

 © 2018, IJCSE All Rights Reserved 396

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-10, Oct 2018 E-ISSN: 2347-2693

Multi-Configuration Styles of Structured Data Mashup using

SDXMapping

Prakash Narayan Hardaha

1*
, Shailendra Singh

2

1,2

Dept. of Computer Engineering and Applications, NITTTR, Bhopal, India

*Corresponding Author: prakashnarayan007@gmail.com, Tel.: +91-9039296414

Available online at: www.ijcseonline.org

Accepted: 16/Oct/2018, Published: 31/Oct/2018

Abstract— The structured data mashup is the special kind of data mashup which deals with well structured data throughout the

mashup development process. This paper highlights mashup development life cycle and the roles of IT developers as well as

end users in various steps of mashup development. The pre-mashup configuration is the essential process of the any data

mashup development that creates mashup module consisting of data module, service module, mapping module and UI module.

In this work, we have explored mapping module called SDXMapping to design multi-configuration styles of structured data

mashup, which will not only help the mashup developers but also the end users to develop the data mashup as per the

situational need.

Keywords—Data Mashup, Structured Data Mashup, Mashup Development Life Cycle, SDXMapping, Multi-Configuration

Styles

I. INTRODUCTION

There are huge amount of personal & public information

which are stored in different internet sources and accessed

via webs, apps and other interfaces. The personal information

is generally treated as private information and requires

credentials to access it whereas public information is open

and available to all without any identity required. But, in

order to access this information, users have to dependent on

IT developers who provide information system using

webs/apps. The users are required to explore webs/apps to

understand interfaces and the way to reach to the desired

information available inside it. The data mashup [1][2] is

becoming popular due to its nature of involving the user to

develop its own web/app to view its required data at one

place after fetching it from multiple internet sources.

There are basically three types of data i.e. structured data,

unstructured data and semi-structured data. Among all three

kinds of data, structured data is easier to understand and

process because it is well defined by attributes and their

values. The system with semi-structured data is less efficient

as well as less flexible[3]. Data mashup is the general kind of

mashup which deals with all kinds of data. This work

explores special kind of data mashup called structured data

mashup which fetches only well structured data from

multiple data sources and integrate all of them to populate

into Structured Data Mashup Box (SDMB)[4]. The mashed

up data are stored in SDMB (kind of logical entity) and are

shown to the user through user’s defined integrated view.

This work exploits mashup configuration styles using

Structured Data eXchange Mapping (SDXMapping) which is

the output of pre-configuration mashup process taken from

our previous work [4] and is used for data mapping. The pre-

mashup configuration is the essential process of the whole

mashup development life cycle. The major contribution of

this paper is to explore multi-configuration styles of

structured data mashup using SDXMapping which will help

the mashup service provider to design different mashup

frameworks/applications to fulfill the different situational

need of the user.

The rest of the paper is organized as follows. Section II

describes the related work which covers types of data

mashup, mashup configurations styles, and data mapping etc.

Section III explores the mashup development life cycle to

understand steps of mashup development based on two

models called One Time Configuration (OTC) model and

Any Time Access (ATA) model. Section IV explains

structured data exchange mapping in brief. Section V

describes multi-configuration mashup styles designed using

SDXMapping and at last the conclusion.

II. RELATED WORK

Before understanding mashup configuration styles, let us

understand the process of mashup development first. The

development of mashed up webs/apps are different from that

of traditional software development. Figure 1 shows the roles

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 397

of IT developers and end users to develop normal/mashed up

webs/apps. It can be seen from the figure 1 that IT

developers follow the Software Development Life Cycle

(SDLC) and use the software development

framework/specification like .net, java based servlet, struts &

spring, php, android etc to develop normal webs/apps. The

end users are bounded to use normal webs/apps which are

developed by IT developers in current traditional approach of

developing webs/apps. But, mashed up webs/apps are

developed by user itself.

The development of mashup applications is gaining the

popularity but the approach of developing such applications

is completely different from the traditional application

development. The mashup development framework produced

by IT developers would be used by end user to develop their

own mashed up webs/apps using mashup development life

cycle. Thus, the role of IT developers is limited to develop

mashup develop framework/application. The mashup

development framework should be designed and developed

in such a way so that even an ordinary user can use it for

developing information system for its own use. Due to

usability of the data mashup, frameworks are being

developed which not only support publicly available data

like RSS, Atom etc but also facilitate interface to access

database and legacy system [5].

Figure 1. SDLC Vs MDLC

There are many mashup tools, techniques and approaches

developed previously. Most of the tools, technique and

approaches[5][6] involved end user developer[7][8]/

programmer to use mashup development framework and thus

do not follow the MDLC to be performed by ordinary user.

Reference [9] explained various mashup frameworks based

on approaches like programming paradigm, scripting,

spreadsheet, wiring, programming by demonstration and

automatic mashup creation etc. The end user uses mashup

development framework [10] and follows the complete life

cycle of developing mashup but most of the works published

do not cover the complete life cycle and are limited to focus

few aspects only.

There are various types of data mashup like Photo

mashup[11], Video mashup[12], Music Mashup[13], News

mashup[14][15][16], Mobile Mashup[17], Linked Data

Mashup[18][19][20], Map Mashup[21] [22] [23], Enterprise

Mashup[24][25], Semantic Mashup[26],Service Mashup[27],

IoTMaaS[28], DaaS[29] Web Mashup[5], Shallow Web &

Deep Web Mashup[30][31]. There are two popular mashup

styles known as client side mashup and server side mashup

[29][32] which specifies the location where the mashup

would be performed before providing it to the user. Many

times, mashup applications are created by applying the mix

approach mashup (may also be called hybrid approach). The

pre-mashup configuration is one of the essential steps of

MDLC which configures the mashup framework to fetch the

various needed data from data sources. This step is used to

clearly define the data requirement of the user before

performing mashup. This step should be simple enough so

that even ordinary user can explore it without any

programming or scripting.

Generally, browsers, desktop apps or mobile apps are used to

perform pre-mashup configuration during mashup

development. Not only the process of pre-mashup

configuration but also its output is important because it is

used to perform the filter, transformation and population

while performing the actual data mashup. For example, some

of the outputs of pre-mashup configuration are graph

signature & MashQL by [33], XML document by IBM

Damia [34], pipes by Yahoo Pipes [14] and MSQL by [35]

etc. In this paper, we have used mapping module called

SDXMapping as major component of pre-mashup

configuration to design multi-configuration styles of

structured data mashup so that execution of filter,

transformation and population of mashup can be done in

different ways to fulfill the situational need of the end user.

There are many works previously published on unstructured

or semi-structured data mashup but very few of them cover

the structured data mashup. Reference [36] investigated

various schema mapping techniques based on column names

and their values. Building mashups by demonstration [37] is

the best example of structured data mashup which primary

focuses on the structured data and understands the user’s

requirement through demonstration. In this case, pre-mashup

configuration is performed through the demonstration and

output is generated accordingly.

III. MASHUP DEVELOPMENT LIFE CYCLE

The data mashup is neither similar to traditional web

application nor like other standalone app i.e. desktop/mobile

app. In traditional software development life cycle, the IT

developers are involved throughout the life cycle of the

development but the development of the data mashup

involves the ordinary user throughout its development. We

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 398

have divided the whole mashup development process called

Mashup Development Life Cycle (MDLC) of the data

mashup into two parts i.e. One Time Configuration (OTC)

and Any Time Access (ATA) to understand whole mashup

development in a simplified way (See figure 2). The OTC

and ATA models are well explained in our previous work

[4].

Figure 2. Mashup Development Life Cycle

We have elaborated one time configuration process using the

OTC flow diagram as shown in figure 3(a) and any time

access process using the ATA flow diagram as shown in

figure 3(b). According to figure 3(a), user first chooses

digital place to view his mashed up data. This digital place

could be his personal page of social media account, email

home or other mobile/desktop app. After determining the

digital place for data mashup, user needs to define data

mashup requirement in user friendly manner. Now, user

selects some of the data sources which provide data for

performing data mashup at its end.

Currently, not all the data sources are providing data for

mashup purpose because of lack of popularity and security

reasons hence choice of such data sources would be limited.

In this paper, we have used the term Structured Data Server

(SDServer) for mashup data sources which will provide

structured data for performing structured data mashup and

the term Structured Data Client (SDClient) for client

interface (i.e. browser, apps etc) which would be used by end

user to view the mashed up data. According to our previous

work [4], user will fetch Mashup Configuration Attributes

(MCA) from mashup data sources which would be required

to perform pre-mashup configuration. Performing pre-

mashup configuration is one time process which produces

mashup configuration module which can further be divided

into data module, service module, mapping module and UI

module to understand the whole development process in a

simplified manner.

Figure 3(a). One Time Configuration Flow Diagram

The service module contains various components to integrate

data services, protocols for mashup communication etc. The

mapping module contains necessary configuration required

for data filtering and transformation. The data module has

necessary logic and other details to store & fetch mashed up

data and UI module contains necessary codes and pre-

defined interfaces/widgets to populate the mashed up data

and used for showing it to its user in proper format. After

completion of the first phase of OTC, user would be involved

in second phase i.e. ATA. Figure 3(b) explores any time

access flow diagram, which is required by user to perform

necessary data mashup to fulfill its own data need.

Figure 3(b). Any Time Access Flow Diagram

In order to perform data mashup, the user selects mashup

module which contains data module, service module,

mapping module and UI module which would be used for

different purposes. Mashup module explores service module

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 399

by calling various mashup services which were configure

during OTC process. The service module further calls

various data services and fetches required data from them

and passes it to filter and transformation components. This

component needs mapping module to complete its operation

of data transformation as per rules defined by user. This

component generates mashed up data which is stored in

Structured Data Mashup Box (SDMB) with the help of data

module and thereafter checks whether there are more data

sources in the queue or not. The process of fetching, filtering,

transformation and populating of the data continues till there

are more data sources. At last, the mashed up data is shown

to the user using UI module which was configured at the

time of OTC. In this current work, we have focused mapping

module called Structured Data eXchange Mapping

(SDXMapping) which is briefly explained in the next

section. More about SDXMapping can be found in our

previous work [4].

IV. STRUCTURED DATA EXCHANGE MAPPING

The Structured Data eXchange Mapping (also called

SDXMapping) is the core process of mashup used for

structured data mashup. Structured Data (SD) is well defined

at both ends which may be called Structured Data Client

(SDClient) and Structured Data Source/Server (SDServer).

The attributes and their schemas of the structured data are

two important factors which are needed to define user’s data

requirement. The schema mapping and data mapping are two

important aspects of structured data [38][39]. The mapping

module in this work creates SDXMapping which can be

further divided into two basic types based on two important

factors called attributes and their schemas as mentioned

above (See figure 4).

i. Structured Data Attribute eXchange Mapping i.e.

SD(A)XMapping

ii. Structured Data Schema eXchange Mapping i.e.

SD(S)XMapping

Figure 4. Types of SDXMapping

As shown in figure 4, SD(A)XMapping can be sub divided

into Structured Data Simple Attribute eXchange Mapping i.e.

SD(SA)XMapping and Structured Data Dependent Attribute

eXchange Mapping i.e. SD(DA)XMapping. Similarly,

SD(S)XMapping can be subdivided into Structured Data

Type eXchange Mapping i.e. SD(T)XMapping and

Structured Data Format eXchange Mapping i.e.

SD(F)XMapping because schema of the data describes its

type and format necessary to store and process it. In this

paper, we are concerned with SD(A)XMapping only and

rests of the mappings are left for the future work. Let us

understand these types of SD(A)XMappings one by one.

A. SD(SA)XMapping

In this section, we will understand the basic differences

between Simple Attribute (SA) and Dependent Attribute

(DA) by taking an example. The simple attributes are those

attributes whose values can be independently assigned by the

user but dependent attributes are those attributes whose value

can be chosen from set of some prefixed values. For

example, a student can be defined by attributes like name,

address, mobileNo, city and country. Here, name, address

and mobileNo would be simple attributes which can be

assigned values independently but attributes like city and

country would be dependent attribute because their values

can be chosen from set of prefix values provided by the IT

developers. Let us understand two terms Mashup

Configuration Attributes (MCA) and Data Mashup

Definition (DMD) before understanding simple attributes

mapping shown in figure 5. According to our previous work

[4], MCA is the set of attributes published by SDServer so

that SDClient can use it for performing pre-mashup

configuration whereas DMD is the set of attributes defined

by user at SDClient during defining its data requirement.

Figure 5. SD(SA)XMapping

As shown in figure 5, MCA#01 and MCA#02 are mashup

configuration attributes published by two different SDServers.

DMD#01 is the way of defining user’s data requirement at his

own digital place before performing the actual data mashup.

SD(SA)XMapping algorithm as shown in Algorithm 1 is used

to perform pre-mashup configuration to produce Structured

Data eXchange Mapping for simple attributes. SDX#1 and

SDX#2 are two different mappings created for two SDServers

i.e. SDServer#01 and SDServer#02 respectively. This kind of

mapping is simple and based on similarity of the semantical

meaning of the attributes defined at both ends.

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 400

The algorithm for performing one time configuration for

simple attributes as well as dependent attributes is given in

algorithm 1. This algorithm requires SDMB p and SDServer q

to access attributes of DMD and MCA.

Algorithm-1:

OTC (SDMB p, SDServer q)

1: begin
1

2: r = p.getDMDAttributes()

3: s = q.getMCAttributes()

4: For each MCAttribute t ∈ s

5: begin
2

6: u = selectDMDAttribute(r,t)

7: if(u is SA)

8: p.SDXMapping.add(u=t)

9: if(u is DA and t=DA)

10: p.SDXMapping.add(u*=t*)

11: Call OTC-DA(p,u*,t*)

12: end
2

13: end
1

Line 2 & 3 read all the DMDAttributes & MCAttributes

respectively. Each MCAttribute is corresponding to one

DMDAttribute which is symantically equal to each other.

Line 4 to 12 executes the loop for peforming SDXMapping

for all MCAttributes received from SDServer. Line 6 selects

DMDAttribute which is symantically equal to MCAttribute.

Line 7 to line 11 calls SDXMapping based on type of the

DMDAttribute i.e. simple attribute or dependent attribute. If

DMDAttribute and MCAttributes are dependent attibutes then

another algorithm 2 is called which has been developed for

performing one time configuration between depdendent

attributes.

B. SD(DA)XMapping

This section describes SDXMapping between dependent

attributes of SDClient and SDServer. It can be seen from

figure 6 that MCA#01 holds dependent attribute a14*

whereas MCA#02 holds dependent attribute b14*. Here * has

been used with an attribute to show that it is a dependent

attribute not a simple attribute. It should noted here that data

mashup definition must also contain dependent attibute before

performing mapping between them. Here, DMD#01 defines

x14* as a dependent attribute. Another important point can be

noted that there is no direct mapping between two dependent

attributes a14* and b14* rather mapping between their

dependent values are used to create SDXMapping. The values

of a14* can be assigned from one of the value from set

(u1,u2,u3) and value of b14* can be assigned from set

(v1,v2,v3). The dependent attribute x14* contains one of the

value from set (z1,z2,z3).

Figure 6. SD(DA)XMapping

Thus, SD(DA)XMapping generates mapping between all

possible values of dependent attributes. SDX#3 shows

mapping between DMD#01 and MCA#01 whereas SDX#4

shows mapping between DMD#01 and MCA#02. The rule for

mapping used in this mapping is same as that of simple

attributes.

The algorithm for performing one time configuration for

dependent attribute is given in algorithm 2. This algorithm

requires SDMB p and dependent DMDAttribute u* and

MCAttribute *t.

Algorithm-2:

OTC-DA (SDMB p, DMDAttribute u*, MCAttribute t*)

1: begin
1

2: a = u*.getDMDValues()

3: b = t*.getMCAValues()

4: For each value c ∈ a

5: begin
2

6: d = selectMCAValue(b, c)

7: p.SD(DA)XMapping.add(c=d)

8: end
2

9: end
1

Line 2 & 3 read values of all the DMDAttributes &

MCAttributes respectively. Line 4 to 8 executes the loop for

peforming SD(DA)XMapping between value of MCAttribute

and that of DMDAttribute. Line 6 selects MCAValue which

is symantically equal to one of the value of the

DMDAttribute.

C. SD(A)XMapping at a Glance

This section explains whole SD(A)XMapping process at a

glance. It is clear that from figure 7 that simple attributes are

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 401

passed to SD(SA)XMapping and dependent attributes are sent

to SD(DA)XMapping.

Figure 7. SD(SA)XMapping & SD(DA)XMapping

SDX#1 and SDX#2 have been created using simple attribute

mapping algorithm between MCA#01 & DMD#01 and

MCA#02 & DMD#01 respectively. Similarly, SDX#3 and

SDX#4 have been created using dependent attribute mapping

algorithm between MCA#01 & DMD#01 and MCA#02 &

DMD#01 respectively.

V. MASHUP CONFIGURATION STYLES

The SDXMapping as explained above needs to be configured
at either side or both side i.e. client side or server side.
Reference [40] described various interface required for
performing mashup using two popular mashup styles namely
client side mashup and server side mashup. Reference [28]
presented a novel mashup approach based on configuration
theory and visual tool. Based on the location of performing
the SDXMapping, mashup configuration can be of following
styles-

A. Server Side (1:n) Mashup Configuration

B. Client Side (1:n) Mashup Configuration

C. Server Side (m:1) Mashup Configuration

D. Client Side (m:1) Mashup Configuration

E. Hybrid (m:n) Mashup Configuration

Here the term (m:n) indicates that there are m number of
SDClients at client side and n numbers of SDServers at server
side taking participation in data mashup. Let us understand
these configuration styles one by one in the following
sections.

A. Server Side (1:n) Mashup Configuration

In this type of configuration style, there exist one SDClient

i.e. SDClient#1 at client side and n SDServers i.e.

SDServer#1,SDServer#2,..,..,SDServer#n etc and

SDXMapping is performed at server side. Hence, it is called

Server Side (1:n) Mashup Configuration which can be seen in

the figure 8.

Figure 8. Server Side (1:n) Mashup Configuration

This style takes less time to perform data population at client

side but takes more time for mashup communication because

SDXMapping is performed at server side. Here,

SDXMapping is performed at server side due to which

SDClient gets mashed up data in its own format which can be

directly populated into SDMB without performing filter and

transformation.

B. Client Side (1:n) Mashup Configuration

In this type of configuration style, there exist one

SDClient i.e. SDClient#1 at client side and n SDServers

i.e. SDServer#1,SDServer#2,..,..,SDServer#n etc and

SDXMapping is performed at client side. Hence, it is

called Client Side (1:n) Mashup Configuration which can

be seen in the figure 9.

Figure. 9. Client Side (1:n) Mashup Configuration

This style takes more time to perform data population at

SDClient but takes less time for mashup communication

because SDXMapping is performed at client side. Here,

SDXMapping is performed at client side for each mashup

communication and hence data received from SDServer

cannot be directly populated into SDMB and is passed to

filter and transformation components for further process.

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 402

C. Server Side (m:1) Mashup Configuration

In this type of configure style, there exist m SDClients i.e.

SDClient#1,SDClient#2,..,..,SDClient#m at client side and

one SDServer. SDXMapping is performed at server side

and hence, it is called Server Side (m:1) Mashup

Configuration which can be seen in the figure 10.

Figure 10. Server Side (m:1) Mashup Configuration

SDServer in this style takes more time to perform

SDXMapping because SDXMapping is performed at

SDServer for each SDClient connected to it and time

taken for mashup communication for each SDClient

depends on simultaneous execution of SDXMapping of

SDClients at a time in the SDServer. Again, because

SDXMapping is performed at server side hence data sent

by SDServer can be directly populated into SDMB.

D. Client Side (m:1) Mashup Configuration

In this type of configuration style, there exist m SDClients

i.e. SDClient#1,SDClient#2,..,..,SDClient#m at client side

and one SDServer i.e. SDServer#1 and SDXMapping is

performed on each SDClient. Hence, it is called Client

Side (m:1) Mashup Configuration which can be seen in

the figure 11.

Figure 11. Client Side (m:1) Mashup Configuration

Time taken by SDServer to send data to its SDClients

depends on the simultaneous request executed on it and

each SDClient consumes some time for filter,

transformation through SDXMapping before populating

data into its SDMB.

E. Hybrid(m:n) Mashup Configuration

Hybrid (m:n) mashup configuration shows the hybrid

combination of mashup configuration where some

SDXMappings are performed at SDClients and some are

performed at server side as can be seen from figure 12.

Figure 12. Hybrid Side (m:n) Mashup Configuration

Location of performing SDXMapping depends on the

mutual understanding between SDClient and SDServer in

the real world. The SDXMapping at client side is more

secured for end users because it does not disclose

DMDAttributes to anyone but user needs to update

SDXMapping if any change is occurred in MCAttributes

of SDServer. The SDXMapping at server side may not be

secured because it discloses DMDAttributes of the end

user but user does not need to perform any update on

SDXMapping if any change is occurred in MCAttributes

of the SDServer. The SDXMapping needs to be updated

if there is change in either DMDAttributes or

MCAttributes or both. Updates on SDXMapping can be

performed by either of the side on mutual understanding

but SDXMapping should be updated well before

performing data mashup at SDClient. Synchronization of

SDXMapping is another topic for researchers and can be

explored as future work.

VI. CONCLUSION

Data mashup is the general kind of mashup which deals with

all kinds of data whereas structured data mashup is the special

kind of data mashup, which fetches only well structured data

from multiple data sources and integrate all of them to

populate into mashup box. In this paper, we divided the whole

mashup development life cycle into two models called one

time configuration and any time access model. The pre-

mashup configuration process of one time configuration

model creates mashup module which consists of data module,

service module, mapping module and UI module to perform

different task. All these mashup modules are used by any time

access model for performing data mashup at various stages.

The SDXMapping, which is the output of pre-mashup

configuration process, has also been explained using the

concept of simple attribute’s mapping and dependent

attribute’s mapping through algorithms. We have designed

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 403

multi-mashup configuration styles using SDXMapping to

fulfil different situational need of data mashup, which will be

helpful for both the stakeholders called mashup developer and

end user for developing structured data mashup.

REFERENCES

[1] Fung, Benjamin CM, Thomas Trojer, Patrick CK Hung, Li Xiong,

Khalil Al-Hussaeni, and Rachida Dssouli, “Service-oriented

architecture for high-dimensional private data mashup”, IEEE

Transactions on Services Computing 5, no. 3, pp. 373-386, 2012.

[2] Lee, Yong-Ju, “Semantic-Based Web API Composition for Data

Mashups”, J. Inf. Sci. Eng. 31, no. 4, pp. 1233-1248, 2015.

[3] Yu, Daniel, “Efficient Processing of Almost-Homogeneous Semi-

Structured Data”, Master's thesis, 2018.

[4] Hardaha, Prakash, Shailendra Singh, “Structured Data REST

Protocol for End to End Data Mashup”, Future Internet10, no. 10,

2018.

[5] Beemer, Brandon, and Dawn Gregg, “Mashups: a literature

review and classification framework.”, Future Internet 1.1: 59-

87,2009.

[6] Taivalsaari, Antero, “Mashware: The future of web applications”

2009.

[7] Desolda, Giuseppe, Carmelo Ardito, Maria Francesca Costabile,

and Maristella Matera, “End-user composition of interactive

applications through actionable UI components”, Journal of

Visual Languages & Computing 42 : 46-59,2017.

[8] Paternò, Fabio, “End user development: Survey of an emerging

field for empowering people”, ISRN Software Engineering 2013.

[9] Fischer, Thomas, Fedor Bakalov, and Andreas Nauerz, “An

Overview of Current Approaches to Mashup Generation”, In

Wissensmanagement, pp. 254-259. 2009.

[10] Vancea, A.; Grossniklaus, M.; Norrie, M, “Database-Driven Web

Mashups”, International Conference On Web Engineering,

Yorktown Heights, New York, pp. 162-174, 2008.

[11] Easton, Annette, and George Easton, “Demystifying Mashups”, In

Proceedings of Informing Science & IT Education Conference

(InSITE), pp. 479-486, 2010.

[12] Gao, Lianli, Peng Wang, Jingkuan Song, Zi Huang, Jie Shao, and

Heng Tao Shen, “Event Video Mashup: From Hundreds of Videos

to Minutes of Skeleton”, In Thirty-First AAAI Conference on

Artificial Intelligence, 2017.

[13] Meerwaldt, Rick, Albert Meroño-Peñuela, and Stefan Schlobach,

“Mixing Music as Linked Data: SPARQL-based MIDI Mashups”,

In Workshop on Humanities in the Semantic Web-WHiSe II

(ISWC 2017), 2017.

[14] Di Lorenzo, Giusy, Hakim Hacid, Hye-young Paik, and Boualem

Benatallah, “Data integration in mashups”, ACM Sigmod Record

38, no. 1,pp. 59-66, 2009.

[15] Zaka, Bilal, Christian Safran, and Frank Kappe, “Personalized

Interactive Newscast (PINC): Towards a multimodal interface for

personalized news” In Semantic Media Adaptation and

Personalization, IEEE Second International Workshop on, pp. 56-

61, 2007.

[16] WALES, NEW SOUTH, “Mashups for Data Integration: An

Analysis”, 2008.

[17] Boulakbech, Marwa, Nizar Messai, Yacine Sam, and Thomas

Devogele, “Visual Configuration for RESTful Mobile Web

Mashups”, In Web Services (ICWS), 2017 IEEE International

Conference on, pp. 870-873, 2017.

[18] Heath, Tom, and Christian Bizer, “Linked data: Evolving the web

into a global data space”, Synthesis lectures on the semantic web:

theory and technology 1, no. 1,pp. 1-136, 2011.

[19] Ruback, Livia, Marco Antonio Casanova, Alessandra Raffaetà,

Chiara Renso, and Vania Vidal, “Enriching Mobility Data with

Linked Open Data”, In Proceedings of the 20th ACM International

Database Engineering & Applications Symposium, pp. 173-182,

2016.

[20] Tran, Tuan Nhat, Duy Khanh Truong, Hanh Huu Hoang, and

Thanh Manh Le, “Linked data mashups: a review on technologies,

applications and challenges”, In Asian Conference on Intelligent

Information and Database Systems, pp. 253-262. Springer

International Publishing, 2014.

[21] Zook, Matthew, and Jessica Breen, “Mapping Mashups”, The

International Encyclopedia of Geography, 2017.

[22] Ennals, Rob, Eric Brewer, Minos Garofalakis, Michael Shadle,

and Prashant Gandhi, “Intel Mash Maker: join the web”, ACM

SIGMOD Record 36, no. 4, pp. 27-33, 2007.

[23] Hira, Shrabanti, and S. M. Labib, “Conceptual study of Web-based

PPGIS for Designing Built Environment: Identifying Housing

Location Preferences in Littleborough”, 2017.

[24] Hoyer, Volker, and Marco Fischer, “Market overview of enterprise

mashup tools”, Service-Oriented Computing–ICSOC 2008, pp.

708-721,2008.

[25] Patel, Ahmed, Ibrahim AlShourbaji, and Samaher Al-Janabi,

“Enhance business promotion for enterprises with mashup

technology”, Middle-East Journal of Scientific Research 22, no. 2

pp. 291-299, 2014.

[26] Ngu, Anne HH, Michael P. Carlson, Quan Z. Sheng, and Hye-

young Paik, “Semantic-based mashup of composite applications”

IEEE Transactions on Services Computing 3, no. 1,pp. 2-15, 2010.

[27] Ma, Shang-Pin, Chun-Ying Huang, Yong-Yi Fanjiang, and Jong-

Yih Kuo, “Configurable RESTful Service Mashup: A Process-

Data-Widget Approach”, Appl. Math 9, no. 2L, pp. 637-644, 2015.

[28] Im, Janggwan, Seonghoon Kim, and Daeyoung Kim, “Iot mashup

as a service: Cloud-based mashup service for the internet of

things”, In Services Computing (SCC), 2013 IEEE International

Conference on, pp. 462-469, 2013.

[29] Barhamgi, Mahmoud, Chirine Ghedira, Djamal Benslimane, S-E.

Tbahriti, and Michael Mrissa, “Optimizing daas web service based

data mashups”, In Services Computing (SCC), 2011 IEEE

International Conference on, pp. 464-471, 2011.

[30] Madhavan, Jayant, Loredana Afanasiev, Lyublena Antova, and

Alon Halevy, “Harnessing the deep web: Present and future”,

arXiv preprint arXiv:0909.1785, 2009.

[31] Hornung, Thomas, Kai Simon, and Georg Lausen, “Mashups over

the deep web”, In International Conference on Web Information

Systems and Technologies, Springer, Berlin, Heidelberg, pp. 228-

241, 2008.

[32] Auinger, Andreas, Martin Ebner, Dietmar Nedbal, and Andreas

Holzinger, “Mixing content and endless collaboration–MashUps:

Towards future personal learning environments”, In International

Conference on Universal Access in Human-Computer Interaction,

Springer, Berlin, Heidelberg, pp. 14-23, 2009.

[33] Jarrar, Mustafa, and Marios D. Dikaiakos, “A query formulation

language for the data web”, IEEE Transactions on Knowledge and

Data Engineering 24, no. 5, 783-798, 2012.

[34] Simmen, David E., Mehmet Altinel, Volker Markl, Sriram

Padmanabhan, and Ashutosh Singh, “Damia: data mashups for

intranet applications”, In Proceedings of the 2008 ACM SIGMOD

international conference on Management of data, pp. 1171-1182,

2008.

[35] Bouguettaya, Athman, Surya Nepal, Wanita Sherchan, Xuan Zhou,

Jemma Wu, Shiping Chen, Dongxi Liu, Lily Li, Hongbing Wang,

and Xumin Liu, “End-to-end service support for mashups”, IEEE

Transactions on Services Computing 3, no. 3, 250-263.2010.

[36] Kang, Jaewoo, and Jeffrey F. Naughton, “On schema matching

with opaque column names and data values”, In Proceedings of

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 404

the 2003 ACM SIGMOD international conference on Management

of data, pp. 205-216, 2003.

[37] Tuchinda, Rattapoom, Craig A. Knoblock, and Pedro Szekely,

“Building mashups by demonstration”, ACM Transactions on the

Web (TWEB) 5, no. 3,16, 2011.

[38] Guo, Mingchuan, and Yong Yu, “Mutual enhancement of schema

mapping and data mapping”, In International Workshop on

Mining for and from the Semantic Web, p. 88, 2004.

[39] Mecca, Giansalvatore, Paolo Papotti, and Donatello Santoro,

“Schema Mappings: from Data Translation to Data Cleaning”, In

A Comprehensive Guide Through the Italian Database Research

Over the Last 25 Years, Springer, Cham, pp. 203-217, 2018.

[40] Salminen, Arto, and Tommi Mikkonen, “Mashups-Software

Ecosystems for the Web Era”, In IWSECO@ ICSOB, pp. 18-32,

2012.

Authors Profile

Mr. Prakash Narayan Hardaha is pursing Ph.D. (Computer Science
& Engineering) from Barkatullah Univeristy, Bhopal and currently
working as System Analyst in the Department of Computer
Engineering and Applications, National Institute of Technical
Teachers Training and Research, Bhopal. His main research work
focuses on code generation, data mashup, structured data
engineering, web technolgy and integrated UI development. He has
12 years of teaching experience and 6 years of industry experience.

Dr. Shailendra Singh received his Ph.D. degree in Computer
Science and Engineering from Rajiv Gandhi Proudyogiki
Vishwavidyalaya, Bhopal, India in 2010. He is currently working as
Professor in the Department of Computer Engineering and
Applications, National Institute of Technical Teachers’ Training
and Research, Bhopal-462002, India. His research interests include
internet technologies, intrusion detection systems using machine
learning techniques & Support Vector Machine. He has published
more than 75 research papers in the international journal and
conferences of repute and presented many papers on
international/national level conference/seminars. He has more than
21 years of teaching experience and 2 years of industry experience.
He is also a senior member of IEEE.

