
 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        336 

International Journal of Computer Sciences and Engineering    Open Access 

Review Paper                                         Vol.-6, Issue-5, May 2018                                       E-ISSN: 2347-2693 

                 

A Detailed Study On Features of Data Warehousing Database-Vertica  

 
Jisha Mariam Jose 

 
1*

Dept. Of CSE, New Horizon College Of Engineering , Bangalore, India  
 

*Corresponding Author:   jmjisha@gmail.com 
 

Available online at: www.ijcseonline.org  

21/May/2018, Published: 31/May/2018 

Abstract— The data which are to be stored and analyzed for various purposes have gone beyond the storage limit of the 

traditional relational database system. This has led in emerge of various big data technologies to store and process this huge 

collection of varieties of data. Vertica is an HP enterprise product, which is used in data warehouses to store and perform data 

analysis that are stored for decades. Vertica is not only used in data warehouses but also it can be integrated with Hadoop 

ecosystem for big data analysis. This paper basically describes the architecture, features, storage, various operations in  Vertica 

analytics database that has made Vertica to be used for managing and analysis of large volumes of fast-growing data for 

achieving higher performance in query intensive applications and data warehouses.  

 

 

Keywords—Column Orientation,  Hybrid Store, Projections, Partitions, Tuple Mover, High Availability, Automatic Database 

Designer 

 

I. INTRODUCTION 

 

Vertica is a big data database product from HP. It is also a 

data warehousing database for handling 

terabytes/petabytes/exabyte of data. Vertica is a massively 

parallel SQL RDBMS (Structured Query Language 

Relational Database Management System) that 

commercializes the ideas of the Column-Store Project [1]. 

And hence supports a subset of ANSI SQL-99 standard. Its 

provided with JDBC/ODBC (Java Database 

Connectivity/Open Database Connectivity) drivers and a 

command line client (vsql: an interactive utility of Vertica to 

type SQL commands)[2]. It basically runs on major Linux 

distributions (RHEL, Suse, Debian, and Ubuntu). Also, 

Amazon AMI (Amazon Machine Image) is available for 

running Vertica in the cloud. Vertica’s so-called”Community 

Edition” mode supports up to 1 TB of data and a cluster of 3 

nodes without the license [2]. For larger setups, it requires a 

license from HP [3]. 

 

The main aim of this system is to achieve the features that 

users always expect from commercial RDBMSs, such as 

ACID transactions, a standardized declarative query 

language, security, high availability, etc., but with an 

architecture that is more focused on optimization of 

analytical queries for higher performance rather than 

transaction processing [4]. As the table size is growing for 

smaller companies also in much faster rate, the analytic 

workload has also increased. By concentrating on analytic 

workloads, it is possible to improve the performance in 

orders of magnitudes for existing one-size-fits-all systems[5]. 

In this paper, the sections are organized as follows: Section I 

contains introduction on Vertica Database, Section II 

contains Vertica object hierarchy that describes how logical 

description of tables are converted to containers that are 

physically stored in Vertica database, Section III contains 

detailed description on hybrid storage model of Vertica that 

deals with different types of data load and how data 

movement happen from primary memory to disk, Section IV 

describes the complete study on features of Vertica with 

examples which led Vertica to be used in big data analytics, 

Section V explains various types of projections and how they 

are formed, Section VI describes Vertica’s partitioning 

concept with example and Section VII includes the 

conclusion. 

II.    VERTICA OBJECT HIERARCHY 

 

It is helpful to understand the following terms when using 

Vertica [3]: 

Host: A computer system with RAM(Random Access 

Memory), hard disk, Intel or AMD processor of 32-bit or 64-

bit and TCP/IP(Transmission Control Protocol/Internet 

Protocol) network interface (IP address and hostname). Hosts 

share neither disk space nor main memory with each other 

[3]. 

 

Instance: An instance of Vertica consists of a Vertica 

process in running state and disk storage to store catalog and 



  International Journal of Computer Sciences and Engineering                                     Vol.6(5), May 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        337 

data on a host. Only one instance of Vertica can be in 

running state on a host at any particular time [3]. 

 

Node: A host configured to run an instance of Vertica. It is a 

member of the database cluster. For a database to have the 

ability to recover from the failure of a node, the database 

must be with a K-safety value of at least 1 (3+ nodes) [3]. 

 

Cluster: A collection of hosts (nodes) bound to a database. 

A cluster is not part of a database definition and does not 

have a name [3]. 

 

Database: A cluster of nodes that can perform data storage 

in a distributed manner and execute SQL statement on active 

mode through administrative, interactive, and programmatic 

user interfaces [3]. 

 

 
Figure 1. Vertica Object Hierarchy 

 

Table: Vertica supports tables as a logical concept called as 

anchor table. A table has one or more projections in Vertica.  

 

Projection: A projection is a collection of table columns. 

They are physical storage for table data. Data in a projection 

is compressed, encoded and sorted making it optimized for 

query execution. In the above figure 1, downward arrow 

marks indicate the columns on which a particular projection 

is sorted. The two basic types of projections in Vertica are: 

      (1) Super projection:  It contains every column of a table.  

      (2) Query-specific projection: It contains only the subset 

of table columns. 

 

For every table, Vertica creates at least one super 

projection.  At query execution, the optimizer chooses the 

best projection for the query. We can create projections using 

the Vertica Database Designer or create them manually. 

Vertica automatically creates projections on first data load 

into a table. Data is loaded through tables into projections. 

We can also manually create projections for existing tables 

using the CREATE PROJECTION statement as follows:  

 CREATE PROJECTION projection name 

(projection_col,...)  

AS SELECT table_col,...FROM existing_table ... 

 

Container: Vertica stores the projection data in ROS 

containers. Logical grouping of all data files (data file + 

metadata file) on a node against a projection is called a 

container. There can be more than one container for a single 

projection on a particular node. This happens because every 

time on insert or delete operation new data files (or broadly, 

containers)  are created and not appended to the older files. 

But this limitation is only for 10 min because after 10 min 

(default time, can be configured also) tuple mover will 

perform merge out action to merge all the containers of a 

single projection into a bigger one. We can have 1024 

containers per projection per node. 

III. HYBRID DATA STORE 

 

 
Figure 2. Hybrid Store- WOS & ROS 

 

Vertica is unique in many ways, one of which can be seen in 

its data storage model. To understand the Vertica storage 

model, we first need to understand these three elements:  

ROS (Read-Optimized Store)  

WOS (Write-Optimized Store) 

Tuple Mover 

Vertica uses two distinct structures for storing data: WOS 

and ROS.  

 

WOS – Write Optimized Store:  

In Vertica, WOS means Write Optimized Store. The WOS is 

used for low-latency data loading and data storage is done in-

memory [3]. It is designed to support INSERT, UPDATE, 

DELETE, and COPY operations. Initially, some small data 

are loaded to memory (WOS) in row format. Data stored in 

WOS for some time are also allowed to query. But they are 

unoptimized that means without compression or indexing to 



  International Journal of Computer Sciences and Engineering                                     Vol.6(5), May 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        338 

support faster loading and volatile. It will take the longest 

time to return results for data in WOS. 

 

ROS – Read Optimized Store:  

ROS, on the other hand, is structured for fast reads. ROS 

means Read Optimized Store. This disk storage structure is 

read oriented and highly optimized.  ROS data are partitioned 

into separate sections known as storage containers. A 

container is just a set of column-wise data files created by 

moveout or COPY DIRECT statements and stored in a 

particular group of files. These data are both sorted and 

compressed that are stored in ROS of a database.  

 

Vertica stores two files per column within a ROS container 

[6]: one with the actual column data, and one with a position 

index. Data are identified by a position that means ordinal 

position within a file in each ROS container. Positions are 

implicit and are never stored explicitly [6]. The position 

index is approximately (1/ 1000) the size of the raw column 

data and stores metadata per disk blocks such as start 

position, minimum value and maximum value that improve 

the speed of the execution engine and permits fast tuple 

reconstruction. 

 

Tuple Mover:  

Tuple Mover of Vertica is used to move data from WOS to 

ROS. The Tuple Mover performs two operations:  Moveout 

and Mergeout. 

 

Moveout:  

During moveout operations, the Tuple Mover writes data to 

temporary space, where they are stored in columnar, sorted, 

encoded format. Once data re-organization is complete, 

moveout task moves data to ROS, creating new ROS 

containers for the new data. ROS containers are created and 

data are organized into projections on the disk. When data 

are committed to disk, data are removed from temporary 

space.  Since the new data coming to ROS after moveout 

operations need not be merged with existing ROS data 

immediately, the movement of data in ROS container is 

faster. The tuple mover moveout task is performed whenever 

WOS reaches maximum capacity or by default after every 

5min. 

  

Merge out:  

During the Tuple Mover’s mergeout task, the small ROS 

containers that were created during moveout operations or on 

COPY DIRECT statements are combined or merged into 

larger containers. It is important because query from 

different containers will lead to slow results. Mergeout task 

compresses multiple containers to fewer containers. This 

allows the query to run more efficiently. It also purges data 

that is marked for deletion. By default mergeout task run 

automatically every 10 min. 

 

Need For the Hybrid Model  
Vertica uses the hybrid model to support different types of 

load. We can get data into Vertica database using any of 

these three methods: 

(1) Load data into WOS and let the Tuple Mover move it 

to ROS (Auto):  

 Vertica loads data into WOS and continues loading directly 

to ROS if WOS becomes full. Size of WOS is 25% or 2GB 

of available RAM. 

(2) Load data directly into ROS using the DIRECT 

option (Direct):  

If data loaded to WOS exceed the size, the data are 

automatically spill over to ROS. That means, for Bulk load 

or large load: the best practice is to load data directly to 

ROS.  

(3) Trickle load data only into WOS (Trickle):  

Vertica loads small amount of data incrementally. This 

method is used only when we are confident   that the WOS 

can hold the data, we are loading. Whenever the WOS 

becomes full, the entire data load is rolled back and error 

occurs. 

 

When we use the COPY, INSERT, or UPDATE statements, 

data are loaded into WOS first by default and then after a 

specified interval of time data are loaded to ROS. We can 

manually load data directly into ROS also using the COPY 

DIRECT, INSERT DIRECT, or UPDATE DIRECT 

options.

 
Figure 3. WOS –ROS With Different Load 

IV. FEATURES OF VERTICA ANALYTICS 

PLATFORM 

There major features which make it different from traditional 

RDBMS are: 

Columnar Orientation, Advances Compression, High 

Availability, massively parallel processing, application 

Integration, Automatic Database Design. 

A. COLUMNAR ORIENTATION 

Vertica stores data in a column format so it can be queried 

for best performance. Each column of the table is stored 

separately as a data file on the disk. It is ideal for workloads 



  International Journal of Computer Sciences and Engineering                                     Vol.6(5), May 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        339 

which are more read-intensive. VERTICA reads only those 

column’s data files which are needed to answer the query.  

Due to this, column storage reduces disk I/O (Input/output) 

operations when compared to row-based storage. 

 

For example: The following figure 4 contains logical anchor 

table that has some information about a shop. 

 
Figure 4. An Anchor Table 

 

In typical RDBMS, the above table is physically stored as 

Row-Wise. So, in such system the following query is 

executed as follows: 

QUERY: SELECT SUM(price) FROM shop WHERE 

cust_id=101;  

First, all rows are read to search customer with id 101 and 

then those rows are filtered out. Then, on these selected 

rows, price column is scanned to find the sum. 

 

 
Figure 5. Row-Wise Storage in RDBMS 

 

But in case of Vertica database, the figure 4, anchor table is 

physically stored as Column-wise that means each column is 

stored as separate data file as shown in below figure. 

 
Figure 6. Column-Wise Storage in Vertica Database 

 

Here, the QUERY: SELECT SUM(price) FROM shop 

WHERE cust_id=101; is executed as follows: 

FIRST, only two column data files (cust_id, price files) are 

read and left all data files are ignored. And then cust_id 101 

and its corresponding prices are filtered out as the solution 

for the above query. The information about which are the 

values corresponding to customer id 101 in price data file is 

obtained with the help of meta-data files which are stored 

along with every data file in ROS container. 

 

B. ADVANCED COMPRESSION 

Vertica uses encoding and compression to optimize query 

performance and save storage space. 

Encoding: Encoding converts data into a standard format 

called as encoded data, which increases performance because 

there is less disk I/O during query execution[3]. Vertica uses 

a number of different encoding strategies, depending on 

column data types: table cardinality, and sort order. In 

addition, it can store more data in less space. It also passes 

encoded values to other operations, saving memory 

bandwidth. Vertica can directly process encoded data 

because Verica query optimizer can directly understand the 

encoded data which is encoded using Vertica’s encoding 

strategies. The cardinality ratio means the dataset with more 

distinct values will have higher cardinality ratio. 

 

Encoding Types 

1. Auto: The system goes through properties of data and 

picks up the most appropriate encoding type automatically. It 

is the default type and is mostly used when insufficient usage 

examples are known [6]. 

2. RLE: It means Run Length Encoding. It replaces 

sequences of identical values with a single pair that contains 

the value and number of occurrences. This type is best for 

sorted columns with low cardinality values [6],[7]. 

3. Delta Value: Data is recorded as a difference from the 

smallest value in a data block. This type is best for unsorted 

columns with high cardinality. 

4. Block Dictionary: Here, within a data block, distinct 

column values are stored in a dictionary and actual values are 



  International Journal of Computer Sciences and Engineering                                     Vol.6(5), May 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        340 

replaced with references to the dictionary. This type is best 

for few-valued, unsorted columns such as stock prices.  

5. Compressed Delta Range: It stores each value as a delta 

from the previous one. This type is ideal for many-valued 

float columns that are either sorted or confined to a range.  

6. Compressed Common Delta: It builds a dictionary of all 

the deltas in the block and then stores indexes into the 

dictionary using entropy coding. This type is best for sorted 

data with predictable sequences and occasional sequence 

breaks. For example, timestamps recorded at periodic 

intervals or primary keys. 

 

Compression: Compression transforms data into a compact 

format.  Vertica uses integer packing for unencoded integers 

and LZO(Lempel–Ziv–Oberhumer)  for compressed data. 

Using compression, Vertica stores more data, and uses less 

hardware than other databases. Using compression, it is 

possible to store much more historical data in physical 

storage. Before Vertica can process compressed data it must 

be decompressed. 

 

Compression allows a column store to occupy substantially 

less storage than a row store [3]. In a column store, every 

value stored in a column of a projection has the same data 

type. This greatly facilitates compression and encoding 

techniques, particularly in sorted columns. In a row store, 

each value of a row can have a different data type, resulting 

in a much less effective use of 

compression.

 
Figure 7. Data Files Before Encoding & Compression 

       

 
Figure 8. Data Files in Vertica After Encoding & Compression 

 

Let’s see in this case how a query is executed from encoded 

and compressed files[8]. 

QUERY:  SELECT cust_id FROM shop WHERE 

purchase=’2017-12-15’; 

Because of column-oriented storage, only two data files 

cust_id, purchase are scanned. When “purchase” data file 

is referred in above figure 8, the values 2017-12-21, 3 

indicates :  

First 3 records do not match with query’s filter value “2017-

12-15”, so ignore the corresponding first 3 records in cust_id 

data file also. This connectivity between data files are 

identified with the help of metadata files stored along with 

each data file in ROS container. 

 

C. HIGH AVAILABILITY 

Vertica provides high availability of the database by making 

multiple copies of the same data on different nodes. Even if 

the node is down in Vertica, the loading and querying of data 

are performed. In Vertica, the node after its recovery, 

automatically queries the other nodes to recover  missing 

data. Clustering supports scaling and redundancy. Database 

cluster can be scaled by adding more hardware. Reliability 

can be improved by distributing and replicating data across 

the cluster. 

 

K-safety sets the fault tolerance in the database cluster. The 

value K also represents the number of copies of segmented 

data in the database cluster. In Vertica, the value of K can be 

zero (0), one (1), or two (2). It means, even if any one node 

in a database with a K-safety value of one (K=1) goes down, 

the database still continues to run normally and all the data 

will be available. When a node is added to the cluster or 

comes back online after being unavailable, it automatically 

queries other nodes to update its local data [3].  

 

If more than the value of K, the number of nodes get fail, 

some of the data in the database will become unavailable. In 

this case, the database is considered as unsafe and 

automatically shuts down. However, if every data segment is 

available on at least one functioning node, then Vertica 

continues to run safely. 

 

Buddy Projections 

Vertica creates copies of segmented projections of same data 

that are distributed across nodes in a cluster that also 

determines the value of K-safety. These copies are called as 

buddy projections. This ensures that even if the nodes go 

down according to K-safety value, all the data will be still 

available from the remaining nodes. 

 

The way Vertica stores these copies is that it divides each 

table into n number of pieces, n being the number of nodes. 

then it copies each piece into each node starting with say 

node 1. it then copies the pieces from the second copy on 



  International Journal of Computer Sciences and Engineering                                     Vol.6(5), May 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        341 

each node again, but this time starting at node 2. Similarly, it 

copies the pieces of the third copy starting with node 3. 

 

Example 1: In the below 3-node cluster figure 9, ksafety- 1 

is achieved with one buddy projection in each neighbouring 

nodes. If node-2 goes down, still database is safe because 

segment A can be obtained from node-1, segment B from 

node-3’s buddy projection and segment C from node-3. 

 
Figure 9.  Three Node Cluster with one Buddy Projection 

 

Example 2:  In the below figure 10, if any one node goes 

down (say node 2), still all the segments are available for the 

database to be in the safe state. So, for the below five node 

cluster, high availability with ksafety -1 is always achievable.  

Let’s see, if ksafety-2 is achievable for the same orientation 

of nodes.  

 
Figure 10. Five Node Cluster with one Buddy projection 

 

Example 3: From the figure 11 & figure 12, if two nodes- 

node 2 and 4 goes down still database will be in the safe state 

as all the segments are available from remaining nodes. But 

if node 1 and 2 goes down, the database will be unsafe as all 

segments (segment A) will not be available. So, for five 

nodes cluster  with k-safety 2 is not always high available for 

the below orientation. 

 
Figure 11. Five Node Cluster With Node-2, Node-4 As Down 

 

 
Figure 12. Five Node Cluster With Node-1, Node-2 As Down 

 

Example 4: A shown in the below figure 13, for five node 

cluster to achieve high availability with ksafety-2, we must 

have minimum two buddy projection for every node. Here, if 

any two nodes go down, still all the segments are available. 

 
Figure 13. Five Nodes Cluster with Two Buddy Projections 

 

Examples of some cases where the database will function 

properly even  if half of the nodes in a cluster are down. 

K-safety = 1 means two things : 
i) ANY one node can fail in the cluster. 

ii)One less than half the number of nodes can fail in the 

cluster as long as no two nodes are adjacent to each other. So 

if you have 10 nodes then the database can be running even if 

4 nodes go down. 

 

Example 5: The above fig 14, shows a 10 node cluster with 

a k-safety of 1. Node 2, 4, 6 and 8 have failed, yet the cluster 

will continue functioning as all the segments are available 

from remaining nodes. So with a k-safety of 1, up to one less 

than 50% of the nodes i.e. 4 nodes can go 

down.

 
Figure 14. Ten Nodes Cluster With One Buddy Projection, Node 2,4,6,8 are    

down 
 

 

 

k-safety=2 means : 
i)ANY two nodes can fail in the cluster. 

ii)As long as not more than three contiguous nodes fail, the 

cluster can take the failure of the other nodes with the limit 

of 1 less than 50% of the nodes. 

 

Example 6: The above fig 15, shows a 10 node cluster with 

a k-safety of 2. Node 2, 3, 5 and 6 have failed, yet the cluster 

will continue functioning as all the segments are available 

from remaining nodes. 

 



  International Journal of Computer Sciences and Engineering                                     Vol.6(5), May 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        342 

Figure 15. Ten Nodes Cluster With One Buddy Projection, Node 2, 3, 5, 6 

are down 

 

Since the probability of more than two continuous nodes 

failing even in large clusters is pretty low. This enables us to 

create resilient clusters with tens or a couple hundred nodes. 

 

D. AUTOMATIC DATABASE DESIGN 

Vertica's Database Designer(DBD) is a tool that is used for 

analysing the logical schema, sample data, and sample 

queries as an option. It recommends projection design that 

provides the best performance for the user’s workload. It is 

also used to create a data storage and projections design that 

can be deployed automatically or manually that can be used 

by anyone without specialized database knowledge that is 

even business users can run Database Designer. We can run 

and re-run the DBD(Database Designer) any number of times 

for additional optimization without stopping the database[3].  

One can store various projections with different column sort 

orders of a particular table. By this, on run of DBD, it 

automatically selects the best projection for the given set of 

queries[7].  

 

Every projection has its own set of data file and projections 

doesn’t share their data file. Every column has a separate 

data file, where data get stored against projection in vertica. 

On creation of table, projection is not formed. But on a load 

of data for the first time, a projection is created [may not be 

optimized]. On update or deletion of further data, projections 

are also updated accordingly. 

  

Explanation: 

Suppose on initial load of data projection p1 is created for 

table T1[9]. In Vertica, when data is loaded for the first time: 

a super projection and buddy projection [according to k-

safety value] is created. Here, these projections may not be 

optimized very well because on load time only a few 

information is known.  Such projections are called as 

unoptimized super projection.   Then for query Q1, on 

run of automatic database design following thing happens: 

DBD analyses data and query and if required 

prepare a separate projection(say p2) for faster retrieval of 

query Q1. For next query Q2, if DBD is run again: if 

previous projections are sufficient for query Q2, then no 

additional projection is created. But if it analyses data, Q2 

and finds better projection can be created, then P3 is created 

and so on.  

 

Query specific projection is the projection formed on 

running of database designer for a specific query and during 

which it is analyzed that a new projection with a subset of 

columns of a table has to be created for faster performance. 

Initial or original projection, which has been created on all 

columns of a table during the initial load of data is called 

super projection. 

 

Projection can be created manually also by using manual 

creation syntax. We can use the Database Designer to create 

one of the following types of designs: 

 A comprehensive design that allows creating new 

projections for all tables in the database in one stretch. 

 An incremental design that creates projections for all 

tables that are referenced in the queries that are  supplied 

to DBD. 

 

Comprehensive mode: 
A comprehensive design creates an initial projection when 

DBD is run for the first time or replacement design for all the 

tables in the specified schemas of the database. When we run 

DBD for the first time it is recommended to run in 

comprehensive mode. Basically, it replaces all unoptimized 

projections with optimized projections. 

 

To help Database Designer in creating an efficient design, 

the representative data has to be loaded into the tables before 

the beginning of the design process. When you load data into 

a table, Vertica creates an unoptimized super projection so 

that Database Designer has projections to optimize. If a table 

has no data, Database Designer cannot optimize it [3]. 

 

Optionally, supply Database Designer with representative 

queries that are planned, so that Database Designer can 

optimize the design for them[10]. If queries are not 

supplied,  Database Designer creates an optimized super 

projection in general that minimizes storage, but query-

specific projections are not created in such case.  

 

Incremental mode:  

After you create and deploy a comprehensive database 

design, it's likely that your database will change over time in 

various ways. Database Designer is run in incremental design 

mode to address these changes in database schema [3].  

• Significant data additions or updates 

• New or modified queries that you run regularly 

• Performance issues with one or more queries 

• Schema changes 

It will not replace existing unoptimized or optimized super 

projection as it might be used by some other queries. It only 

creates a new one, only if required. Design queries are 

required for incremental designs. 

 

Database Designer yields the following output[3]: 

• A design script that creates the projections for the design 

in a way that meets the optimization objectives and 

distributes data uniformly across the cluster. 

• A deployment script that creates and refreshes the 

projections for your design. For comprehensive designs, 

the deployment script contains commands that remove 

non-optimized projections. The deployment script includes 

the full design script. 



  International Journal of Computer Sciences and Engineering                                     Vol.6(5), May 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        343 

• A backup script that contains SQL statements to deploy the 

design that existed on the system before deployment. This 

file is useful in case you need to revert to the pre-

deployment design. 

 

Optimization Objectives 

Optimize for query performance 

• Generate a set of candidate projection for each query. 

• Invokes the optimizer to determine query costs of 

projections and pick the one with the  lowest cost 

Optimize storage footprints 

• Tries every possible encoding and compression type on 

every column. 

• For each column, select the encoding and compression 

type, that most reduces the size 

Balanced design 

• Database Designer creates a design whose objectives are 

balanced between database size and query performance. 

A fully optimized query has an optimization ratio of 0.99.  

 

E. MASSIVELY PARALLEL PROCESSING(MPP) 

Vertica is a shared architecture. It allows each node in the 

cluster to work on its portion of a database when running a 

query. The public network is used for communication with 

outside world and the Private network is used for intra node 

communication(query plans, query results, data loads). All 

nodes in the cluster are peers. We can load data continuously 

in real time to any node. The request will be equally 

distributed and managed by making one of the node initiators 

of query execution and others as executors. 

 

In other words, SQL query is written against tables. In order 

to execute a query, the Vertica database generates a query 

plan. A query plan is the sequence of steps used to determine 

the execution path and resource cost for each step. The cost 

calculated at each step in a query plan is the estimation of 

resources used like:-  

 Data distribution statistics 

 Disk space 

 Network bandwidth 

 CPU speed 

 Data segmentation across  the cluster  

When you submit a query, the initiator chooses the 

projections to use, optimizes and plans the query execution. 

Planning and optimization are quick, requiring at most a few 

milliseconds. 

 

The query plan that the optimizer produces after choosing 

one of the projections is further broken down into “mini-

plans.” These mini-plans are distributed to the other nodes, 

known as executors. The nodes process the mini-plans in 

parallel, interspersed with data movement operations. The 

query execution proceeds with intermediate result sets (rows) 

flowing through network connections between the nodes as 

needed.  

 

In the final stages of executing a query plan, some wrap-up 

work is done at the initiator, such as:- 

 Combining outcomes after the  group by operation 

 Merging all the partial outputs received  from all the 

executors 

 Formatting these aggregated results  to return to the format 

which is understood by the client. 

 
Figure 16. Broader View of 3 Node Cluster in the Network 

 

F. APPLICATION INTEGRATION 

Vertica is integrated with various technologies that include 

tools starting from ETL(Extract Transform Load) tools, data 

store management , analyzing the results, Business 

intelligence, and visualizing as dashboard etc. Vertica 

supports industry-standard drivers, such as ODBC and 

JDBC, for connecting client applications to Vertica.  

 

Vertica has native integration with open source big data 

technologies like Apache Kafka and Apache Spark. It 

supports for standard programming interfaces, 

including ODBC, JDBC, ADO.NET(ActiveX Data Objects 

(ADO) technology), and OLEDB(Object Linking and 

Embedding, Database). It also supports high-performance 

and parallel data transfer to statistical tools such as built-

in machine learning algorithms based on R-language, and the 

ability to store machine learning models, and use them for in-

database scoring. 

 

V. VERTICA PROJECTIONS 

A. TYPES OF PROJECTIONS 

1. Super Projection  

2. Query-specific Projection  

3. Buddy Projection 

4. Pre-Join Projection 

5. Live Aggregate Projection 

 

(1) Super Projection:  

A super projection contains all the columns of a table. For 

each table in the database, Vertica requires a minimum of 



  International Journal of Computer Sciences and Engineering                                     Vol.6(5), May 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        344 

one projection, which is the super projection. Super 

projection is the one that Vertica automatically creates when 

we initially load data into a table using INSERT, COPY 

commands. A table can have multiple super projections. 

 

(2)  Query-specific Projection: 
A query-specific projection is a collection of a subset of 

columns of a table that is used to process a specified given 

query. Query-specific projections significantly improve the 

performance of those queries for which they are optimized. 

 

(3)  Buddy Projection: 

A projection with the same columns and segmentation on 

different nodes to provide high availability. 

 

(4) Pre-join projection: 

In pre-join projection, multiple tables are joined and stored in 

the form of projection. These are manually created. A pre-

join projection contains inner joins between tables that are 

connected by primary key or foreign key constraints. Pre-join 

projections provide a significant performance advantage over 

joining tables at query run time.  

 

(5) Live Aggregate Projection: 

These are manually created projections that contain 

aggregated data. A live aggregate projection contains 

columns with values that are aggregated from columns in its 

anchor table. When we load data into the table, Vertica 

aggregates the data before loading it into the live aggregate 

projection. On subsequent loads—for example, 

through INSERT and COPY—Vertica recalculates 

aggregations with the new data and updates the projection. 

Since aggregated data is already present in these projections, 

the queries with aggregate functions such as SUM, COUNT, 

MIN, MAX etc. are executed more efficiently. 

B. VERTICA DISTRIBUTION OF  DATA  ON 

DIFFERENT NODES. 

There are two methods of distribution: 

(1) Replication: It is the process of copying the full 

projection to each node. This method is used for small 

projections such as projections with less than 1million 

records.  

(2) Segmentation: It is the process of segmenting and 

distributing the projection data across multiple nodes. 

This method is used for large projections. 

Vertica creates copies of segmented projections that are 

distributed across database nodes known as buddy 

projections. 

 

Segmented Projections : 

We typically create segmented projections for large 

tables.  Vertica splits segmented projections into chunks 

(segments) of similar size and distributes these segments 

evenly across the cluster. K-safety determines how many 

duplicates (buddies) of each segment are created and 

maintained on different nodes. We create segmented 

projections with a CREATE PROJECTION statement that 

includes a SEGMENTED BY clause[3].  

Projection segmentation achieves the following goals: 

• Ensures high availability and recovery. 

• Spreads the query execution workload across multiple 

nodes. 

• Performs optimization of each node according to the given 

query workloads 

Vertica uses hash segmentation to segment large projections. 

Hash segmentation allows you to segment a projection based 

on a built-in hash function that provides even distribution of 

data across multiple nodes, resulting in optimal query 

execution. 

 

In a projection, the data to be hashed can be one or 

combination of columns that have a large number of unique 

values. For this, usually primary key columns are used as 

hash function arguments. 

 
Figure 17. Segment Distribution Across 3 Nodes with K-safety 1 

 

Unsegmented Projections(Replication): 

HP Vertica performs replication in case of small, 

unsegmented projections and creates buddy projections in 

case of large, segmented projections for ensuring high 

availability and recovery for database clusters of three or 

more nodes. 

 

When it creates projections, Database Designer does not 

segment projections for small tables; rather it replicates 

them, creating and storing duplicates of these projections on 

all nodes within the database.  

 
Figure 18: Replication Distribution Across 3 Node Cluster 



  International Journal of Computer Sciences and Engineering                                     Vol.6(5), May 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        345 

 

We can also manually create un segmented projections with 

a CREATE PROJECTION statement that includes the 

clause UNSEGMENTED ALL NODES. This clause 

specifies to create identical instances of the projection on all 

cluster nodes. 

 

Creation of  Projections Manually 

The components of projection are:  

• Column List and Encoding 

• Base Query 

• Sort Order 

• Segmentation 

 

For Example 

The following is a table “hello” in schema “test”  shown 

from  VSQL  editor of Vertica(3 node cluster) 

dbadmin=> select * from  test.hello; 

  

eno  |  name         | age  | dno 

------+---------+-----+---------- 

 1002 | ramana      |  21  |  10 

 1003 | rohit           |  22  |  30 

 1004 | romy          |  23   |  20 

1001  | ram            |  21  |  10 

1200  | MEERA     |  25  |  20 

1211  | qwerty       |  23  |  30 

 

CASE 1 :  Creation of manual projection depicting 

Replication with ksafe = 1 

dbadmin=> create projection hello_m1( eno encoding 

deltaval, age encoding RLE) as select eno, age from 

test.hello order by eno ksafe 1; 

 

 

where,  

Column List and Encoding : (eno encoding deltaval, age 

encoding RLE) 

Base Query: select eno, age from test.hello 

Sort Order: order by eno 

Segmentation: No segmentation, that means its replication 

 

dbadmin=> \dj 

                                  List of projections 

Schema  | Name    |  Owner   |      Node                 | Comment 

------------+------------------------------------+---------+---------- 

 test      | hello_b0  | dbadmin |                                | 

 test      | hello_b1  | dbadmin |                                | 

 test      | hello_m1 | dbadmin | v_nhdb_node0002 | 

 test      | hello_m1 | dbadmin | v_nhdb_node0001 | 

 test      | hello_m1 | dbadmin | v_nhdb_node0003 | 

 

Here ,a  new projection “hello_m1”  is replicated on all the 3 

nodes of the cluster. 

 

dbadmin=> select *  from  test.hello_m1; 

  eno  | age 

------+----- 

 1001 |  21 

 1002 |  21 

 1003 |  22 

 1004 |  23 

 1200 |  25 

 1211 |  23 

 

CASE 2: creation on manual projection depicting 

segmentation with ksafe = 1 

dbadmin=> create projection hello_m2( eno encoding 

deltaval, dno encoding RLE) as select eno, dno from 

test.hello order by eno segmented by hash(eno) all nodes 

ksafe 1; 

 

where,  

Column List and Encoding : (eno encoding deltaval, dno 

encoding RLE) 

Base Query: select eno, dno from test.hello  

Sort Order: order by eno 

Segmentation: segmented by hash(eno) all nodes 

 

dbadmin=> \dj 

                                  List of projections 

Schema |Name             |  Owner   |   Node             | Comment 

------------+------------------------------------+---------+---------- 

 test       | hello_b0         | dbadmin |                                | 

 test       | hello_b1         | dbadmin |                                | 

 test       | hello_m1        | dbadmin | v_nhdb_node0002 | 

 test       | hello_m1        | dbadmin | v_nhdb_node0001 | 

 test       | hello_m1        | dbadmin | v_nhdb_node0003 | 

 test       | hello_m2_b0 | dbadmin  |                                | 

 test       | hello_m2_b1 | dbadmin  |                                | 

 

For segmentation with ksafe=1, one buddy projection is 

created. Since data is segmented across three nodes 

internally; the distribution of these segments of a particular 

projection on three nodes are not shown here. 

 

dbadmin=> select * from test.hello_m2_b0; 

 eno  | dno 

------+----- 

 1002 |  10 

 1003 |  30 

 1004 |  20 

 1001 |  10 

 1200 |  20 

 1211 |  30 

 

CASE 3: Creation of manual projection depicting 

Replication with ksafe= 0 



  International Journal of Computer Sciences and Engineering                                     Vol.6(5), May 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        346 

dbadmin=> create projection hello_m5( eno encoding 

deltaval, age encoding RLE) as select eno, age from 

test.hello order by eno ksafe 0; 

 

where, 

Column List and Encoding : ( eno encoding deltaval, age 

encoding RLE) 

Base Query: select eno, age from test.hello  

Sort Order: order by eno 

Segmentation: No segmentation, that means replication 

 

dbadmin=> \dj; 

                                  List of projections 

Schema | Name             |  Owner    |      Node       | Comment 

-----------------------------------------+------------------------------- 

 test       | hello_m5_b0  | dbadmin  |                      | 

 test       | hello_m5_b1  | dbadmin  |                      | 

 

Since,  Replication and ksafe =0 (that means there is no 

availability) is a contradiction, Vertica system itself has 

taken the distribution as segmentation which is by default. 

And by default ksafe value for segmentation is 1. Hence one 

buddy projection is created. 

 

CASE 4: Creation of manual projection depicting 

segmentation with ksafe =0 

dbadmin=>create projection hello_m6( eno encoding 

deltaval, name) as select eno, name  from test.hello order by 

eno segmented by hash(eno) all nodes ksafe 0; 

 

where,  

Column List and Encoding : ( eno encoding deltaval, name) 

Base Query: select eno, name  from test.hello 

Sort Order: order by eno 

Segmentation: segmented by hash(eno) all nodes 

 

dbadmin=> \dj; 

                             List of projections 

Schema | Name             |  Owner   |    Node      | Comment 

-----------------------------------------+------------------------------ 
 test        | hello_m5_b0  | dbadmin  |                 | 

 test        | hello_m5_b1  | dbadmin  |                 | 

 test        | hello_m6        | dbadmin  |                 | 

 

Since ksafe=0, no buddy projection is created in this 

segmentation distribution. 

 

VI. VERTICA’S PARTITIONING 

HP Vertica supports data partitioning at the table level, that 

means partition is done for all the projections of a particular 

table which gets divided into smaller pieces. Partitions are 

commonly used when data in projections are  divided based 

on time. For example, if we have data in the table over the 

years, then retrieval of information from such data can be 

made faster by partitioning the table by the year or by month 

if the data stored in the table are based on a particular year. 

To drop a partition, first data from different nodes are 

segregated and then a whole partition is dropped. Data 

management and performance of queries are improved due to 

partitions.  

 

The below figure 19, shows an example of a logical table that 

is stored in two projections: cust_info, product_info. These 

projections are further segmented to machine1 and machine2. 

And last part of the figure shows how machine2’s segmented 

data is further partitioned according to months[10].  

 

 
 

 

 



  International Journal of Computer Sciences and Engineering                                     Vol.6(5), May 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        347 

 

 
Figure 19. Storage of Data in hierarchical order: Anchor table, Projection, 

segments on different machine, Partition done on segments 

 

The Vertica partitioning capability makes it easy to manage 

this data efficiently[10]. Now for the above figure 19, if  a 

query is given as: SELECT custid FROM customer_info 

WHERE purchase_date LIKE ‘%-10-2017%; The following 

two level of pruning is done in vertica : 

• Only selected column’s data file is fetched[that means 

custid, purchase_date] because of column-orientation 

property.  

• Only a particular ROS container is searched [that means 

October container ] because of partitioning.  

• Hence, high performance is achieved in Vertica.  

In above example partitioning is done for the year 2017 by 

“month” , so total 12 ROS container is created for the year 

2017. 

 

Case 1: When a new data is inserted for October-2017,  

• Then a separate ROS container is created . 

• Then on merge out, this container will merge with existing 

October-2017 container to become a  larger container. 

Case 2: When a new data is inserted for October-2018,  

• Then a separate ROS container is created for October-

2018.  

• But this new container will not be merged with existing 

one because existing one is October-2017 and the new one 

is October -2018.  

 

You can specify partitioning for a table when you initially 

define the table with CREATE TABLE. Also, ALTER TABLE 

command   can be used to change the definition of an 

existing table. In the first case, whenever the data is inserted, 

it is automatically loaded to the respective partitions that are 

already created during the initial stage. Whereas in the 

second case, the existing data has to be repartitioned 

explicitly using Vertica function called PARTITION_TABLE. 

A table definition specifies partitioning through 

a PARTITION BY clause[3]: 

PARTITION BY expression 

Where,  expression resolves to a value derived from one or 

more table columns. The column on which partitioning is 

done has to be not null constraint[3]. 

 

Example 1: Create partitioning on table “test” of schema 

”nh014” month -wise 
Create table nh014.test 

(tsymbol char, 

tdate date not null) 

partition by extract (month from tdate); 

 

Insertion of  data is done as follows: 

=>insert into nh014.test values(‘a’, ’01-Jan-2017’); 

=>insert into nh014.test values(‘b’, ’12-Feb-2017’); 

=>insert into nh014.test values(‘a’, ’23-Jun-2017’); 

=>insert into nh014.test values(‘a’, ’28-Dec-2017’); 

commit;  

 

To verify partition formation  using Vertica system table 

“partitions” 
=>Select projection_name, ros_id, partition_key, 

node_name, ros_row_count from partitions where 

table_schema=‘nh014’  and  projection_name=test_b0;  

 

To do manually moveout : 

Manually TUPLE MOVER MOVEOUT  is done so that data 

which are in WOS after insertion are moved out to ROS 

instead of waiting for MOVEOUT action to happen 

automatically after some time. 

 Select DO_TM_TASK(‘MOVEOUT’); 

 

To do manually mergeout  

Manually TUPLE MOVER MERGEOUT  is done so that data 

which are in newly created ROS container will be merged 

with already existing partition ROS container to become a 

single large container instead of waiting for MERGEOUT 

action to happen automatically after some time. 

=>SELECT DO_TM_TASK(‘MERGEOUT’); 



  International Journal of Computer Sciences and Engineering                                     Vol.6(5), May 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        348 

 

Example 2: Creation of table  initially without 

partitioning 
=> Create table nh014.test1 

(tsymbol char, 

tdate date not null); 

 

Insertion of  data is done as follows: 

=>insert into nh014.test1 values(‘a’, ’01-jan-2017’); 

=>insert into nh014.test1 values(‘b’, ’12-Feb-2017’); 

=>insert into nh014.test1 values(‘a’, ’23-Jun-2017’); 

=>insert into nh014.test1 values(‘a’, ’28-dec-2017’); 

commit;  

 

Addition of partition on the above table using ALTER 

TABLE syntax: 

 

ALTER TABLE nh014.test1 PARTITION BY EXTRACT 

(MONTH FROM TDATE) REORGANIZE; 

 

Example 3: Partitioning by Year and Month in 

combination 
To partition by both year and month in combination, the 

partition clause should  be like –append  month indicated by 

two digits with year as an expression like this: 

PARTITION BY EXTRACT(year FROM tdate)*100 + 

EXTRACT(month FROM tdate) 

This expression formats partition keys as follows: 

201701 201702 201803 ... 201711 201802  

VII. CONCLUSION  

As data is growing in faster rate in terms of volume, velocity, 

variety etc; it has become important to store, manage and 

perform analysis on such large data. This paper gives an 

overall idea on Vertica database’s basic features and out of 

these, some features are common for other databases that are 

used in big data applications also. The column-store feature 

of Vertica helps in faster retrieval of queries from a huge 

collection of data whereas high availability describes how a 

database can be always available, even if some nodes are 

down according to k-safety value. Each section of this paper 

will give a deeper insight into every feature of Vertica, where 

some concept’s  practical implementation is also shown.   

REFERENCES 

[1] D.J. Abadi, P.A. Boncz, S.Harizopoulos, “Column-oriented 

database systems”, In The Proceedings of the VLDB 

Endowment, pp. 1664–1665, 2009. 

[2] T. Siivola, “A Short Introduction To Vertica”, RedHat 
Software Developer Meetup, 2014. 

[3]  “Vertica Analytics Platform”, Vertica Documentation, 

Version: 8.1.x, 2018. 

[4] C. Bear, A. Lamb, N. Tran, “The Vertica Database: SQL 
RDBMS For Managing Big Data”, In The Proceedings of the 
workshop on Management of big data systems, 2012. 

[5] M. Stonebraker, “One size fits all: an idea whose time has 
come and gone”,  In The Proceedings of 21st International 
Conference on Data Engineering, pp. 2-11, 2005. 

[6] A. Lamb, et al., “The Vertica Analytic Database : C-Store 7 
Years Later”, In The Proceedings of the VLDB Endowment 
vol.5, No.12,  pp  1790–1801, 2012. 

[7] D. Abadi, D. Myers, D. DeWitt,  S. Madden, “Materialization 

Strategies in a Column-Oriented DBMS”, In The Proceedings 

IEEE 23rd International Conference on Data Engineering, pp 

466—475,  2007. 

[8] S.Chakraborty , J. Doshi, “Data Retrieval from Data 
Warehouse Using Materialized Query Database”, 
International Journal of Computer Sciences and Engineering, 
Vol.6, Issue.1, pp-280-284, 2018.  

[9] Ramakrishna Varadarajan, V. Bharathan, A. Cary, J. Dave, S. 
Bodagala, “DBDesigner: A Customizable Physical Design 
Tool for Vertica Analytic Database”, In The Proceedings of   
IEEE 30th International Conference, pp. 1084-1095, 2014. 

[10]  “A DBMS Architecture Optimized for Next-Generation Data 
Warehousing” , The Vertica Analytic Database Technical 
Overview White Paper,  Vertica System,  2010. 

 

Authors Profile 

Ms. Jisha Mariam Jose pursued Bachelor of 

Technology in Computer Science and 

Engineering        from Govt. Engineering 

College, Thrissur, Kerala, India  in 2009 and 

Master of Technology in Computer 

Information Science from Cochin University 

of Science and technology  in year 2012 , after 

securing 97.53 percentile in GATE-2010. She 

is currently working as Assistant Professor in Department of 

Computer Science and Engineering, New Horizon College of 

Engineering, Bangalore, India. Her main area of interests are: Big 

Data Analytics, Database Management System, Data Mining and 

Computer Networks. She has 3.5 years of teaching experience. 

 

 


