEDE16 Conference on

Diversity, Big Data, and Science at Scale, XSEDE16, pages 23:1-

23:5, New York, NY, USA, 2016. ACM.

[14] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica. Graphx: A

resilient distributed graph system on spark. In First International

Workshop on Graph Data Management Experiences and Systems,

GRADES '13, pages 2:1-2:6, New York, NY, USA, 2013. ACM.

Authors Profile

Dr. S.kannan is an Associate Professor in Department of Computer

Applications, School of Information Technology, Madurai Kamaraj

University, Madurai. He is having more than 25 years of Teaching

experience and 15 years of Research experience. His core area of

research is Data Mining, Image Processing, Soft Computing, Natural

Language Processing and Data Analytics. He published more than

50 Research articles in reputed journals, act as a Reviewer in more

standard periodicals and serves as a chair for more Conferences,

Workshops, and Viva-voce.

Mr. Vairaprakash Gurusamy pursed MCA from Bharathidasan

University, Trichy in 2010. He is currently pursuing Ph.D. from

Madurai Kamaraj University, Madurai, India. He has published

more than 10 research papers in reputed international journals like

Scopus Indexed, UGC approved, SCI Indexed, Web of Science,

Thomson Reuters etc. His main research work focuses on Bid Data

Analytics, Distributed System, Artificial Intelligence, NLP, Cloud

Computing, Data Mining and IOT. He has 3 years of Industry

Experience and 4 years of Research Experience.

Ms. K. Nandhini pursed B.Tech (ECE) from Kalasalingam

University, Krishnan Kovil, India in 2014. She has published more

than 10 research papers in reputed international journals like Scopus

Indexed, UGC approved, SCI Indexed, Web of Science, Thomson

Reuters etc. His main research work focuses on Bid Data Analytics,

Distributed System, Artificial Intelligence, NLP, Cloud Computing,

Data Mining and IOT. She has 3 years of Industry Experience.

