
 © 2017, IJCSE All Rights Reserved 333

International Journal of Computer Sciences and Engineering Open Access

Review Paper Volume-5, Issue-6 E-ISSN: 2347-2693

Software Quality Modeling by Process

N. Rajasekhar Reddy
1*

, M. Vinaya Babu
2

1
Dept.of Computer Science and Engineering, Rayalaseema University, Kurnool, India

2
Dept.of Computer Science and Engineering, Chalapati Institute of Engineering, Guntur, India

‘Corresponding Author: rajasekhar.2802@gmail.com ,mobile:9886820923

 ‘Available online at: www.ijcseonline.org

Received: 25/May/2017, Revised: 02/Jun/2017, Accepted: 20/Jun/2017, Published: 30/Jun/2017

Abstract-- Our world runs on software. Every business depends on it, every mobile phone uses it, and even every new car relies

on code. Without software, modern civilization would fall apart. Given this reality, the quality of that software really matters.

Because it’s so widely used and so important, low-quality software just isn’t acceptable. But what exactly is software quality?

It’s not an easy question to answer, since the concept means different things to different people. One useful way to think about

the topic is to divide software quality into three aspects: functional quality, structural quality, and process quality. Doing this

helps us see the big picture, and it also helps clarify the trade-offs that need to be made among competing goals.

Keywords - Quality, Methodologies, six sigma, innovation

I. INTRODUCTION

Before we do this, however, it’s worth taking a moment to

think about what software quality isn’t. It’s tempting to view

software quality through the same lens as other kinds of

quality, such as quality in a manufacturing process. Doing

this is misleading, however. In manufacturing, a primary

goal is to minimize defects in products created through a

repeatable process. Methodologies such as Six Sigma

were created to help do this, and they’ve been quite

effective. Yet every software development project requires

some innovation—if this isn’t true, you should be buying

rather than building the software—and so the project isn’t

executing an exactly repeatable process. Because of this,

views of quality rooted in manufacturing aren’t the best

approach to thinking about software quality. A broader

perspective is required.

Three phasis of process using control, solution , process

these process utilized in software modelling.

Who Cares About Software Quality? With software or

anything else, assessing quality means measuring value.

Something of higher quality has more value than something

that’s of lower quality. Yet measuring value requires

answering another question: value to whom? In thinking

about software quality, it’s useful to focus on three groups of

people who care about its value, as Figure 1 shows. Figure 1:

As a development process transforms an idea into working

software, three main groups of people care about the

software’s quality. As the figure illustrates, a development

process converts an idea into usable software. The three

groups of people who care about the software’s quality

during and after this process are:

As the figure illustrates, a development process converts an

idea into usable software. The three groups of people who

care about the software’s quality during and after this

process are: 3 The software’s users, who apply this software

to some problem. The development team that creates the

software. The sponsors of the project, who are the people

paying for the software’s creation. For software developed

by an organization for its own use, for example, these

sponsors are commonly business people within that

organization. All three of these groups care about software

quality. The aspects of quality that each finds most

important aren’t the same, however. Understanding these

differences requires taking a closer look at what software

quality really means. Defining Software Quality: Three

Aspects There’s no one right way to think about software

quality—it’s a complicated area. It is useful, however, to

group its various components into three broad aspects.

Figure 2 illustrates this idea. There are many connections

among these three aspects of software quality. For example,

improving process quality with agile development methods

increases the odds of getting the project’s requirements right,

which also improves functional quality. There are trade-offs

as well, where improving quality in one area can lower

quality in another. An organization might speed up a

project’s development process to meet a deadline—

improving process quality— only to find that the number of

bugs in the software has gone up, hurting functional quality.

Similarly, cutting features can lower functional quality, since

users get less of what they’re looking for, but improve

process quality by increasing the odds of meeting a release

date. In general, each development project weighs the

interests of all three groups—and all three aspects of

quality—against one another. Different projects make

different trade-offs. There are many connections among

these three aspects of software quality. Unsurprisingly,

 International Journal of Computer Sciences and Engineering Vol.5(6), Jun 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 334

everybody involved in a software project cares most about

the aspects of quality that directly impact them. Users care

primarily about functional quality, since that’s what they

see. They’re also likely to care about some aspects of

process quality, such as the delivery date of the final

software. Users typically don’t care at all about structural

quality, even though its absence might well impact them

over the software’s lifetime. A development team certainly

does care about structural quality, however, since they’re the

people who will be affected by the problems caused by low

quality here. They also care about functional quality,

although perhaps a bit less than users do—cutting features

that users want can make life easier for developers.

Development teams also care about process quality, in part

because it provides many of the metrics by which they’re

measured. The third group, sponsors, cares about everything:

functional quality, structural quality, and process quality. If

 they’re smart, the people paying for the project know that

slacking off in any area is a poor long-term strategy. In the

end, sponsors are striving to create business value, and the

best way to do this is by taking a broad view of software

quality. They must also understand the connection between

quality and risk. The risk of accepting lower software quality

in, say, a community website, is much less than the risk of

allowing lower quality in an airplane’s flight control system.

Making the choice appropriately commonly requires trade-

offs among competing goals.

II. TOOLS FOR IMPROVING SOFTWARE QUALITY

Viewing software quality as having three distinct aspects is

useful. It implies, however, that tools for improving software

quality need to address all three parts. Functional quality is

important—testing certainly matters—but tools focused on

structural and process quality are needed, too. Tools for

improving functional quality include manual testing tools

that let a tester explore the software through its user

interface, along with tools for automated testing, such as

frameworks for unit testing. Tools for load testing and

performance testing can also help measure and improve

those components of functional quality. Tools that help

improve the structural quality of software provide services

such as refactoring, which lets a developer improve how

code is organized without changing what that code does.

Structural quality tools can also provide static code analysis,

examining code for security problems (such as the potential

for SQL injection attacks) and other problems, along with

dynamic code analysis, which might include performance

profiling, measures of test coverage, and more. These tools

can also provide various code metrics, such as measurements

of cyclamate complexity

Tools for improving process quality help monitor and

manage the development process. They include support for

tracking the status of the process, perhaps by mapping

requirements against progress measurements for the

developer responsible for each one. Process quality tools can

also provide insight into code churn, i.e., the number of lines

added or modified each week, progress in finding and fixing

bugs, test plan progress, and other measures of project

health. Whatever they do, it’s important to realize that

unlike tools for functional quality and structural quality,

which are typically used solely by the development team,

tools for process quality are also used by the project’s

sponsors (and maybe even by the software’s users). This

means that these tools should be accessible through less

technically focused interfaces, such as spreadsheets and

collaboration software. Making them available only through

developer tools isn’t enough. As with every other aspect of

software development, using good tools certainly helps.

Tools aren’t the whole story, of course. Activities such as

group code reviews and effective management can also have

a big impact on various aspects of software quality—people

matter. Yet as with every other aspect of software

development, using good tools certainly help.

REFERENCES

[1] Humphrey, W.S. and M. Kellner, Software Process Modeling:

Principles of Entity Process Models, Proc. 11th. Intern. Conf.

Software Engineering, IEEE Computer Society, Pittsburgh, PA,vol.30,

n0. 12, pp.331-342, 1989 june
 [2]Lehman, M. M., Process Models, Process Programming, Programming

Support, Proc. 9th. Intern. Conf. Software Engineering, PA,vol.20, n0.

15, pp 14-16, IEEE Computer Society, 1987 Dec.

[3]Mi, P. and W. Scacchi, A Knowledge Base Environment for Modeling

and Simulating Software Engineering Processes, IEEE Trans.

Knowledge and Data Engineering, PA,vol.2, n0. 3 , pp, 283-294,
1990 July.

[4]Mockus, A., R.T. Fielding, and J. Herbsleb, A Case Study of Open
Software Development: The Apache Server, Proc. 22nd. International

Conf. Software Engineering, Limerick, IR, PA,vol.50, n0. 12, pp 263-

272, 2000 March.
 [5]R. Radice, N.K. Roth, A.C. O'Hara and W.A. Ciarfella, A Programming

Process Architecture. IBM Systems Journal, PA,vol.24, n0. 2, pp ,

79-90,1985.Dec.

