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Abstract— Software Testing is the process of testing the software in order to ensure that it is free of errors and produces the 

desired outputs in any given situation. Properly generated test suites may not only locate the defects in software systems, but 

also help in reducing the high cost associated with software testing. Model based software testing is an approach in which 

software is viewed as a set of states. There are a number of models of software in use today, a few of which make good models 

for testing. This paper introduces model-based testing and discusses its tasks in general terms with finite state models. Ant 

colony optimization (ACO) is best suited to model based software testing like finite state machines, state charts, the unified 

modeling language (UML) and Markov chains. 
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I.  INTRODUCTION  

Software testing remains the primary technique used to gain 

consumers’ confidence in the software. Software quality 

remains a major problem for the software industry 

worldwide. Unfortunately, it is always a time-consuming and 

costly task to test a software system. Obviously, techniques 

that support the automation of software. A system fails when 

it does not meet its specification. The purpose of testing a 

system is to discover faults that cause the system to fail 

rather than proving the code correctness, which is often an 

impossible task. In the software testing process, each test 

case has an identity and is associated with a set of inputs and 

a list of expected outputs. Testing will result in significant 

cost saving. The application of artificial intelligence (AI) 

techniques in Software Engineering (SE) is an emerging area 

of research. Number of researchers around the world did the 

work on software testing using artificial inelegance; they 

examine the effective use of AI for SE related activities 

which are inherently knowledge intensive and human-

centred. These issues necessitate the need to investigate the 

suitability of search algorithms, e.g. simulated annealing, 

genetic algorithms, and ant colony optimization as a better 

alternative for developing testing the data [6].  

Ant Colony Optimization provides a general-purpose search 

methodology, which uses principles of the swarm 

intelligence [1]. In this paper, we discussed a new, 

computationally intelligent approach to improving the 

effectiveness of a given test set by eliminating "bad" test 

cases that are unlikely to expose any error, while increasing 

the number of "good" test cases that have a high probability 

of producing an erroneous output [7]. 

 

II. MODEL BASED SOFTWARE TESTING 

A model of software is a depiction of its behaviour. 

Behaviour can be described in terms of the input sequences 

accepted by the system, the actions, conditions, and output 

logic, or the flow of data through the application’s modules 

and routines. In order for a model to be useful for groups of 

testers and for multiple testing tasks, it needs to be taken out 

of the mind of those who understand what the software is 

supposed to accomplish and written down in an easily 

understandable form. It is also generally preferable that a 

model be as formal as it is practical. With these properties, 

the model becomes a shareable, reusable, precise description 

of the system under test. There are various examples of 

model based software testing are available, some of these are 

finite state machines, state charts, the unified modeling 

language (UML) and Markov chains. 

The requirement common to most styles of testing is a well-

developed understanding of what the software accomplishes, 

and MBST is no different. Forming a mental representation 

of the system’s functionality is a prerequisite to building 

models. The following are some guidelines to the activities 

that may be performed in MBST. 

 

1. Determine the components/features that need to be tested 

based on test objectives. No model is ideal to completely 

describe a complex or large system. Determining what to 
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model for testing is a first step in keeping MBST 

manageable. 

2. Start exploring target areas in the system. If development 

has already started, acquiring and exploring the most recent 

builds with the intent of learning about functionality. 

3. Gather relevant, useful documentation. Like most testers, 

model-based testers need to learn as much as possible about 

the system. Reviewing requirements use cases, 

specifications, miscellaneous design documents, user 

manuals. 

4. Establish communication with requirements, design, and 

development teams if possible. Talking things over with other 

teams on the project can save a lot of time and effort, 

particularly when it comes to choosing and building a model.  

5. Identify the users of the system. Each entity that either 

supplies or consumes system data, or affects the system in 

some manner needs to be noted.  

6. Enumerate the inputs and outputs of each user. In some 

contexts, this may sound like an overwhelming task, all users 

considered, and it is tedious to perform manually. At this 

point, because automation is usually intended in MBST, the 

tester needs to begin investigating means of simulating inputs 

and detecting output. 

7. Study the domains of each input. In order to generate 

useful tests in later stages, real, meaningful values for inputs 

need to be produced.  

8. Document input applicability information. To generate 

useful tests, the model needs to include information about the 

conditions that govern whether an input can be applied by the 

user. 

9. Document conditions under which responses occur. A 

response of the system is an output to one its users or a 

change in its internal data that affects its behaviour at some 

point in the future. The conditions under which inputs cause 

certain responses need to be studied.  

10. Study the sequences of inputs that need to be modelled. 

This vital activity leads straight to model building and is 

where most of the misconceptions about the system are 

discovered (or worse, formed).  

11. Understand the structure and semantics of external data 

stores. This activity is especially important when the system 

keeps information in large files or relational databases. 

Knowing what the data looks like and what it means allows 

weak and risky areas to be exposed to analysis.  

12. Understand internal data interactions and computation. 

As with the previous activity, this under test and 

consequently the model’s capabilities of generating bug-

revealing test data.  

 

III. ANT COLONY OPTIMIZATION 

 

Ant Colony Optimization (ACO) is a paradigm for designing 

meta-heuristic algorithms for combinatorial optimization 

problems. The first algorithm which can be classified within 

this framework was presented in 1991 and, since then, many 

diverse variants of the basic principle have been reported in 

the literature. The essential trait of ACO algorithms is the 

combination of a priori information about the structure of a 

promising solution with a posterior information about the 

structure of previously obtained good solutions[3][4]. Meta-

heuristic algorithms are algorithms which, in order to escape 

from local optima, drive some basic heuristic: either a 

constructive heuristic starting from a null solution and adding 

elements to build a good complete one, or a local search 

heuristic starting from a complete solution and iteratively 

modifying some of its elements in order to achieve a better 

one. The meta-heuristic part permits the low level heuristic to 

obtain solutions better than those it could have achieved 

alone, even if iterated. Usually, the controlling mechanism is 

achieved either by constraining or by randomizing the set of 

local neighbour solutions to consider in local search. The 

characteristic of ACO algorithms is their explicit use of 

elements of previous solutions [5]. 

The ACO meta-heuristic framework can be applied to 

discrete optimization problems having a finite set of 

components with connections between these components 

(with associated costs). More than this there is also a set of 

constraints on what components and connections compose a 

feasible solution, and each feasible solution is said to have a 

quality which is calculated by a function of all of the 

component costs. 

During food hunting, ants leave pheromone on the travelled 

paths, and the shortest path will be discovered through 

teamwork and pheromone evaporation process [8][9]. 

Assume in the beginning of food foraging, ants choose their 

paths in random toward the direction of the food source, even 

when they come to a fork in the road, so any possible path 

would remain pheromone odour (Figure 1). In the return trip, 

since the pheromone evaporates in different evaporation rates 

according to the length of paths, it leads to different amount 

of residual pheromone. Therefore, the longer the path, the 

more pheromone evaporation, the less residual pheromones. 

The other follower ants will choose the shorter path 

according to the amount of residual pheromones. Through 

the time evolution of the group cooperation, ants will 

eventually choose the shortest path. the functioning of an 

ACO algorithm can be summarized as follows. A set of 

computational concurrent and asynchronous agents (a colony 

of ants) moves through states of the problem corresponding 

to partial solutions of the problem to solve. They move by 

applying a stochastic local decision policy based on two 

parameters, called trails and attractiveness. By moving, each 

ant incrementally constructs a solution to the problem. When 

an ant completes a solution, or during the construction phase, 

the ant evaluates the solution and modifies the trail value on 

the components used in its solution. This pheromone 

information will direct the search of the future ants. 

Furthermore, an ACO algorithm includes two more 

mechanisms: trail evaporation and, optionally, daemon 

actions. Trail evaporation decreases all trail values over time, 
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in order to avoid unlimited accumulation of trails over some 

component. Daemon actions can be used to implement 

centralized actions which cannot be performed by single 

ants, such as the invocation of a local optimization 

procedure, or the update of global information to be used to 

decide whether to bias the search process from a non-local 

perspective. 

 

 
 
Figure 1:- Random path and shortest path  

 

IV. MBST AND ACO 

 

The difficulty of generating tests from a model depends on 

the nature of the model. Models that are useful for testing 

usually possess properties that make test generation effortless 

and, frequently, automatable [2] [14]. For some models, all 

that is required is to go through combinations of conditions 

described in the model, requiring simple knowledge of 

combinatory. In the case of finite state machines, it is as 

simple as implementing an algorithm that randomly traverses 

the state transition diagram. The sequences of arc labels 

along the generated paths are, by definition, tests. For 

example, in the state transition diagram below, the sequence 

of inputs ―a, b, d, e, f, i, j, k‖ qualifies as a test of the 

represented system.[10] 

It is not always feasible to generate all the possible test cases 

due to paucity of time, cost and other factors. Hence there is 

a need to automate the testing process that can generate the 

effective test paths (by prioritizing different paths) thereby 

reducing the overall cost of the testing process and increase 

the probability of finding the errors in the software systems.  

A single test path cannot be used to detect all the possible 

defects in the software. ACO algorithm was initially applied 

to find a solution to the travelling salesman problem. The 

main idea of this paper is to incorporate the self organizing 

behaviour of ant with the artificial agents to solve the 

complex computational problem of finding the most optimal 

path among the different generated paths. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 2- A state machine 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 3:- Test path in state machine 

 

Real world ants, wander randomly, upon finding food return 

to their colony while laying down pheromone trails. If other 

ants find such a path, they will move on that path rather than 

move randomly [11][12]. Thus, when an ant finds a good 

(shorter) path from the colony to the food source, the 

pheromone level will be high in that path and all the ants will 

eventually follow that single path. Therefore, the selection 
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procedure for a path is based on the probability of finding a 

path that has the highest pheromone level and heuristic 

knowledge.  

 

V. ATTRIBUTES USED FOR GENERATING AND 

PRIORITIZING THE PATHS  
 

In this algorithm ant has ability to collect the Knowledge of 

all feasible paths (a path from source to destination) from its 

current state. This approach is defined in feasibility set of 

path (Fij).The ant also has other information about path: 

pheromone level on path (τij), Heuristic information for the 

paths (ηij), Learned Value (Lij), visited states with the help 

of visited status (Vs) and last is probability parameter P. 

When transitions between two nodes are exits and ant 

explored that transition then ant will update the pheromone 

level as well as heuristic value. Pheromone level is increased 

according to last pheromone level and heuristic information 

but heuristic information, is update only on the basis of 

previous heuristic information[13]. 

An ant p at a vertex i and another vertex j which is directly 

connected to ―i‖, it means there is a path between the vertices 

i and j i.e. (i->j). In the graph this path associated with six 

tuple Fij (p), τij (p), ηij (p), Vs(p) and Pij (p), Lij(p) where 

(p) shows that values of tuple associated with ant p. All 

description about these attribute is given below:  

Prioritization of the paths is done based on the pheromone 

level of the edges of the corresponding path. The edges are 

associated with Fij (p), τij (p), ηij (p), Lij (p) and Pij (p) 

where (p) shows the values of tuple associated with ant p. 

Description about the attributes:  

 

 Feasible path set: If there is a direct edge from vertex i 

to vertex j then Fij = 1, otherwise Fij = 0  

 Pheromone τij: τij represents pheromone level from 

vertex i to vertex j and is being constantly updated as the 

paths are traversed.  

 Heuristic ηij: represents the visibility of the path for an 

ant and is used to calculate the probability for the ant to 

take a particular path  

 Learned Lij: Lij indicates the possibility of finding new 

paths if the vertex j is chosen for traversal.  

 Probability Pij: Pij indicates the probability of ant to 

choose vertex j for traversal from vertex i. Probability 

depends on the feasible set, heuristic and the pheromone 

level of the corresponding path. 

 

VI. CONCLUSIONS 

 

Ant Colony Optimization has been and continues to be a 

fruitful paradigm for designing effective combinatorial 

optimization solution algorithms. This paper presented an ant 

colony optimization approach to test sequence generation for 

state-based software testing. Using this algorithm, a group of 

ants can effectively explore the UML State chart diagrams 

and automatically generate test sequences to achieve the test 

adequacy requirement. The discussed technique has proven 

to be effective in generating optimal set of test cases from a 

Markov chain based usage model. Especially with the growth 

in software with extensive graphical interfaces, usage 

modeling will prove to be very productive. 
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