

 © 2018, IJCSE All Rights Reserved 370

International Journal of Computer Sciences and Engineering Open Access

Review Paper Volume-6, Issue-3 E-ISSN: 2347-2693

Application of ACO in Model Based Software Testing: A Review

Navneet Kaur
*
, Jaskaranjit Kaur

2
, J.S.Budwal

3

1*

Dept. of Computer Science & IT, Lyallpur Khalsa College, Jalandhar, Punjab, India
2
Dept. of Computer Science & IT, Lyallpur Khalsa College, Jalandhar, Punjab, India

3
Dept. of Computer Science, GSSS Hazara, Jalandhar, Punjab, India

*Corresponding Author: saininavneet@gmail.com, Tel.: 98157-76890

Available online at: www.ijcseonline.org

Received: 18/Feb//2018, Revised: 21/Feb2018, Accepted: 23/Mar/2018, Published: 30/Mar/2018

Abstract— Software Testing is the process of testing the software in order to ensure that it is free of errors and produces the

desired outputs in any given situation. Properly generated test suites may not only locate the defects in software systems, but

also help in reducing the high cost associated with software testing. Model based software testing is an approach in which

software is viewed as a set of states. There are a number of models of software in use today, a few of which make good models

for testing. This paper introduces model-based testing and discusses its tasks in general terms with finite state models. Ant

colony optimization (ACO) is best suited to model based software testing like finite state machines, state charts, the unified

modeling language (UML) and Markov chains.

Keywords— Ant Colony, Optimization, Model Based Software Testing, Optimal Path, State Machine.

I. INTRODUCTION

Software testing remains the primary technique used to gain

consumers’ confidence in the software. Software quality

remains a major problem for the software industry

worldwide. Unfortunately, it is always a time-consuming and

costly task to test a software system. Obviously, techniques

that support the automation of software. A system fails when

it does not meet its specification. The purpose of testing a

system is to discover faults that cause the system to fail

rather than proving the code correctness, which is often an

impossible task. In the software testing process, each test

case has an identity and is associated with a set of inputs and

a list of expected outputs. Testing will result in significant

cost saving. The application of artificial intelligence (AI)

techniques in Software Engineering (SE) is an emerging area

of research. Number of researchers around the world did the

work on software testing using artificial inelegance; they

examine the effective use of AI for SE related activities

which are inherently knowledge intensive and human-

centred. These issues necessitate the need to investigate the

suitability of search algorithms, e.g. simulated annealing,

genetic algorithms, and ant colony optimization as a better

alternative for developing testing the data [6].

Ant Colony Optimization provides a general-purpose search

methodology, which uses principles of the swarm

intelligence [1]. In this paper, we discussed a new,

computationally intelligent approach to improving the

effectiveness of a given test set by eliminating "bad" test

cases that are unlikely to expose any error, while increasing

the number of "good" test cases that have a high probability

of producing an erroneous output [7].

II. MODEL BASED SOFTWARE TESTING

A model of software is a depiction of its behaviour.

Behaviour can be described in terms of the input sequences

accepted by the system, the actions, conditions, and output

logic, or the flow of data through the application’s modules

and routines. In order for a model to be useful for groups of

testers and for multiple testing tasks, it needs to be taken out

of the mind of those who understand what the software is

supposed to accomplish and written down in an easily

understandable form. It is also generally preferable that a

model be as formal as it is practical. With these properties,

the model becomes a shareable, reusable, precise description

of the system under test. There are various examples of

model based software testing are available, some of these are

finite state machines, state charts, the unified modeling

language (UML) and Markov chains.

The requirement common to most styles of testing is a well-

developed understanding of what the software accomplishes,

and MBST is no different. Forming a mental representation

of the system’s functionality is a prerequisite to building

models. The following are some guidelines to the activities

that may be performed in MBST.

1. Determine the components/features that need to be tested

based on test objectives. No model is ideal to completely

describe a complex or large system. Determining what to

 International Journal of Computer Sciences and Engineering Vol.6(3), Mar 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 371

model for testing is a first step in keeping MBST

manageable.

2. Start exploring target areas in the system. If development

has already started, acquiring and exploring the most recent

builds with the intent of learning about functionality.

3. Gather relevant, useful documentation. Like most testers,

model-based testers need to learn as much as possible about

the system. Reviewing requirements use cases,

specifications, miscellaneous design documents, user

manuals.

4. Establish communication with requirements, design, and

development teams if possible. Talking things over with other

teams on the project can save a lot of time and effort,

particularly when it comes to choosing and building a model.

5. Identify the users of the system. Each entity that either

supplies or consumes system data, or affects the system in

some manner needs to be noted.

6. Enumerate the inputs and outputs of each user. In some

contexts, this may sound like an overwhelming task, all users

considered, and it is tedious to perform manually. At this

point, because automation is usually intended in MBST, the

tester needs to begin investigating means of simulating inputs

and detecting output.

7. Study the domains of each input. In order to generate

useful tests in later stages, real, meaningful values for inputs

need to be produced.

8. Document input applicability information. To generate

useful tests, the model needs to include information about the

conditions that govern whether an input can be applied by the

user.

9. Document conditions under which responses occur. A

response of the system is an output to one its users or a

change in its internal data that affects its behaviour at some

point in the future. The conditions under which inputs cause

certain responses need to be studied.

10. Study the sequences of inputs that need to be modelled.

This vital activity leads straight to model building and is

where most of the misconceptions about the system are

discovered (or worse, formed).

11. Understand the structure and semantics of external data

stores. This activity is especially important when the system

keeps information in large files or relational databases.

Knowing what the data looks like and what it means allows

weak and risky areas to be exposed to analysis.

12. Understand internal data interactions and computation.

As with the previous activity, this under test and

consequently the model’s capabilities of generating bug-

revealing test data.

III. ANT COLONY OPTIMIZATION

Ant Colony Optimization (ACO) is a paradigm for designing

meta-heuristic algorithms for combinatorial optimization

problems. The first algorithm which can be classified within

this framework was presented in 1991 and, since then, many

diverse variants of the basic principle have been reported in

the literature. The essential trait of ACO algorithms is the

combination of a priori information about the structure of a

promising solution with a posterior information about the

structure of previously obtained good solutions[3][4]. Meta-

heuristic algorithms are algorithms which, in order to escape

from local optima, drive some basic heuristic: either a

constructive heuristic starting from a null solution and adding

elements to build a good complete one, or a local search

heuristic starting from a complete solution and iteratively

modifying some of its elements in order to achieve a better

one. The meta-heuristic part permits the low level heuristic to

obtain solutions better than those it could have achieved

alone, even if iterated. Usually, the controlling mechanism is

achieved either by constraining or by randomizing the set of

local neighbour solutions to consider in local search. The

characteristic of ACO algorithms is their explicit use of

elements of previous solutions [5].

The ACO meta-heuristic framework can be applied to

discrete optimization problems having a finite set of

components with connections between these components

(with associated costs). More than this there is also a set of

constraints on what components and connections compose a

feasible solution, and each feasible solution is said to have a

quality which is calculated by a function of all of the

component costs.

During food hunting, ants leave pheromone on the travelled

paths, and the shortest path will be discovered through

teamwork and pheromone evaporation process [8][9].

Assume in the beginning of food foraging, ants choose their

paths in random toward the direction of the food source, even

when they come to a fork in the road, so any possible path

would remain pheromone odour (Figure 1). In the return trip,

since the pheromone evaporates in different evaporation rates

according to the length of paths, it leads to different amount

of residual pheromone. Therefore, the longer the path, the

more pheromone evaporation, the less residual pheromones.

The other follower ants will choose the shorter path

according to the amount of residual pheromones. Through

the time evolution of the group cooperation, ants will

eventually choose the shortest path. the functioning of an

ACO algorithm can be summarized as follows. A set of

computational concurrent and asynchronous agents (a colony

of ants) moves through states of the problem corresponding

to partial solutions of the problem to solve. They move by

applying a stochastic local decision policy based on two

parameters, called trails and attractiveness. By moving, each

ant incrementally constructs a solution to the problem. When

an ant completes a solution, or during the construction phase,

the ant evaluates the solution and modifies the trail value on

the components used in its solution. This pheromone

information will direct the search of the future ants.

Furthermore, an ACO algorithm includes two more

mechanisms: trail evaporation and, optionally, daemon

actions. Trail evaporation decreases all trail values over time,

 International Journal of Computer Sciences and Engineering Vol.6(3), Mar 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 372

in order to avoid unlimited accumulation of trails over some

component. Daemon actions can be used to implement

centralized actions which cannot be performed by single

ants, such as the invocation of a local optimization

procedure, or the update of global information to be used to

decide whether to bias the search process from a non-local

perspective.

Figure 1:- Random path and shortest path

IV. MBST AND ACO

The difficulty of generating tests from a model depends on

the nature of the model. Models that are useful for testing

usually possess properties that make test generation effortless

and, frequently, automatable [2] [14]. For some models, all

that is required is to go through combinations of conditions

described in the model, requiring simple knowledge of

combinatory. In the case of finite state machines, it is as

simple as implementing an algorithm that randomly traverses

the state transition diagram. The sequences of arc labels

along the generated paths are, by definition, tests. For

example, in the state transition diagram below, the sequence

of inputs ―a, b, d, e, f, i, j, k‖ qualifies as a test of the

represented system.[10]

It is not always feasible to generate all the possible test cases

due to paucity of time, cost and other factors. Hence there is

a need to automate the testing process that can generate the

effective test paths (by prioritizing different paths) thereby

reducing the overall cost of the testing process and increase

the probability of finding the errors in the software systems.

A single test path cannot be used to detect all the possible

defects in the software. ACO algorithm was initially applied

to find a solution to the travelling salesman problem. The

main idea of this paper is to incorporate the self organizing

behaviour of ant with the artificial agents to solve the

complex computational problem of finding the most optimal

path among the different generated paths.

Figure 2- A state machine

Figure 3:- Test path in state machine

Real world ants, wander randomly, upon finding food return

to their colony while laying down pheromone trails. If other

ants find such a path, they will move on that path rather than

move randomly [11][12]. Thus, when an ant finds a good

(shorter) path from the colony to the food source, the

pheromone level will be high in that path and all the ants will

eventually follow that single path. Therefore, the selection

1

2

3

4

5

8

7

9

6

Start/final

b

a

d

c

e

f g

h

i j

m

l

q
p

k

o

n

1

2

3

4

5

8

7

9

6

Start/final

b

a

d

c

e

f g

h

i j

m

l

q
p

k

o

n

 International Journal of Computer Sciences and Engineering Vol.6(3), Mar 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 373

procedure for a path is based on the probability of finding a

path that has the highest pheromone level and heuristic

knowledge.

V. ATTRIBUTES USED FOR GENERATING AND

PRIORITIZING THE PATHS

In this algorithm ant has ability to collect the Knowledge of

all feasible paths (a path from source to destination) from its

current state. This approach is defined in feasibility set of

path (Fij).The ant also has other information about path:

pheromone level on path (τij), Heuristic information for the

paths (ηij), Learned Value (Lij), visited states with the help

of visited status (Vs) and last is probability parameter P.

When transitions between two nodes are exits and ant

explored that transition then ant will update the pheromone

level as well as heuristic value. Pheromone level is increased

according to last pheromone level and heuristic information

but heuristic information, is update only on the basis of

previous heuristic information[13].

An ant p at a vertex i and another vertex j which is directly

connected to ―i‖, it means there is a path between the vertices

i and j i.e. (i->j). In the graph this path associated with six

tuple Fij (p), τij (p), ηij (p), Vs(p) and Pij (p), Lij(p) where

(p) shows that values of tuple associated with ant p. All

description about these attribute is given below:

Prioritization of the paths is done based on the pheromone

level of the edges of the corresponding path. The edges are

associated with Fij (p), τij (p), ηij (p), Lij (p) and Pij (p)

where (p) shows the values of tuple associated with ant p.

Description about the attributes:

 Feasible path set: If there is a direct edge from vertex i

to vertex j then Fij = 1, otherwise Fij = 0

 Pheromone τij: τij represents pheromone level from

vertex i to vertex j and is being constantly updated as the

paths are traversed.

 Heuristic ηij: represents the visibility of the path for an

ant and is used to calculate the probability for the ant to

take a particular path

 Learned Lij: Lij indicates the possibility of finding new

paths if the vertex j is chosen for traversal.

 Probability Pij: Pij indicates the probability of ant to

choose vertex j for traversal from vertex i. Probability

depends on the feasible set, heuristic and the pheromone

level of the corresponding path.

VI. CONCLUSIONS

Ant Colony Optimization has been and continues to be a

fruitful paradigm for designing effective combinatorial

optimization solution algorithms. This paper presented an ant

colony optimization approach to test sequence generation for

state-based software testing. Using this algorithm, a group of

ants can effectively explore the UML State chart diagrams

and automatically generate test sequences to achieve the test

adequacy requirement. The discussed technique has proven

to be effective in generating optimal set of test cases from a

Markov chain based usage model. Especially with the growth

in software with extensive graphical interfaces, usage

modeling will prove to be very productive.

REFERENCES

[1] Huaizhong LI, C. Peng LAM, ―An Ant Colony Optimization Approach

To Test Sequence Generation For State Based Software Testing”, Fifth

International Conference on Quality Software (QSIC’05), pp. 255-264,
2005.

[2] Dan Liu,Xuejun Wang, Jianmin Wang, ―Automatic Test Case

Generation Based On Genetic Algorithm‖, Journal of Theoretical and
Applied Information Technology, Vol. 48 No. 1, pp. 411-416, 2013.

[3] Praveen Ranjan Srivastava1, Nitin Jose, Saudagar Barade, Debopriyo

Ghosh, ―Optimized Test Sequence Generation From Usage Models
Using Ant Colony Optimization‖, IJSEA, Vol.1, No.2, pp. 14-28, 2010.

[4] Navneet Kaur, Jaspreet Singh Budwal, ―Hybrid Approach to Retrieval

of Reusable Component from a Repository Using Genetic Algorithms
and Ant Colony‖, International Conference on Genetic and Evolutionary

Method, Las Vegas, Nevada, USA , pp.147-152, 2008.

[5] Rafael S. Parpinelli1, Heitor S. Lopes1, And Alex A. Freitas2, ―Data
Mining With An Ant Colony Optimization Algorithm”, IEEE

Transactions on Evolutionary Computation”, Vol. 6, Issue: 4, pp. 321 –

332, 2002.
[6] Praveen Ranjan Srivastava1 and Tai-hoon Kim, ―Application of Genetic

Algorithm in Software Testing‖, International Journal of Software

Engineering and Its Applications, Vol. 3, No.4, pp. 87-96, October
2009.

[7] Navneet Kaur, Jaspreet Singh Budwal ,―Intelligent Web Search

Optimization with reference to Mutation Operator of Genetic and
Cultural Algorithms Framework‖, 2014 IEEE International Conference

on Advanced Communication, Control and Computing Technologies

(ICACCCT), pp. 619-623, 2014.
[8] Vittorio Maniezzo, Luca Maria Gambardella, Fabio de Luigi, ―Ant

Colony Optimization‖, Studies in Fuzziness and Soft Computing book

series STUDFUZZ, Vol 141, pp 101-121.
[9] Dorigo, M., Di Caro, G. & Gambardella, L. M. “Ant algorithms for

 discrete optimization”. Artificial Life Vol 5, No. 2, 137-172, 1999.

[10] Huaizhong Li and C. Peng Lam, ―Software Test Data Generation using
Ant Colony Optimization‖, International Journal of Computer,

Information Science and Engineering Vol:1 No:1, pp 126-129, 2007.

[11] M. Dorigo, A. Colorni and V. Maniezzo, “The Ant System: optimization
 by a colony of cooperating agents,” IEEE Transactions on Systems,

 Man, and Cybernetics-Part B, vol. 26, No. 1, pp. 29-41, 1996.

[12] L.M Gambardella and M. Dorigo M, ―Solving Symmetric and
Asymmetric TSPs by Ant Colonies‖, Proceedings of the IEEE

Conference on Evolutionary Computation, ICEC96, Nagoya, Japan,

May 20-22, pp. 622-627, 1996.
[13] Ahmed S. Ghiduk, ―A New Software Data-Flow Testing Approach via

 Ant Colony Algorithms‖, Universal Journal of Computer Science and

 Engineering Technology, pp 64-72, 2010.
[14] Neha Pahwa, Kamna Solanki, ―UML based Test Case Generation

 Methods: A Review‖, International Journal of Computer Applications,
 Vol 95– No.20, pp 1-6, 2014.

Authors Profile

Ms.Navneet Kaur did Master of Information Technology from Apeejay

College of Fine Arts, Jalandhar in 2003. She did her Master of

Engineering in Software Engineering from Thapar Institute of Engg. &

Technology, Patiala in 2005. She has teaching experience of 12 years.

She is currently working as Assistant Professor in Department of

Computer Science & IT, Lyallpur Khalsa College, Jalandhar, Punjab,

 International Journal of Computer Sciences and Engineering Vol.6(3), Mar 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 374

India. Her main research work focuses on Software Engineering,

Software Reuse, Genetic Algorithms and ACO.

Ms. Jaskaranjit Kaur did Master of Technology in Computer Science &

Engineering from DAV University Jalandhar in 2015. She has teaching

experience of 2 years. She is currently working as an Assistant

professor in Department of Computer Science & IT, Lyallpur Khalsa

College, Jalandhar, Punjab, India.

Mr. J.S.Budwal did Bachelor of Computer Application from Appejay

Institute of Management, Jalandhar. He did Master of Computer

Science from MDU, Rohtak, Haryana, India. He has teaching

experience of 12 years. He is currently working as Computer Faculty in

GSSS Hazara, Jalandhar,Punjab, India.

