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Abstract ---Big data is a blanket term for the non-traditional strategies and technologies needed to gather, organize, process, 

and gather insights from large datasets. While the problem of working with data that exceeds the computing power or storage 

of a single computer is not new, the pervasiveness, scale, and value of this type of computing have greatly expanded in recent 

years. In this paper, we will take a look at one of the essential components of a big data system: processing frameworks. 

Processing frameworks compute over the data in the system, either by reading from non-volatile storage or as it is ingested into 

the system. Computing over data is the process of extracting information and insight from large quantities of individual data 

points. 
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I. INTRODUCTION 

Processing frameworks and processing engines are 

responsible for computing over data in a data system. While 

there is no authoritative definition setting apart "engines" 

from "frameworks", it is sometimes useful to define the 

former as the actual component responsible for operating on 

data and the latter as a set of components designed to do the 

same. For instance, Apache Hadoop can be considered a 

processing framework with MapReduce as its default 

processing engine. Engines and frameworks can often be 

swapped out or used in tandem. For instance, Apache Spark, 

another framework, can hook into Hadoop to replace 

MapReduce. This interoperability between components is one 

reason that big data systems have great flexibility. While the 

systems which handle this stage of the data life cycle can be 

complex, the goals on a broad level are very similar: operate 

over data in order to increase understanding, surface patterns, 

and gain insight into complex interactions. To simplify the 

discussion of these components, we will group these 

processing frameworks by the state of the data they are 

designed to handle. Some systems handle data in batches, 

while others process data in a continuous stream as it flows 

into the system. Still, others can handle data in either of these 

ways. We will introduce each type of processing as a concept 

before diving into the specifics and consequences of various 

implementations. In the following section, We will cover the 

following frameworks: 

1. Batch-only frameworks:  

i. Apache Hadoop 

2. Stream-only frameworks:  

i. Apache Storm 

ii. Apache Samza 

3. Hybrid frameworks:  

i. Apache Spark 

ii. Apache Flink 

 

 

II. BATCH PROCESSING SYSTEMS 

Batch processing has a long history of the big data world. 

Batch processing involves operating over a large, static 

dataset and returning the result at a later time when the 

computation is complete. The datasets in batch processing are 

1. bounded: batch datasets represent a finite collection 

of data 

2. persistent: data is almost always backed by some 

type of permanent storage 

3. large: batch operations are often the only option for 

processing extremely large sets of data 

 

Batch processing is well-suited for calculations where access 

to a complete set of records is required. For instance, when 

calculating totals and averages, datasets must be treated 

holistically instead of as a collection of individual records. 

These operations require that state is maintained for the 

duration of the calculations. 

 

Tasks that require very large volumes of data are often best 

handled by batch operations. Whether the datasets are 
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processed directly from permanent storage or loaded into 

memory, batch systems are built with large quantities in mind 

and have the resources to handle them. Because batch 

processing excels at handling large volumes of persistent 

data, it frequently is used with historical data. 

The trade-off for handling large quantities of data is longer 

computation time. Because of this, batch processing is not 

appropriate in situations where processing time is especially 

significant. 

 

Apache Hadoop 

Apache Hadoop is a processing framework that exclusively 

provides batch processing. Hadoop was the first big data 

framework to gain significant traction in the open-source 

community. Based on several papers and presentations by 

Google about how they were dealing with tremendous 

amounts of data at the time, Hadoop reimplemented the 

algorithms and component stack to make large-scale batch 

processing more accessible. 

 

Modern versions of Hadoop are composed of several 

components or layers, that work together to process batch 

data: 

 HDFS: HDFS is the distributed file system layer 

that coordinates storage and replication across the 

cluster nodes. HDFS ensures that data remains 

available in spite of inevitable host failures. It is 

used as the source of data, to store intermediate 

processing results, and to persist the final calculated 

results. 

 YARN: YARN, which stands for Yet Another 

Resource Negotiator, is the cluster coordinating 

component of the Hadoop stack. It is responsible for 

coordinating and managing the underlying resources 

and scheduling jobs to be run. YARN makes it 

possible to run much more diverse workloads on a 

Hadoop cluster than was possible in earlier iterations 

by acting as an interface to the cluster resources. 

 MapReduce: MapReduce is Hadoop's native batch 

processing engine. 

 

Batch Processing Model 

The processing functionality of Hadoop comes from the 

MapReduce engine. MapReduce's processing technique 

follows the map, shuffle, reduce algorithm using key-value 

pairs.  

 

The basic procedure involves: 

 Reading the dataset from the HDFS file system 

 Dividing the dataset into chunks and distributed 

among the available nodes 

 Applying the computation on each node to the 

subset of data (the intermediate results are written 

back to HDFS) 

 Redistributing the intermediate results to group by 

key 

 "Reducing" the value of each key by summarizing 

and combining the results calculated by the 

individual nodes 

 Write the calculated final results back to HDFS 

 

Advantages and Limitations 

Because this methodology heavily leverages permanent 

storage, reading and writing multiple times per task, it tends 

to be fairly slow. On the other hand, since disk space is 

typically one of the most abundant server resources, it means 

that MapReduce can handle enormous datasets. This also 

means that Hadoop's MapReduce can typically run on less 

expensive hardware than some alternatives since it does not 

attempt to store everything in memory. MapReduce has 

incredible scalability potential and has been used in 

production on tens of thousands of nodes. 

                    

As a target for development, MapReduce is known for having 

a rather steep learning curve. Other additions to the Hadoop 

ecosystem can reduce the impact of this to varying degrees, 

but it can still be a factor in quickly implementing an idea on 

a Hadoop cluster. 

 

Hadoop has an extensive ecosystem, with the Hadoop cluster 

itself frequently used as a building block for other software. 

Many other processing frameworks and engines have Hadoop 

integrations to utilize HDFS and the YARN resource 

manager. 

 

Summary 

Apache Hadoop and its MapReduce processing engine offer a 

well-tested batch processing model that is best suited for 

handling very large datasets where time is not a significant 

factor. The low cost of components necessary for a well-

functioning Hadoop cluster makes this processing 

inexpensive and effective for many use cases. Compatibility 

and integration with other frameworks and engines mean that 

Hadoop can often serve as the foundation for multiple 

processing workloads using diverse technology. 

 

III. STREAM PROCESSING SYSTEMS 

 

Stream processing systems compute over data as it enters 

the system. This requires a different processing model than 

the batch paradigm. Instead of defining operations to apply to 

an entire dataset, stream processors define operations that 

will be applied to each individual data item as it passes 

through the system. 

 

The datasets in stream processing are considered 

"unbounded". This has a few important implications: 

 The total dataset is only defined as the amount of 

data that has entered the system so far. 
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 The working dataset is perhaps more relevant and is 

limited to a single item at a time. 

 Processing is event-based and does not "end" until 

explicitly stopped. Results are immediately available 

and will be continually updated as new data arrives. 

 

Stream processing systems can handle a nearly unlimited 

amount of data, but they only process one (true stream 

processing) or very few (micro-batch processing) items at a 

time, with the minimal state being maintained in between 

records. While most systems provide methods of maintaining 

some state, stream processing is highly optimized for more 

functional processing with few side effects. 

 

Functional operations focus on discrete steps that have 

limited state or side-effects. Performing the same operation 

on the same piece of data will produce the same output 

independent of other factors. This kind of processing fits well 

with streams because state between items is usually some 

combination of difficult, limited, and sometimes undesirable. 

So while some type of state management is usually possible, 

these frameworks are much simpler and more efficient in 

their absence. 

 

This type of processing lends itself to certain types of 

workloads. Processing with near real-time requirements is 

well served by the streaming model. Analytics, server or 

application error logging, and other time-based metrics are a 

natural fit because reacting to changes in these areas can be 

critical to business functions. Stream processing is a good fit 

for data where you must respond to changes or spikes and 

where you're interested in trends over time. 

 

Apache Storm 

Apache Storm is a stream processing framework that focuses 

on extremely low latency and is perhaps the best option for 

workloads that require near real-time processing. It can 

handle very large quantities of data with and deliver results 

with less latency than other solutions. 

 

Stream Processing Model 

Stream processing works by orchestrating DAGs (Directed 

Acyclic Graphs) in a framework it calls topologies. These 

topologies describe the various transformations or steps that 

will be taken on each incoming piece of data as it enters the 

system. 

 

The topologies are composed of: 

 Streams: Conventional data streams. This is 

unbounded data that is continuously arriving at the 

system. 

 Spouts: Sources of data streams at the edge of the 

topology. These can be APIs, queues, etc. that 

produce data to be operated on. 

 Bolts: Bolts represent a processing step that 

consumes streams, applies an operation to them, and 

outputs the result as a stream. Bolts are connected to 

each of the spouts and then connect to each other to 

arrange all of the necessary processing. At the end of 

the topology, final bolt output may be used as an 

input for a connected system. 

 

The idea behind Storm is to define small, discrete operations 

using the above components and then compose them into a 

topology. By default, Storm offers at-least-once processing 

guarantees, meaning that it can guarantee that each message 

is processed at least once, but there may be duplicates in 

some failure scenarios. Storm does not guarantee that 

messages will be processed in order. 

 

In order to achieve exactly-once, stateful processing, an 

abstraction called Trident is also available. To be explicit, 

Storm without Trident is often referred to as Core Storm. 

Trident significantly alters the processing dynamics of Storm, 

increasing latency, adding a state to the processing, and 

implementing a micro-batching model instead of an item-by-

item pure streaming system. 

 

Storm users typically recommend using Core Storm 

whenever possible to avoid those penalties. With that in 

mind, Trident's guarantee to processes items exactly once is 

useful in cases where the system cannot intelligently handle 

duplicate messages. Trident is also the only choice within 

Storm when you need to maintain state between items, like 

when counting how many users click a link within an hour. 

Trident gives Storm flexibility, even though it does not play 

to the framework's natural strengths. 

 

Trident topologies are composed of: 

 Stream batches: These are micro-batches of stream 

data that are chunked in order to provide batch 

processing semantics. 

 Operations: These are batch procedures that can be 

performed on the data. 

 

Advantages and Limitations 

The storm is probably the best solution currently available for 

near real-time processing. It is able to handle data with 

extremely low latency for workloads that must be processed 

with minimal delay. The storm is often a good choice when 

processing time directly affects user experience, for example 

when feedback from the processing is fed directly back to a 

visitor's page on a website. 

 

Storm with Trident gives you the option to use micro-batches 

instead of pure stream processing. While this gives users 

greater flexibility to shape the tool for an intended use, it also 

tends to negate some of the software's biggest advantages 
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over other solutions. That being said, having a choice for the 

stream processing style is still helpful. 

 

Core Storm does not offer to order guarantees of messages. 

Core Storm offers at-least-once processing guarantees, 

meaning that processing of each message can be guaranteed 

but duplicates may occur. Trident offers exactly-once 

guarantees and can offer to order between batches, but not 

within. 

 

In terms of interoperability, Storm can integrate with 

Hadoop's YARN resource negotiator, making it easy to hook 

up to an existing Hadoop deployment. More than most 

processing frameworks, Storm has very wide language 

support, giving users many options for defining topologies. 

 

Summary 

For pure stream processing workloads with very strict latency 

requirements, Storm is probably the best mature option. It can 

guarantee message processing and can be used with a large 

number of programming languages. Because Storm does not 

do batch processing, you will have to use additional software 

if you require those capabilities. If you have a strong need for 

exactly-once processing guarantees, Trident can provide that. 

However, other stream processing frameworks might also be 

a better fit at that point. 

 

Apache Samza 

Apache Samza is a stream processing framework that is 

tightly tied to the Apache Kafka messaging system. While 

Kafka can be used by many stream processing systems, 

Samza is designed specifically to take advantage of Kafka's 

unique architecture and guarantees. It uses Kafka to provide 

fault tolerance, buffering, and state storage. 

 

Samza uses YARN for resource negotiation. This means that 

by default, a Hadoop cluster is required (at least HDFS and 

YARN), but it also means that Samza can rely on the rich 

features built into YARN. 

 

Stream Processing Model 

Samza relies on Kafka's semantics to define the way that 

streams are handled. Kafka uses the following concepts when 

dealing with data: 

 Topics: Each stream of data entering a Kafka system 

is called a topic. A topic is basically a stream of 

related information that consumers can subscribe to. 

 Partitions: In order to distribute a topic among 

nodes, Kafka divides the incoming messages into 

partitions. The partition divisions are based on a key 

such that each message with the same key is 

guaranteed to be sent to the same partition. 

Partitions have guaranteed to order. 

 Brokers: The individual nodes that make up a Kafka 

cluster are called brokers. 

 Producer: Any component writing to a Kafka topic 

is called a producer. The producer provides the key 

that is used to partition a topic. 

 Consumers: Consumers are any component that 

reads from a Kafka topic. Consumers are responsible 

for maintaining information about their own offset, 

so that they are aware of which records have been 

processed if a failure occurs. 

 

Because Kafka is represented an immutable log, Samza deals 

with immutable streams. This means that any transformations 

create new streams that are consumed by other components 

without affecting the initial stream. 

 

Advantages and Limitations 

Samza's reliance on a Kafka-like queuing system at first 

glance might seem restrictive. However, it affords the system 

some unique guarantees and features not common in other 

stream processing systems. 

 

For example, Kafka already offers replicated storage of data 

that can be accessed with low latency. It also provides a very 

easy and inexpensive multi-subscriber model to each 

individual data partition. All output, including intermediate 

results, is also written to Kafka and can be independently 

consumed by downstream stages. 

 

In many ways, this tight reliance on Kafka mirrors the way 

that the MapReduce engine frequently references HDFS. 

While referencing HDFS between each calculation leads to 

some serious performance issues when batch processing, it 

solves a number of problems when stream processing. 

 

Samza's strong relationship to Kafka allows the processing 

steps themselves to be very loosely tied together. An arbitrary 

number of subscribers can be added to the output of any step 

without prior coordination. This can be very useful for 

organizations where multiple teams might need to access 

similar data. Teams can all subscribe to the topic of data 

entering the system, or can easily subscribe to topics created 

by other teams that have undergone some processing. This 

can be done without adding additional stress on load-sensitive 

infrastructure like databases. 

 

Writing straight to Kafka also eliminates the problems of 

backpressure. Backpressure is when load spikes cause an 

influx of data at a rate greater than components can process in 

real time, leading to processing stalls and potentially data 

loss. Kafka is designed to hold data for very long periods of 

time, which means that components can process at their 

convenience and can be restarted without consequence. 

 

Samza is able to store state, using a fault-tolerant 

checkpointing system implemented as a local key-value store. 

This allows Samza to offer an at-least-once delivery 
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guarantee, but it does not provide accurate recovery of 

aggregated state (like counts) in the event of a failure since 

data might be delivered more than once. 

 

Samza offers high-level abstractions that are in many ways 

easier to work with than the primitives provided by systems 

like Storm. Samza only supports JVM languages at this time, 

meaning that it does not have the same language flexibility as 

Storm. 

 

Summary 

Apache Samza is a good choice for streaming workloads 

where Hadoop and Kafka are either already available or 

sensible to implement. Samza itself is a good fit for 

organizations with multiple teams using (but not necessarily 

tightly coordinating around) data streams at various stages of 

processing. Samza greatly simplifies many parts of stream 

processing and offers low latency performance. It might not 

be a good fit if the deployment requirements aren't 

compatible with your current system, if you need extremely 

low latency processing, or if you have strong needs for 

exactly-once semantics.  

 

IV. HYBRID PROCESSING SYSTEMS: BATCH AND 

STREAM PROCESSORS 

 

Some processing frameworks can handle both batch and 

stream workloads. These frameworks simplify diverse 

processing requirements by allowing the same or related 

components and APIs to be used for both types of data. 

 

As you will see, the way that this is achieved varies 

significantly between Spark and Flink, the two frameworks 

we will discuss. This is a largely a function of how the two 

processing paradigms are brought together and what 

assumptions are made about the relationship between fixed 

and unfixed datasets. 

 

While projects focused on one processing type may be a close 

fit for specific use-cases, the hybrid frameworks attempt to 

offer a general solution for data processing. They not only 

provide methods for processing over data, they have their 

own integrations, libraries, and tools for doing things like 

graph analysis, machine learning, and interactive querying. 

 

A. Apache Spark 

Apache Spark is a next generation batch processing 

framework with stream processing capabilities. Built using 

many of the same principles of Hadoop's MapReduce engine, 

Spark focuses primarily on speeding up batch processing 

workloads by offering full in-memory computation and 

processing optimization. 

 

Spark can be deployed as a standalone cluster (if paired with 

a capable storage layer) or can hook into Hadoop as an 

alternative to the MapReduce engine. 

 

Batch Processing Model 

Unlike MapReduce, Spark processes all data in-memory, 

only interacting with the storage layer to initially load the 

data into memory and at the end to persist the final results. 

All intermediate results are managed in memory. 

 

While in-memory processing contributes substantially to 

speed, Spark is also faster on disk-related tasks because of 

holistic optimization that can be achieved by analyzing the 

complete set of tasks ahead of time. It achieves this by 

creating Directed Acyclic Graphs, or DAGs which represent 

all of the operations that must be performed, the data to be 

operated on, as well as the relationships between them, giving 

the processor a greater ability to intelligently coordinate 

work. 

To implement an in-memory batch computation, Spark uses a 

model called Resilient Distributed Datasets, or RDDs, to 

work with data. These are immutable structures that exist 

within memory that represent collections of data. Operations 

on RDDs produce new RDDs. Each RDD can trace its 

lineage back through its parent RDDs and ultimately to the 

data on disk. Essentially, RDDs are a way for Spark to 

maintain fault tolerance without needing to write back to disk 

after each operation. 

 

Stream Processing Model 

Stream processing capabilities are supplied by Spark 

Streaming. Spark itself is designed with batch-oriented 

workloads in mind. To deal with the disparity between the 

engine design and the characteristics of streaming workloads, 

Spark implements a concept called micro-batches*. This 

strategy is designed to treat streams of data as a series of very 

small batches that can be handled using the native semantics 

of the batch engine. 

 

Spark Streaming works by buffering the stream in sub-second 

increments. These are sent as small fixed datasets for batch 

processing. In practice, this works fairly well, but it does lead 

to a different performance profile than true stream processing 

frameworks. 

 

Advantages and Limitations 

The obvious reason to use Spark over Hadoop MapReduce is 

speed. Spark can process the same datasets significantly 

faster due to its in-memory computation strategy and its 

advanced DAG scheduling. 

 

Another of Spark's major advantages is its versatility. It can 

be deployed as a standalone cluster or integrated with an 

existing Hadoop cluster. It can perform both batch and stream 
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processing, letting you operate a single cluster to handle 

multiple processing styles. 

 

Beyond the capabilities of the engine itself, Spark also has an 

ecosystem of libraries that can be used for machine learning, 

interactive queries, etc. Spark tasks are almost universally 

acknowledged to be easier to write than MapReduce, which 

can have significant implications for productivity. 

 

Adapting the batch methodology for stream processing 

involves buffering the data as it enters the system. The buffer 

allows it to handle a high volume of incoming data, 

increasing overall throughput, but waiting to flush the buffer 

also leads to a significant increase in latency. This means that 

Spark Streaming might not be appropriate for processing 

where low latency is imperative. 

 

Since RAM is generally more expensive than disk space, 

Spark can cost more to run than disk-based systems. 

However, the increased processing speed means that tasks 

can complete much faster, which may completely offset the 

costs when operating in an environment where you pay for 

resources hourly. 

 

One other consequence of the in-memory design of Spark is 

that resource scarcity can be an issue when deployed on 

shared clusters. In comparison to Hadoop's MapReduce, 

Spark uses significantly more resources, which can interfere 

with other tasks that might be trying to use the cluster at the 

time. In essence, Spark might be a less considerate neighbor 

than other components that can operate on the Hadoop stack. 

 

Summary 

A spark is a great option for those with diverse processing 

workloads. Spark batch processing offers incredible speed 

advantages, trading off high memory usage. Spark Streaming 

is a good stream processing solution for workloads that value 

throughput over latency. 

 

B. Apache Flink 

Apache Flink is a stream processing framework that can also 

handle batch tasks. It considers batches to simply be data 

streams with finite boundaries, and thus treats batch 

processing as a subset of stream processing. This stream-first 

approach to all processing has a number of interesting side 

effects. 

 

This stream-first approach has been called the Kappa 

architecture, in contrast to the more widely known Lambda 

architecture (where batching is used as the primary 

processing method with streams used to supplement and 

provide early but unrefined results). Kappa architecture, 

where streams are used for everything, simplifies the model 

and has only recently become possible as stream processing 

engines have grown more sophisticated. 

 

Stream Processing Model 

Flink's stream processing model handles incoming data on an 

item-by-item basis as a true stream. Flink provides its 

DataStream API to work with unbounded streams of data. 

The basic components that Flink works with are: 

 Streams are immutable, unbounded datasets that 

flow through the system 

 Operators are functions that operate on data 

streams to produce other streams 

 Sources are the entry point for streams entering the 

system 

 Sinks are the place where streams flow out of the 

Flink system. They might represent a database or a 

connector to another system 

 

Stream processing tasks take snapshots at set points during 

their computation to use for recovery in case of problems. For 

storing state, Flink can work with a number of state backends 

depending on varying levels of complexity and persistence. 

Additionally, Flink's stream processing is able to understand 

the concept of "event time", meaning the time that the event 

actually occurred, and can handle sessions as well. This 

means that it can guarantee ordering and grouping in some 

interesting ways. 

 

Batch Processing Model 

Flink's batch processing model in many ways is just an 

extension of the stream processing model. Instead of reading 

from a continuous stream, it reads a bounded dataset off of 

persistent storage as a stream. Flink uses the exact same 

runtime for both of these processing models. 

 

Flink offers some optimizations for batch workloads. For 

instance, since batch operations are backed by persistent 

storage, Flink removes snapshotting from batch loads. Data is 

still recoverable, but normal processing completes faster. 

Another optimization involves breaking up batch tasks so that 

stages and components are only involved when needed. This 

helps Flink play well with other users of the cluster. 

Preemptive analysis of the tasks gives Flink the ability to also 

optimize by seeing the entire set of operations, the size of the 

dataset, and the requirements of steps coming down the line. 

 

Advantages and Limitations 

Flink is currently a unique option in the processing 

framework world. While Spark performs batch and stream 

processing, its streaming is not appropriate for many use 

cases because of its micro-batch architecture. Flink's stream-

first approach offers low latency, high throughput, and real 

entry-by-entry processing. 

Flink manages many things by itself. Somewhat 

unconventionally, it manages its own memory instead of 

relying on the native Java garbage collection mechanisms for 
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performance reasons. Unlike Spark, Flink does not require 

manual optimization and adjustment when the characteristics 

of the data it processes change. It handles data partitioning 

and caching automatically as well. 

Flink analyzes its work and optimizes tasks in a number of 

ways. Part of this analysis is similar to what SQL query 

planners do within relationship databases, mapping out the 

most effective way to implement a given task. It is able to 

parallelize stages that can be completed in parallel while 

bringing data together for blocking tasks. For iterative tasks, 

Flink attempts to do computation on the nodes where the data 

is stored for performance reasons. It can also do "delta 

iteration", or iteration on only the portions of data that have 

changed. 

In terms of user tooling, Flink offers a web-based scheduling 

view to easily manage tasks and view the system. Users can 

also display the optimization plan for submitted tasks to see 

how it will actually be implemented on the cluster. For 

analysis tasks, Flink offers SQL-style querying, graph 

processing and machine learning libraries, and in-memory 

computation. 

Flink operates well with other components. It is written to be 

a good neighbor if used within a Hadoop stack, taking up 

only the necessary resources at any given time. It integrates 

with YARN, HDFS, and Kafka easily. Flink can run tasks 

written for other processing frameworks like Hadoop and 

Storm with compatibility packages. 

One of the largest drawbacks of Flink at the moment is that it 

is still a very young project. Large-scale deployments in the 

wild are still not as common as other processing frameworks 

and there hasn't been much research into Flink's scaling 

limitations. With the rapid development cycle and features 

like the compatibility packages, there may begin to be more 

Flink deployments as organizations get the chance to 

experiment with it. 

Summary 

Flink offers both low latency stream processing with support 

for traditional batch tasks. Flink is probably best suited for 

organizations that have heavy stream processing requirements 

and some batch-oriented tasks. Its compatibility with native 

Storm and Hadoop programs, and its ability to run on a 

YARN-managed cluster can make it easy to evaluate. Its 

rapid development makes it worth keeping an eye on. 

V. CONCLUSION 

There are plenty of options for processing within a big data 

system. 

For batch-only workloads that are not time-sensitive, Hadoop 

is a good choice that is likely less expensive to implement 

than some other solutions. 

For stream-only workloads, Storm has wide language support 

and can deliver very low latency processing, but can deliver 

duplicates and cannot guarantee to order in its default 

configuration. Samza integrates tightly with YARN and 

Kafka in order to provide flexibility, easy multi-team usage, 

and straightforward replication and state management. 

For mixed workloads, Spark provides high-speed batch 

processing and micro-batch processing for streaming. It has 

wide support, integrated libraries and tooling, and flexible 

integrations. Flink provides true stream processing with batch 

processing support. It is heavily optimized, can run tasks 

written for other platforms, and provides low latency 

processing, but is still in the early days of adoption. 

The best fit for your situation will depend heavily upon the 

state of the data to process, how time-bound your 

requirements are, and what kind of results you are interested 

in. There are trade-offs between implementing an all-in-one 

solution and working with tightly focused projects, and there 

are similar considerations when evaluating new and 

innovative solutions over their mature and well-tested 

counterparts. 
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