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Abstract— This study demonstrates an EOQ model with partial backorders over the finite time horizon assuming imprecise 

demand which is characterized by triangular fuzzy number. Learning effect is considered to reduce the impreciseness of de-

mand as inventory planners get experienced by collecting knowledge from previous cycles. This paper aims to find out the op-

timal number of replenishments and an optimal fraction of the cycle during the positive inventory to minimize the total annual 

cost. The optimal policy is derived using analytical approach for crisp and fuzzy model whereas algorithmic procedure is 

adopted for the fuzzy-learning model. To show the significance of learning effect, numerical analysis is executed and compared 

results from the crisp, fuzzy and fuzzy-learning case which shows that increasing human learning reduces fuzziness of the de-

mand and approaches to the crisp model. 
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I.  INTRODUCTION 

  

Since Harris [1] presented a fundamental EOQ model, a lot 

of extensions of it in different directions are presented to 

portray the real situation. Interested readers may refer Glock 

et al. [2]’s comprehensive review for the lot-sizing problems. 

Many researchers relaxed the assumption ‘No shortages’ of 

the basic EOQ model. As many organisation has to deal with 

shortages, where some customers are willing to wait and 

some may not. Hence, a model with partial backordering 

came into an account. Pentico and Drake [3] presented a sur-

vey of the EOQ and EPQ with partial backordering in the 

crisp environment. Fabrycky and Banks [4] and Ali [5] were 

first to investigate an EOQ model with partial backorders, 

but no solution procedure was derived by them. Montgomery 

et al. [6] demonstrated a lot size model with partial 

backorders describing solution procedure. Additionally, it is 

mandatory to fix the planning horizon for many organisation 

such as accounting, finance or risk management so that other 

options may be estimated for better performance during the 

same period. Dye et al. [7] presented a lot size model with 

partial backorders and inserted cost for lost sale and the pur-

chase cost of backordered units under the finite time horizon. 

Afterwards, lots of literature with partial backorders under 

the finite time horizon such as  Zhou et al. [8], You and Wu 

[9], Uthayakumar and Geetha [10], Yang [11], Wee [12], 

Ouyang et al. [13], Chang et al. [14], Tsao [15] etc. are con-

tributed to the literature by various researchers.  

 

      In the real-life situation, demand cannot be deterministic 

always and inventory planner has to face uncertainty. Sto-

chastic techniques are serving for uncertainty since long. But 

it is not enough to deal with uncertainty as it relies on past 

data. The fuzzy set theory developed by Zadeh [16] is the 

powerful tool to deal with uncertainty which can convert 

linguistic expressions to a mathematical expression. The 

fuzzy set theory was first applied by Park [17] on an EOQ 

model. Vujosevic et al. [18] presented an inventory model 

with shortages by taking imprecise demand and cost parame-

ters. Researchers such as Yadav et al. [19], Ouyang and 

Chang [20], Chang et al. [21], Chang et al. [22], Yang et al. 

[23], Wang et al. [24], Buckley et al. [25] considered partial 

backorders in to develop inventory model with fuzzy de-

mand. De and Goswami [26], Maity and Maiti [27], Yazgı 

Tütüncü et al. [28] etc. developed inventory model under 

finite time horizon by considering shortages. Shekarian et al. 

[29] etc. presented a comprehensive review on fuzzy inven-

tory models. 

 

      In everyday life, human keeps learning with experience 

over the time. In any business, demand is uncertain initially, 

then the inventory planner starts getting knowledge and ideas 

about market demand and customer preferences during the 
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planning horizon. Hence, ambiguity for demand estimation 

gets reduced. In this paper, we use this characteristic to re-

duce imprecision of fuzzy demand. There is a vast literature 

of this characteristic viz. ‘learning curve’ available (cf. [30],  

[31] etc.). Few researchers have contributed to the literature 

on inventory models incorporating the learning effect. Glock 

et al. [32] referred in the paper that reliable and updated in-

formation can be fetched with the experience over the time as 

an inventory planner accumulates more knowledge with ex-

perience over the planning period. Researchers such as 

Kazemi et al. [33], Kazemi et al. [34] and Soni et al. [35] 

incorporated human learning to reduce imprecision of the 

model parameters. 

 

       In this paper, we study an EOQ model with partial back-

logging under the finite time horizon which is the extended 

work of Glock et al. [32]. The main objective of this paper is 

to find optimal replenishment and the optimal time fraction 

when positive inventory so that total cost become minimum. 

The solution procedure is presented in a crisp, fuzzy and 

fuzzy-learning environment. There is no such investigation 

for inventory model with partial backorders carried out in the 

present inventory literature. The remaining part of the paper 

consists of the following section. Notations and assumptions 

are presented in  Section 2. We demonstrate the mathemati-

cal model in Section 3. To examine the model, we present 

the numerical examples and sensitivity analysis in Section 4, 

whereas the conclusion and future scope are given in  Section 

5. 

 

II.   NOTATIONS AND ASSUMPTIONS 

 

We use following notation throughout the model. 

2.1 Notations 

D : The constant demand rate per unit time. 

A : The ordering cost per order. 

h : Holding cost per unit per unit time. 

s : Shortage cost per unit per year 
   : Lost sale cost per unit per year 

Q : The order quantity.  

H : The length of the finite planning horizon 

T : The length of each replenishment cycle 

 I t   : The inventory level at time t 

n : 

Number of orders (Decision variable and 

is an integer), 
H

n
T

   

F : The fraction of the replenishment cycle 

where the net inventory level is positive 

(Decision variable) 

 ,TC F n  : The total cost over finite time horizon H. 

 

2.2 Assumptions 

(1) Inventory system considers a single item over the fi-

nite period H. 

(2) The rate of demand is taken as imprecise and charac-

terised by triangular fuzzy number

1 2( , , )D D D D    where, 

1 20 and 0D D      where
1 2and   are im-

precision parameters of demand and determined by a 

decision maker. 

(3) Shortages are allowed and partially backlogged where 

B fraction of demand is backlogged, 0 1.B   

(4) Replenishment rate is infinite and lead time is zero. 

 

III. MODEL FORMULATION 

 

3.1 Crisp inventory model 

The total spell H is divided into n equal intervals of length T. 

Hence, T H n ; n is an integer. So, time periods for order-

ing cycles over the finite plan horizon H are 
jT jT ,  j = 0, 

1, …, n. Inventory starts with maximum inventory and in-

ventory level  I t  at time t decreases due to the demand and 

becomes zero at the time  1..jt j n . Shortages start to be 

accumulated at this point of time and become maximum at

 1..jT j n . The model considers that the shortages are 

partially backlogged by B fraction of demand and remaining 

sales are lost. The inventory system is depicted in Figure 1 

where inventory run time  1..jt j n is presented in terms 

of the number of orders (n) and the fraction of ordering cycle 

with positive stock (F) (cf. [36]). The inventory system is 

depicted in Fig.1. 

With all the above description, the total cost in the time hori-

zon  0, H   is given by 

 

      
2 2

( , ) ordering cost + holding cost 

+ shortage cost+lost sales cost

            1

1 1 1
2

TC F n

n A DH

H
sB F hF F B

n




   

 
     

 

  (1) 
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Now, the main aim is to find an optimal number of orders 

and the optimal fraction of inventory when positive invento-

ry so that ( , )TC F n presented in (1) reaches to its minimum 

value. By using an analytic method, we set first partial deriv-

atives with respect to F and n equal to zero in order to find 

their optimal values which are given by  

 
   

2,
1 1

0

TC F n DH
sB F hF DH B

F n



       



  (2) 

And  
 

 
2

2 2

2

,
1 0

2

TC F n DH
A sB F hF

n n


     
 

  (3) 

By using (2) and (3), we get the expression for optimal val-

ues *

cF and 
cn in a crisp environment as 

 

 

  

*

2 2

1
and

1

2

c

c

sBH n B
F

h Bs H

D Bs F hF
n H

A

 




 
 

 

By substituting *

cF into cn , we get 

 

 

   
22

;

where, 2 , 1

c

hsBDH X DY
n H

X DY

X A Bs h Y B


 



   

  (4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, the optimal number of replenishment *

cn  can be 

derived using the condition 

     

 

* * * *

*

, min , 1 , , ,

, 1

c c c c c c

c c

TC F n TC F n TC F n

TC F n

       

  

 

where x   = integer part of x.  

Hence, a formula to find out *

cn  is given by

 

 

   

*

22

Round integer ;

where, 2 , 1

c

hsBDH X DY
n H

X DY

X A Bs h Y B


 



   

  (5) 

Now, to prove ( , )TC F n is minimum at * *( , )c cF n , taking se-

cond-order partial derivatives of ( , )TC F n with respect to F 

and n, we get 

 22

2

( , )
0

DH h BsTC F n

nF


 


 

 
2 2

2 2

2 3

( , )
1 0

TC F n DH
sB F hF

n n


    
 

 

 
2 2 * 2

2

( , ) ( , )
1

TC F n TC F n DH
sB F hF

nF Fn n

  
       

 

Hence, the relevant determinant of the Hessian matrix is giv-

en by 

Figure 1: Graphical representation of the inventory system  
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2 2

2 42

42 2

2

( , ) ( , )

0
( , ) ( , )

TC F n TC F n

D H Bhsn FF

nTC F n TC F n

F n n

 

 
 

 

  

  (6) 

Therefore,  ,TC F n attains its minimal value and optimal 

solution  * *,c cF n in a crisp environment 

Additionally, optimal order quantity is given by 

  * *

*

*

1 c c

c

c

DH B F F
Q

n

 
   (7) 

3.2 Inventory model under fuzzy environment 

In this section, we relax the assumption that demand is pre-

cise in order to portray the real situation. Demand rate D is 

characterised as triangular fuzzy number (as defined in as-

sumption). Hence, the objective function given in (1) is 

transformed into a triangular fuzzy number viz. 

        1 2 3, , , , , ,F n TC F n TC F n TCT F nC  , where 

   , 1, 2,3iTC F n i  are real-valued functions and satisfy 

the condition      1 2 3, , ,TC F n TC F n TC F n  . Moreover 

   , 1, 2,3iTC F n i  can be presented using function princi-

ple (cf. [37]) as 

     

      

1 1

2 2

, 1

1 1 1
2

TC F n n A D H

H
sB F hF F B

n


    

 
     

 

   

      

2

2 2

, 1

1 1 1
2

TC F n n A DH

H
sB F hF F B

n


   

 
     

 

     

      

3 2

2 2

, 1

1 1 1
2

TC F n n A D H

H
sB F hF F B

n


     

 
     

 

Now, to obtain a crisp equivalent form of the fuzzy objective 

function, we employ centroid formula and express as 

    

 
 

      

1 2 3

2 1

2 2

1
,

3

               ,
3

1 1 1
2

M TC F n TC TC TC

H
TC F n

H
sB F hF F B

n


  

 
  

 
     

 

  (8) 

Optimal solutions of the fuzzy objective function given in (8) 

can be derived in the way as in crisp case and given by 

 

 

    

* *

2
* *2

2 1

1
and Round integer  

1 3

6

F F

F F

sBH n B
F n H

h Bs H

Bs F hF D

A

 
  



    
  (9) 

Where *

FF  is the optimal fraction of inventory when there is 

positive inventory in the fuzzy environment and *

Fn is an op-

timal number of replenishments. Integer value for the opti-

mal number of replenishments *

Fn satisfies the following 

condition  

     
     

* * *

* *

, min , 1 ,

, , , 1

F F F F

F F F F

M TC F n M TC F n

M TC F n M TC F n

   

       

  (10) 

Similarly, it is easy to show  * *,F FF n is a minimal to the 

function   ,M TC F n  with respect to F and n. Hence 

 * *,F FF n is the optimal solution. 

Consequently, the optimal order quantity in the fuzzy sense 

is given by 

       * * * *

2 1
*

* *

1 1

3

c c c c

F

c c

DH B F F H B F F
Q

n n

     
   

 (11) 

 

3.3 Inventory model with learning effect to the fuzziness  

Human has a characteristic to learn with repetitive task over 

the planning horizon. In order to use this phenomenon in the 

mathematical model, we use the "learning curve" which is 

the mathematical representation of the rate at which decision 

maker uses his/her cumulative experience to improve the 

work. In this paper, it is assumed that learning of a decision 

maker reduces the fuzziness of demand as s/he accumulates 

knowledge about the market demand by repetition of placing 

orders over the planning horizon. Although many learning 

curves developed so far (cf. [38]), we use a popular and 

widely used power learning curve presented by Wright [39] 

which is of the form 
1 * b

xy y x  where 
xy  is performance 

at the time of thx  order, 
1y  is the performance at the starting 

cycle and b is learning exponent. 

 

Decision maker gets more knowledge by repetition of plac-

ing orders over the time. If the fuzziness parameters 1  and 

2  are affected by learning and same learning rate applied 

for both parameters then the fuzziness parameter  j, 1, 2j  , 
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at the time of k
th

 replenishment as given by Glock et al. [32] 

is  

,1

,

,1

1

1
1

j

l

j k

j

k

k H
k

n



 


   
    
  

  (12) 

The total annual cost after applying human learning for a k
th

 

replenishment cycle is given by 

 
      

      

 
 

2 2

2 2

2,1 1,1

1
1 1 1

2

1 1 1
3 2

1
l

n A DH H
sB F hF F B

n n n

H H
sB F hF F B

n n

k H

n







  
      

 

 
       

 

 
     

 

  (13) 

where 1 k n  and 2n  . 

Hence, the total cost for n replenishments under the effect of 

learning in fuzziness is given by  

   

      

      

 
 

2 2

2 2

2,1 1,1

2

( , ) 1

1 1 1
2

             1 1 1
3 2

1
1

FL

l
n

k

M TC F n n A DH

H
sB F hF F B

n

H H
sB F hF F B

n n

k H

n









   

 
     

 

 
      

 

  
          



  (14) 

Now, by setting the necessary condition

 ( , ) 0FLM TC F n F   , we derive the optimal fraction of 

time when inventory is positive as
 

 

*

*
1FL

FL

sBH n B
F

h Bs H

 



.  

Also, by sufficient condition with respect to F,  

 
 

   
 

2

2 2

2

2,1 1,12
2

( , )

11
1 0

3

FL

l
n

k

dH h Bs
M TC F n F

n

k H
H h Bs

nn






  

   
              



Hence,  ( , )FLM TC F n  is strictly convex in F. 

Optimality of  ( , )FLM TC F n  with respect to n cannot be 

derived easily by the standard analytic method as n is ap-

peared in the summation in (14). Hence the optimal number 

of orders  *

FLn  in the fuzzy sense with learning is derived by 

the algorithmic procedure. 

 

 

 

Algorithm 

Step 1: 

Substitute 
 

 

1
FL

sBH n B
F

h Bs H

 



 in  ( , )FLM TC F n  

Choose an initial trial value of *

FLn , say Fn n    and com-

pute    * *( , )  and ( , 1)FL FLFL FLM TC F n M TC F n  . 

 

Step 2: 

If    * *( , ) ( , 1)FL FLFL FLM TC F n M TC F n  , then compute 

   * *( , 2) , ( , 3) ...,FL FLFL FLM TC F n M TC F n  until we find

   * *( , ) ( , 1)FL FLFL FLM TC F k M TC F k  . Set *

FLn k  and 

stop. 

 

Step 3: 

If    * *( , ) ( , 1)FL FLFL FLM TC F n M TC F n  , then compute

   * *( , 1) , ( , 2) ...,FL FLFL FLM TC F n M TC F n   until we 

find    * *( , ) ( , 1)FL FLFL FLM TC F k M TC F k  . Set *

FLn k

and stop. 

The optimal order quantity in the fuzzy sense with learning 

to fuzziness is given by  

     

 
 

* * * *

*

* *

*

2,1 1,1 *

1 1

3

1

c c c c

FL

FL FL

l

FL

FL

DH B F F H B F F
Q

n n

n H

n



   
  

 
  
 
 

  (15) 

 

 

IV. NUMERICAL EXAMPLE 

 

In this section, we study the numerical analysis to examine 

applicability of the model with learning effect. We consider 

the following estimation of parameters:  D = 200 

units/month, A = $50/order, h = $3/unit/month, s = 

$1/unit/month, B = 0.5,   = 2/unit/month, H = 12. l = 0.322, 

i.e. 80% learning rate,    1 2, 20,100   , and

   1 2, 2,8   . Using the solution procedure demonstrated 

in the earlier section, outcomes are presented in Table 1.  

Table 1 shows that the optimal total cost  * *,TC F n and the 

optimal number of orders  *n reduce by considering learn-

ing in the fuzziness of the demand. It is clear that human 

learning reduces the ambiguity and gain knowledge about 

consumer’s choice and hence market demand. Inventory 

planner’s learning about demand reduces the fuzziness of the 

demand. It suggests ordering high demand in later shipments 

with compare to earlier shipments. Ex. 2 is demonstrated to 
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examine the optimal policy for the lower fuzziness of the 

demand which incurs the lower cost but invariant in  *n . 

The fraction of the replenishment cycle when inventory level 

is positive  *F  is also reduces while incorporating human 

learning. Table 2 clearly indicates that increasing learning 

effect from slow learning (l=100%) to fast learning (l=50%) 

results in reducing cost and eventually approaches to crisp 

model. Additionally, *

FLF and *

FLn decrease with the increase 

in human learning rate which suggests ordering less if the 

learning rate is more because the decision maker learns with 

time. Hence it is beneficial to order in fewer numbers in later 

cycles. 

 

Table 1: Comparison of optimal solutions for a crisp, fuzzy and fuzzy-learning model 

 

  EOQ EOQF EOQFL  
  Ex. 1 Ex. 2 Ex. 1 Ex. 2 Ex. 1 Ex. 2 

 1 =20 
1 =2 

1 =20 
1 =2 1,1 =20 

1,1 =2 

  2 =100 
2 =8 

2 =100 
2 =8 1,2 =100 

1,2 =8 

F
* 

0.5476 0.5476 0.6190 0.5476 0.5952 0.5476 

n
* 

17 17 20 17 19 17 

Q
* 

109.24 109.24 110.10 110.34 109.42 109.95 

TC(F
*
, n

*
)

 
2834.45 2834.45  3083.52 2853.80 2997.38  2846.95 

 

 

Table 2: Comparison of optimal solutions for a crisp, fuzzy and fuzzy-learning model 

 

l

  Ex. 1:    1 2, 20,100    Ex. 2:    1 2, 2,8    

*

FLF  *

FLn   * *,F F FTC F n   
*

FLQ  *

FLF  *

FLn   * *,FL FL FLTC F n   
*

FLQ  

0.000(100%) 0.6190 20 3083.52 110.10 0.5476 17 2853.80 110.34 

0.074(95%) 0.6190 20 3059.10 108.77 0.5476 17 2851.83 110.22 

0.152(90%) 0.5952 19 3036.55 111.57 0.5476 17 2850.04 110.12 

0.234(85%)

 
0.5952 19 3016.06 110.45 0.5476 17 2848.42 110.03 

0.322(80%) 0.5952 19 2997.38 109.42 0.5476 17 2846.95 109.95 

0.415(75%) 0.5952 19 2980.78 108.51 0.5476 17 2845.63 109.87 

0.737(60%)

 
0.5714 18 2940.60 110.59 0.5476 17 2842.51 109.70 

1.000(50%)

 
0.5714 18 2921.75 109.54 0.5476 17 2841.04 109.62 

 

 

V. CONCLUSION 

 

In this paper, we presented an EOQ model by incorporating 

partial backorder to the work presented by Glock et al. [32] 

assuming imprecise demand. The model assumes that human 

learning reduces the ambiguity of the fuzzy demand by plac-

ing an order over the finite time horizon. A mathematical 

model is presented along with its solution procedure to find 

optimal policies. Results, derived from numerical illustration, 

compared for all three models in a crisp, fuzzy and fuzzy-

learning sense. Results from numerical studies reveal that 

optimal total cost is more in the fuzzy environment than the 

cost incurs by crisp model. It is clear from the outcomes that 

human learning is an important phenomenon and affects the 

fuzziness of fuzzy parameters of demand. As human learns 

with experience by placing orders over the time, fuzziness 

reduces with time and eventually approaches to the optimal 

policy derived by the crisp model. In the case of very fast 

learning, fuzzy learning model becomes almost similar to the 

crisp inventory model. Hence, human learning is a sensitive 

phenomenon and cannot be avoided for the decision-making 

process in any business. Model suggest to order a smaller 

quantity in faster learning as optimal inventory run time 

while positive inventory and the optimal number of orders 

reduce. Hence, the benefits of accumulated knowledge from 

previous experience can be added in the succeeding replen-

ishments. In case of lower fuzziness of demand, optimal re-

plenishment policy does not change by learning, still model 

suggests to order a smaller quantity which reduces optimal 

total cost. This study is applicable to the firms who face un-

certainty problems for demand in the competitive market-

places where some customers are not willing to wait and go 

for other alternates. This situation arises especially in case of 

launching a new product or brand where fuzzy theory serves 

as a powerful tool to deal with uncertainty. Decision makers 

start with the expert opinion and then learn from placing or-
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ders over the time and eventually, reduces fuzziness of de-

mand. 

 

Furthermore, this work can be extended in many directions. 

It can be extended by incorporating deterioration. Additional-

ly, the main limitation of this paper is that forgetting is not 

considered as any organisation has to face forgetting effect 

when there is a long period between two consecutive orders. 

Hence, forgetting is an unforgettable phenomenon to be ap-

plied to this model. Also, the situation may arise with a com-

bination of constant fuzziness and variable by learning in 

fuzziness or it may be a combination of motor and cognitive 

learning. Different learning curve presented by Grosse et al. 

[38] can be applied to consider the effect of human learning. 
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