
 © 2017, IJCSE All Rights Reserved 33

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-5, Issue-8 E-ISSN: 2347-2693

Computation of External view based Software Metrics: Java Based Tool

P.L. Powar
1*

, M.P. Singh
2
, Bharat Solanki

3
, Jawwad Wasat Shareef

4

1*
Dept. of Mathematics and Computer Science, R.D University, Jabalpur, India

2
Dept. of Computer Science, Dr. B. R. Ambedkar University Agra, Agra, India

3
 Dept. of Mathematics and Computer Science, R.D University, Jabalpur, India

4
Dept. of Mathematics and Computer Science, R.D. University, Jabalpur, India

Corresponding Author: bharat.jbp@gmail.com

Available online at: www.ijcseonline.org

Received: 19/Jul/2017, Revised: 27/Jul/2017, Accepted: 17/Aug/2017, Published: 30/Aug/2017

Abstract: Component based software development (CBSD) strategies have been found to be boon for software development

companies. The contribution of past researches in the area of software cost estimation of component based software

development was excellent. It has been noticed that the use of the components in software development is hierarchical and this

multilevel implementation increases the complexity of the software development. If the depth of the components in hierarchy

and their association and aggregation with each other are available in advance then this information helps in estimating the cost

and complexity of the software in early stage. The present paper compute the different metrics values during the design phase of

the entire life cycle of software development. A component diagram consisting of the various components and their associations

has been prepared using ArgoUML software tool. Considering a case of E-learning, our technique has been implemented on this

special case, to compute various metrics for analyzing certain results of the software at designing stage which turns out to be the

important information to control the development cost and the complexity of the software in advance. By computing external

view based metrics we can assess effort estimation and complexity of CBSE at early stage.

Keywords: Software Metrics, Static metrics, dynamic metrics, External view, Component based software.

I. INTRODUCTION

In Component based software engineering (CBSE),

component is an independent and replaceable part of a

system that performs a clear function in the context of a well

defined architecture. This option of CBSE results in better

productivity, improved quality, reduction in time spent and

cost to develop. Metrics used in component based software

engineering are helpful in achieving the quality and

managing risk in component based system by checking the

factors that affect risk and quality. Metrics help the

developer in identifying the probable risks so that proper

corrective action can be taken beforehand. Various metrics

[1] have been proposed to measure the different attributes of

a component like functionality, interactivity, complexity,

reusability etc.

A formal definition of software component has been given in

[2] which states that “A software component is a unit of

composition with contractually specified interfaces and

explicit context dependencies only. A software component

can be deployed independently and is subject to composition

by third party”. In view of [3] component based software

development is a process of connecting together the separate

component parts in order to meet the requirement of the

problem. Most of the research is inclined to improve the

methods of software development process. However, a less

attention has been given to evaluate components by using

metrics.

Considering the metrics for both individual components and

their assembly between the components, the brief survey of

the traditional software metrics has been described [4] with

the formal definition of direct and indirect component

coupling metric. The complexity metrics presented in [5]

provides formal specifications of software metrics and novel

quantitative software measures by combining coupling,

cohesion and interface metrics on the levels of the

component and component based software system (CBSS).

By using the effective software metrics
5
 the investigation has

been done regarding improved measurement tools and

techniques.

Component based software development (CBSD) involves

composing software system from existing software rather

than building from the scratch. This principle embodies an

element of “buy, don’t build” that shifts the emphasis from

programming software to composing software systems [6].

CBSD provides many advantages like reduced development

time, effort, and increased quality. The quality of the

http://dl.acm.org/author_page.cfm?id=82458847357&coll=DL&dl=ACM&trk=0&cfid=959813455&cftoken=23752990

 International Journal of Computer Sciences and Engineering Vol.5(8), Aug 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 34

application by using CBSD is tremendous when it returns the

expected results, is stable and adaptable and leads to reduce

maintenance costs.

The paper is organized as follows:

Section 1 describes the available technology and methods in

processing CBSE and their utilization. Section 2 covers the

details of the various metrics according to their different

views used in component based software. In order to use

metrics for processing of CBSE, we have referred the

techniques described in [7]. Existing work by various

researchers have been discussed in Section 3. Research

problem of the present paper has been described in Section

4. Section 5 provides the proposed methodology along with

proposed algorithm. Section 6 provides application of tool

with the help of case study. The discussions on the results are

given in section 7. Conclusion of the work has been

discussed in Section 8.

II. COMPONENT VIEWS AND METRICS

The two fundamental views of components which are as

follows:

 a black-box view

 a white-box view

The specification is the black box view which describes all

externally visible properties while the realization is the

white box view which describes the internal realization of the

component. It has been mentioned [7] that while studying the

fundamental views of components many of researchers

described the externally visible properties of the component

(i.e. its interface in a general sense) initially. Later on some

of the researchers extended their studies over the internal

realization of the component. However, the classification of

“a black box” and “a white box” is not enough to provide

information regarding “realization” that belongs to the

component itself and “realization” that belongs to its nested

and external components. In order to resolve this problem

the four different view [7] of component are:

 External view

 Shallow view

 Deep view

 Complete view

To explore the detailed study of above stated four views of

component diagram, the Table 1 shows the corresponding

different metrics for external view [7]. Similarly, the authors
7

have defined the same metric for the remaining three views.

In the present paper, authors have considered the external

view and computed its metrics. As its name implies, the

external view shows all the externally visible properties of a

component including the interfaces of its acquired

components.

III. EXISTING WORK

A set of metrics that offers useful and simple results for the

component selection process has been defined in [8] in

which the authors have presented a collection of software

component metrics focused on a main quality

characteristic—the usability—of great importance to any

software product. Moreover the usability of metrics for

software components based on ISO 9126 Quality Model has

been defined in a consistent way in [8].

Recently authors describes the evaluation of number of

component cycles in DSME tool that helps in deciding the

super components has been described in [9]. Similarly

utilization of components in a module helps in deciding most

usable components in the system and hence importance of

the components during the implementation of software

system. Finally, it may be concluded that the Number of

cycles and degree of utilization is one of the key component

for the cost estimation of CBSE. Hence, by computing NC

and degree of utilization, basically we would be in a position

to predict the approximate cost of CBSE.

The concept of two suites of metrics, which cover static and

dynamic aspects of component assembly has been initiated in

[10, 11]. The static metrics measure complexity and

criticality of component assembly, wherein complexity is

measured using Component Packing Density and Component

Interaction Density metrics. Further, four criticality

conditions namely, Link, Bridge, Inheritance and Size

criticalities have been identified and quantified. The

complexity and criticality metrics are combined to form a

Triangular Metric, which can be used to classify the type and

nature of applications. Dynamic metrics are collected during

the runtime of a complete application. Dynamic metrics are

useful to identify super-component and to evaluate the

degree of utilization of various components [12, 13].

IV. RESEARCH PROBLEM

Component Based Software Engineering is the widely used

concept in the software industry. Metrics play an important

role in determining the various characteristics of a

component for example to find out which components are

reusable and what particular function they will perform.

Software requires to be evaluated before the development to

avoid the wastage of resources and also requires evaluation

during their life cycle to manage the software maintenance

cost. Different software evaluation strategies with software

metric measurement and effort estimation models have been

introduced [6, 10]. The four views along with metrics [7]

theoretically which have been described in section 2. In this

paper, we have considered external view along with metrics

proposed in
7
 and implemented practically with the help of

Java based parser tool.

 International Journal of Computer Sciences and Engineering Vol.5(8), Aug 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 35

In the present work, a study has been made on how

quantification metrics are used in component based

development that concentrates on the factors like Number of

provided interface (NPI), Number of Acquired Interface

(NAI), Number of Acquired Components (NAC), Deepest

Provided Interface Nesting (DPIN) and Deepest Acquired

Interface Nesting (DAIN). With the help of NAI, NAC,

DPIN and DAIN software developer can easily find and

predict the different complexities and architecture of CBSE

at early stage i.e. at design stage.

V. PROPOSED METHODOLOGY

Evaluation of the software has been done by using

quantification metrics and it can be visualized before

software development using component diagram in

ArgoUML. Such mapping and testing of the different metric

values is a major challenge which has been taken into

consideration in this paper. Java based parser tool developed

in this paper has been implemented on the E-learning system.

The proposed methodology is given as follows:

 Step1:Design the component diagram of any proposed

software using ArgoUML tool as per need of

customers.

 Step 2: Create XMI file of given component diagram

with the help of Export option XMI given in ArgoUML.

This XMI file contains all the information of component

diagram like unique xmi.id, dependency.supplier,

dependency.client etc.

 Step 3: Using Java based software and Netbeans tool

the XMI file is then parsed using Java parser for

extracting information related to various quantification

metrics like NPI, NAI, NAC, DPIN in CBSE.

For Calculating NPI, NAI, NAC, and DPIN of components

in CBSE, the following algorithms have been used:

A. Algorithm for calculating provided interface:

Algorithm getClientComponentId (xmlId: String)

Begin

 id:=0;

 For i=0 to sizeof(ComponentList) loop

 If ComponentList.get(i). xmlId = xmlId Then

 id: = i;

 Exit Loop;

 End If

 End Loop

 Return id;

End;

Algorithm getSupplierComponentId (xmlId: String)

Begin

 id:=0;

 For i=0 to sizeof(ComponentList) loop

 If ComponentList.get(i). xmlId = xmlId Then

 id: = i;

 Exit Loop;

 End If

 End Loop

 Return id;

End;

Algorithm ProvidedInterface()

Begin

 ForEach D in DependancyList Loop

 IC:=0;

 For Each C in ComponentList loop

 If D.RefId = C.Id Then

 IC := IC + 1;

 End If

 End Loop

 End Loop

 Return IC;

End;

B Algorithm for calculating Acquired interface:

Algorithm AcquiredInterface()

Begin

 count:=0;

 For Each D in DependancyList Loop

 cXmlRefId := D.getClientRefId();

 sXmlRefId := D.getSupplierRefId();

 ccId := getClientComponentId(cXmlRefId);

 scId := getSupplierComponentId (sXmlRefId);

 int cDepth:=ComponentList.getDepth(ccId);

 int sDepth:=ComponentList.getDepth(ccId);

 if(sDepth==0 && cDepth>0) {

 count:=count+1;

 }

 End Loop

 Return count;

End;

C Algorithm for calculating Acquired components:

Algorithm showAcquiredComponents ()

Begin

 count:=0;

 For Each C in ComponentList loop

 If C.IsRoot = “true” Then

 count:=count+1;

 End Loop

 End Loop

 Return count;

End;

D. Algorithm for calculating Deepest Provided Interface

Nesting:

Algorithm showDeepestProvidedInterfaceNesting ()

Begin

 depth:=0;

 For Each C in ComponentList loop

 If depth < C.getDepth Then

 International Journal of Computer Sciences and Engineering Vol.5(8), Aug 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 36

 Depth := C.getDepth;

 End Loop

 End Loop

 Return depth;

End;

VI. IMLEMENTATION OF JAVA BASED TOOL FOR

EXTRACTION OF EXTERNAL METRICS

In this section, we consider the model of E-learning system

which has been designed with the help of Argo UML 0.34

(UML Modelling tool). Our aim is to implement the Java

based tool on the component diagram of the E-learning

system (cf. Fig. 1). A parser based tool developed in Java by

using Netbeans 7.1.2 has been explored to implement Java

based tool on component diagram to compute quantification

metrics of external views. Using ArgoUML tool, a UML

component diagram has been drawn. This tool works only

with XMI files. For parsing the XMI file, SAX [14] – a Java

API for XML to parse the XMI file is used. The version

implemented in the Java based tool is SAX 2.0.1 as the SAX

parser is an easy-to-use forward parser. The flow of process

of how the Java based tool works is depicted in Figure 2.

Figure 1 shows the component diagram of E-learning system.

The external view of Teacher essentially includes:

 All the information in the offered interfaces.

 All the information in the offered interfaces of the

acquired components.

The diagram consists of components, interfaces and a

Dependency indicator. The eight components of the system

(cf. Figure 1) are as follows :

(i) User Management

(ii) Teacher

(iii) Course Management

(iv) Study Material Management

(v) Messaging

(vi) Report Generation

(vii) Authorization System

(viii) Key Authentication

Teacher (cf. (ii)) is the largest component. Teacher uses two

external components, (vii) and (viii), and four internal

components, (iii), (iv), (v) and (vi). The internal components

(iii), (iv), (v) and (vi) are referred to as sub-components of

(ii), while (vii) and (viii) are referred to as acquired-

components of (ii). The component (iii) uses component (vii)

and (viii). Thus, (vii) and (viii) are acquired components of

(iii) as well as (ii), which is the super-component of the

Course management. Similarly, we may assess for other sub-

components (iv), (v) and (vi). An important constraint of our

component model is that all components acquired by a

component must also be acquired by its super-component.

The quantification metrics [7] implemented in the Java based

tool are: NPI, NAI, NAC, and DPIN. Table 1 shows some of

the quantification metrics currently obtained by using Java

based tool, derived through XMI file. The Java coding of

XMI parser for evaluating NPI, NAI, NAC, and DPIN of

components is shown in Table 3 to 6. The XMI

representation of UML component diagram is illustrated in

Table 7.

VII. RESULT AND DISCUSSION

Figure 1 shows a system with eight components, viz User,

Teacher, Course, Study Material, Messaging, Report

Generation, Authorization, and Authentication. Results

obtained for NPI, NAI, NAC and DPIN describe in Table 1,

the authors have computed NPI, NAI, NAC and DPIN (cf.

screen shots given in Figure 3 to 6. The significance of these

metrics (viz. NPI, NAI, NAC and DPIN) in evaluating the

software at the early stage is as follows:

A. Provided Interfaces (NPI):

Provided Interfaces are the interfaces of the components to

which any other component can use. These are exposed

interfaces of the components. In the case study Teacher

provides one interface to the User, whereas Authorization

and Authentication both provide four interfaces each to sub-

components of Teacher. Hence the total numbers of

provided Interfaces are nine.

B. Acquired Interfaces (NAI):

Interfaces of the acquired components, acquired by a

component are referred to as the acquired interfaces. In the

case study User uses one interface to acquire component

Teacher, Teacher uses one interface to acquire component

Authorization and also Teacher use s one interface to acquire

component Authentication and hence the number of

acquired interfaces are also three.

C. Acquired Components (NAC):

All the components which are used by a component named

are called acquired components or external components. In

the case study, User uses one external component Teacher;

Teacher uses two external components Authorization &

Authentication. Authorization and Authentication are

acquired components of Teacher and Teacher is an acquired

component of User. Hence the total number of acquired

components are three.

D. Deepest Provided Interface Nesting (DPIN):

Components can be nested in system and the nesting process

can be extended up any internal level. The most internal

level of component nesting which is using the provided

interface of some other component is known as Deepest

Provided Interface Nesting. It is a measure of the complexity

of the component system. This also indicates the importance

 International Journal of Computer Sciences and Engineering Vol.5(8), Aug 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 37

of the component. In the case study, deepest component

using the provided interface of the acquired component are

sub-components of Teacher namely Course, Study Material,

Messaging, and Report Generation. Hence the deepest

provided interface nesting is two.

The Table 2 shows the different quantification metrics

extracted for E-learning system.

VIII. CONCLUSION AND FUTURE WORK

The evaluation of number of acquired components (NAI) in

Java based parser tool helps in deciding to identify the

interconnection of different components in the system, it also

shows the dependency of these on each others. Through NAI

and NPI user can identify the total number of interfaces in

the system. It is used to measure the integration efforts for

that individual component. If the value will be higher, then

integration efforts will be complex and then maintenance

efforts will also increase. Through NPI software developer

can check the dependency and usability of component in the

system. NAC shows the dependency of component to other

components. DPIN shows that which component exists at

deep level i.e. components within component (nested

component). Higher value of DPIN results in complex

integration efforts that can increase the maintenance efforts

of the system. It also shows depth of the components in

hierarchy and their association and aggregation with each

other at designing stage that will help in effort estimation to

develop software in early stage.

Finally, it may be concluded that the NAC, NAI, NPI and

DPIN play an important role to assess effort estimation and

complexity of CBSE at early stage. Hence, by computing all

these metrics, basically we would be in a position to predict

the approximate cost of CBSE. The proposed tool can also

be modified to extract the metrics of other views namely

shallow view, deep view etc. for component based systems,

which will be considered in a future version.

REFERENCES

 [1] S. S Ali, A. Ghafoor and R.A. Paul, “Metrics-guided quality

management for component-based software systems”, Proceedings

of the 25th Annual International Computer Software and

Applications Conference, 2001. COMPSAC 2001, Institute of

Electrical and Electronics Engineers (IEEE), Jan 2001, pg. 303-

308.

[2] C. Szyperski, “Component Software”, Addison-Wesley

Professional; 2002.

[3] N.S. Gill, Balkishan, Dependency and interaction oriented

Complexity metrics of component based systems. ACM Sigsoft

Software Engineering notes, March 2008, vol 33, issue 2, pg. 1-5.

[4] J. Chen, W. Yeap, S. Bruda, “A Review of Component Coupling

metrics for component based development, World Congress on

Software Engineering (WCSE’09)”, May 2009, Xiamen, China,

DOI: 10.1109/WCSE.2009.391.

[5] J. Chen, H. Wang, Y. Zhon, S. Bruda, “Complexity metrics for

Component based Software System”, International Journal of

Digital Content Technology and its Applications, March. 2011,

volume 5, number 3, pg. 235-244,.

[6] R. S. Pressman, Software engineering: A practitioner’s approach.

McGraw Hill.

[7] G. Falcone, C. Atkinson, “A Basis for a Metric Suite for Software

Components”, 12th ECOOP Workshop on Quantitative

Approaches in Object-Oriented Software Engineering, 8th July

2008 - Paphos, Cyprus, pg. 53-63.

[8] M. F. Bertoa and A. Vallecillo, “Usability metrics for software

components”, 8th international workshop on quantitative

approaches in object-oriented software engineering

(QAOOSE’2004), Oslo, Norway, June 2004.

[9] P.L. Powar, M.P Singh, S Upadhyay, and B. Solanki, “Dynamic

software metric estimation (DSME): Tool using ArgoUML”,

International Journal of Advanced Research in Computer Science,

May-June 2017, volume 8 number 5, pg. 591-602.

[10] L.V. Narasimhan, P.T. Parthasarathy, M. Das, “Evaluation of a

Suite of Metrics for Component Based Software Engineering

(CBSE)”, issues in Informing Science and Information Technology,

January 2009, volume 6, pg. 731-740.

 [11]L.V. Narasimhan, B. Hendradjaya, “Some theoretical consideration

for a suite of metrics for the integration of software components”,

issues of information Science and Information Technology, 2007,

volume 177, issue -3, pg 844-864.

[12] R. K. Pandey, J.W. Shareef, “CAME: Component Assembly

Metrics Extraction using UML”, ACM SIGSOFT Software

Engineering Notes, July 2013, volume 38 number 4, pg. 1-12.

[13] R. K. Pandey, J.W. Shareef, “Design of a Component Interface

Complexity Measurement Tool for Component-Based Systems”,

ACM SIGSOFT Software Engineering Notes, July 2015, Volume

40 Number 1, pg. 1-12.

[14] SAX, Retrieved on March 5, 2011 http://sax.sourceforge.net.

Author Profiles

P. L. Powar received her M.Sc. and Ph.D. in

Mathematics form Rani Durgavati University,

Jabalpur, India. Currently, she is a Professor in

Deparment of Mathematics and Computer

Science, Rani Durgavati University, Jabalpur,

India. Her research areas are Cutting Stock

Problem, Spline Approximation Theory, Finite

Element Methods, Software Engineering and

Topology.

Manu Pratap Singh is a Associate Professor, in

Institute of Engineering & Technology, Agra, Dr.

B. R. Ambedkar University, Agra. He receives

Young Scientist award in 2005 by IAPS,

Allahabad Paper Presented in IFORS, Sandton,

South Africa in 2008. His current research

interest is Artificial Neural Networks, Artificial

Intelligence, Soft Computing, Software

Engineering.

Bharat Solanki received his M.Sc. (Mathematics)

and M.CA from Rani Durgavati University,

Jabalpur, India. Presently persuing Ph.D. in

Computer Science. His research area is Software

Engineering.

https://doi.org/10.1109/WCSE.2009.391
http://sax.sourceforge.net/

 International Journal of Computer Sciences and Engineering Vol.5(8), Aug 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 38

Jawwad Wasat Shareef received the MCA

degree from Indira Gandhi National Open

University, India and Ph.d in Computer Science

from Rani Durgavati Universitry, Jabalpur, India.

Currently he is working in Department of

Mathematics and Computer Science, Rani

Durgavati University, Jabalpur. His research areas

are Software Engineering, Data mining, Soft

computing.

Metrics for external view Types Full form Interpretation

 NPI Number of Provided Interface The total number of interface

provided by the component.

 NAI Number of Acquired Interface The total number of interfaces

acquired by the component.

Quantification Metrics NAC Number of Acquired Components The total number of acquired

components.

 DPIN Deepest Provided Interface

Nesting

The depth of nesting of the provided

interface of the component with the

deepest nesting.

Table 1. External view based metrics

Module Quantification metrics Value of metrics

 NPI 9

 NAI 3

E-learning system NAC 3

 DPIN 2

Table 2. Quantification metrics for component diagram described

 public void showProvidedInterfaces() {

 int count=0;

 for (int i = 0; i < GlobalLists.lstComponentDependencies.size(); i++) {

 for(int j=0;j < GlobalLists.lstComponents.size(); j++) {

 if (GlobalLists.lstComponents.get(j)!=null

&& GlobalLists.lstComponentDependencies.get(i)!=null

&& GlobalLists.lstComponentDependencies.get(i).getSupplierComponentId()!=null

&& !GlobalLists.lstComponentDependencies.get(i).equals("")) {

System.out.println(GlobalLists.lstComponentDependencies.get(i).getSupplierComponentId()+" :::

"+(GlobalLists.lstComponents.get(j).getXmlId()));

if(GlobalLists.lstComponentDependencies.get(i).getSupplierComponentId().equals(GlobalLists.lstCom

ponents.get(j).getXmlId())) {

 count++;

 }

 }

 }

 }

 lblNPI.setText("Number of Provided Interfaces :"+count);

Table 3. Java implementation function for calculating NPI

 International Journal of Computer Sciences and Engineering Vol.5(8), Aug 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 39

 public void showAcquiredInterfaces() {

 int count=0;

 String usedComponent="";

 for (int i = 0; i < GlobalLists.lstComponentDependencies.size(); i++) {

 if (!GlobalLists.lstComponentDependencies.get(i).equals("") &&

GlobalLists.lstComponentDependencies.get(i).getSupplierComponentId()!=null &&

GlobalLists.lstComponentDependencies.get(i).getClientComponentId()!=null) {

 int ccId = this.getClientComponentId(GlobalLists.lstComponentDependencies.get(i).getClientComponentId());

 int scId = this.getClientComponentId(GlobalLists.lstComponentDependencies.get(i).getSupplierComponentId());

 System.out.println(GlobalLists.lstComponents.get(scId).getName()+" ::

"+GlobalLists.lstComponents.get(scId).getDepth()+" :: "+GlobalLists.lstComponents.get(scId).getIsRoot().equals("true"));

 if(GlobalLists.lstComponents.get(scId).getDepth()==0

 && GlobalLists.lstComponents.get(scId).getIsRoot().equals("true") &&

usedComponent.indexOf(GlobalLists.lstComponents.get(scId).getName())==-1)

 //&& GlobalLists.lstComponents.get(ccId).getDepth()>0

 //&& GlobalLists.lstComponents.get(ccId).getIsRoot().equals("false"))

 {

 usedComponent+=GlobalLists.lstComponents.get(scId).getName()+",";

 count++;

 }

 }

 }

 lblNPI.setText("Number of Acquired Interfaces :"+count);

Table4: Java implementation function for calculating NAI

 public void showAcquiredComponents() {

 int count=0;

 for(int j=0;j < GlobalLists.lstComponents.size(); j++) {

 if(GlobalLists.lstComponents.get(j).getIsRoot().equals("true")) {

 count++;

 }

 }

 //acquired components are all roots components - 1

 lblNPI.setText("Number of Acquired Components :"+(count-1));

Table 5 : Java implementation function for calculating NAC

 public void showDeepestProvidedInterfaceNesting() {

 int count=0;

 for(int j=0;j < GlobalLists.lstComponents.size(); j++) {

 if(count<GlobalLists.lstComponents.get(j).getDepth()) {

 count=GlobalLists.lstComponents.get(j).getDepth();

 }

 }

 lblNPI.setText("Deepest Provided Interface Nesting :"+(count+1));

 }

Table 6: Java implementation function for calculating DPIN

 <UML:Model xmi.id = '-64--88--23-1--586162ab:15c6d8e6389:-8000:0000000000000A8E'

 name = 'untitledModel' isSpecification = 'false' isRoot = 'false' isLeaf = 'false'

 isAbstract = 'false'>

 International Journal of Computer Sciences and Engineering Vol.5(8), Aug 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 40

 <UML:Namespace.ownedElement>

 <UML:Component xmi.id = '-64--88--23-1--586162ab:15c6d8e6389:-8000:0000000000000A90'

 name = 'User Management' isSpecification = 'false' isRoot = 'true' isLeaf = 'false'

 isAbstract = 'false'>

 <UML:ModelElement.clientDependency>

 <UML:Dependency xmi.idref = '-64--88--23-1--586162ab:15c6d8e6389:-8000:0000000000000AA7'/>

 </UML:ModelElement.clientDependency>

 </UML:Component>

 <UML:Component xmi.id = '-64--88--23-1--586162ab:15c6d8e6389:-8000:0000000000000A91'

 name = 'Teachers' isSpecification = 'false' isRoot = 'true' isLeaf = 'false'

 isAbstract = 'false'>

 <UML:Namespace.ownedElement>

 <UML:Component xmi.id = '-64--88--23-1--586162ab:15c6d8e6389:-8000:0000000000000A94'

 name = 'Course Management-Teachers' isSpecification = 'false' isRoot = 'false'

 isLeaf = 'true' isAbstract = 'false'>

 <UML:ModelElement.clientDependency>

 <UML:Dependency xmi.idref = '-64--88--23-1--586162ab:15c6d8e6389:-8000:0000000000000A9F'/>

 <UML:Dependency xmi.idref = '-64--88--23-1--586162ab:15c6d8e6389:-8000:0000000000000AA0'/>

 </UML:ModelElement.clientDependency>

 </UML:Component>

Table 7: XMI representation of component diagram

Figure 1. Component diagram for E-learning System

 International Journal of Computer Sciences and Engineering Vol.5(8), Aug 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 41

Figure 2. Working of Java based tool for E-Learning System

Figure 3: GUI for displaying number of provided interface

Create Component Diagram

Draw in ArgoUML

Export XMI file

Load XMI file in JAVA Program

Run XMI Parser to Read Components &

Dependency Information

Generate

NPI

Generate

NAI

Generate

NAC

Generate

DPIN

 International Journal of Computer Sciences and Engineering Vol.5(8), Aug 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 42

Figure 4: GUI for displaying number of acquired interfaces

Figure 5: GUI for displaying number of acquired components

 International Journal of Computer Sciences and Engineering Vol.5(8), Aug 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 43

Figure 6: GUI for displaying deepest provided interface nesting

