
 © 2016, IJCSE All Rights Reserved 44

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-4, Issue-7 E-ISSN: 2347-2693

Extracting Tasks of Text Files using Dictionary Based Approach for

Classification and Indexing

Prachi Rayate
1*

, Devendra Singh Thakore
2

1
 PG Student, Computer Engineering Department, Bharati Vidyapeeth Deemed University College of Engineering Pune, India

2
 H.O.D., Computer Engineering Department, Bharati Vidyapeeth Deemed University College of Engineering Pune, India

Available online at: www.ijcseonline.org

Received:12/Jun/2016 Revised: 20/Jun/2016 Accepted: 16/Jul/2016 Published: 31/Jul/2016

Abstract— In software documentation, product knowledge and software requirement are very important to improve product

quality. Reading of whole documentation of large corpus cannot be possible by developers in maintenance stage. They need to

receive software documentation entities i.e. (development, designing and testing etc.) in a short period of time. In software

documentation an important documents are able to record. There exists a space between information which developer wants

and software documentation. This difference can be experimental whenever developers effort to discover the accurate

information in the correct form at the exact time. To solve this problem, an approach for extracting relevant task of the

documentation under four phases of software entities (i.e. documentation, development, testing and other etc.) is described. The

main idea is task extracted from the software documentation, freeing the developer easily get the required data from software

documentation with customize portal using Natural Language Processing (NLP) and then the category of task can be generated

easily from existing applications. The machine learning approach that is based on supervised learning technique for training

dataset in the form of text files based on text mining. Our approach use WordNet library to identify relevant tasks for

calculating frequency of each word which allows developers in a piece of software to discover the word usage and also

assigning Part-of Speech (POS) to each word. The result shows that task is extracted by calculating how many sentences,

tokens and tasks appearing in a document and also shows task is relevant or not. It also reduced a live space between

information which developers want and software documentation. This is used to improve the performance of system by taking

feedback of developers. The result is identified through customize portal which helps to developers easily get information in a

short period of time. The system is 80% precise to extract task by taking feedback of developers in the form of comment.

Keywords— Natural language processing, text mining, part-of-speech tagging, text files, machine learning techniques,

WordNet library etc.

I. INTRODUCTION

The system which is use to process sentences in a natural

language such as English is called as “Natural language

processing”. Software requirements and product knowledge

are used to improve quality of product. These two are very

crucial components to improve quality of product software

and product knowledge. The usage of software system

rapidly grows increasingly to identify relevant tasks from

software documentation within large corpus. To help

developers work effectively and minimize software

maintenance, there is a serious need for automated support.

Data delivery to developers is the main objective of the

important document. A lot of technical knowledge and

important documents can be able to record in software

documentation. There are many forms which are covered in

software documentation and these forms are wanted by

software developer [1]. To read whole documentation of

large systems developers may not get sufficient time and

also unable to clear all motivation and purpose of the

documentation. This difference can be experimental

whenever developers effort to discover the accurate

information in the correct form at the exact time.

Fig. 1 Task Extraction Process

As the whole document consist of large information the

statistical technique, automatically of task structure

generally does not prove very useful. To solve this problem,

our main idea is to automatically extract tasks from

customize portal using Natural Language Processing (NLP).

 International Journal of Computer Sciences and Engineering Vol.-4(7), PP(44-50) Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 45

Many organizations of software development and open

source projects try to solve the problem of space between

software documentation and the information which

developer wants by creating web pages which generated

very useful information. As per the user requirements

search engines are inadequate and unable to express

techniques. The technique gap is reduced by completing

the words by search engines which have a software function

to do the same and it is presented by high fulfilled user’s

feedback [4]. For customized search systems the count of

previous appeared queries is not too large and also query

logs are not available to learn such models [6].

The field of text mining usually deals with texts whose

function is the communication of accurate information or

opinions, and the motivation for trying to extract

information from such text automatically. Text mining” is

generally used to denote any system that analyzes large

quantities of natural language text and detects lexical or

linguistic usage patterns in an attempt to extract useful

information.

 Text Data Mining

Fig. 2 Overview of IE-based Text Mining Framework

In our system, text mining takes input in the form of text

file as a data source. Text files are stored into database to

extract task for mining semantically related words. This is

useful to structure file from unstructured or raw

information. Only text files are use for task extraction in

this work. It is easy to extract information from text files

because software documentation contains huge amount of

data.

The extraction technique combines natural language

processing (NLP) techniques, classification methods, text

mining and the analysis of syntactical features of the text.

Here is need of machine learning techniques for task

extraction. This approach requires text mining to

summarizes text input and reduce redundancy with NLP.

NLP is used to filter each word into a proper way and then

whole documentation is analyzed and then categorized into

different software documentation phases (i.e.

documentation, development and testing etc.). Text mining

is the discovery and extraction of interesting, non-trivial

knowledge from free or unstructured text. This

encompasses everything from information retrieval (i.e.,

document or web site retrieval) to text classification and

clustering, to (somewhat more recently) entity, relation, and

event extraction. Natural language processing (NLP), is the

attempt to extract a fuller meaning representation from free

text. NLP typically makes use of linguistic concepts such as

part-of-speech (noun, verb, adjective, etc.) and grammatical

structure (either represented as phrases like noun phrase or

prepositional phrase, or dependency relations like subject-of

or object-of) [2]. The word net dictionary approach is used

to find the path of words appears in a document.

The correctness of the processing steps is calculated. Using

a standard of sentences and their equivalent the task

extraction algorithm is implemented. With the help of 10

software developers and also calculated an evaluation of the

tasks extracted from the documentation of customized

portal to evaluate whether the extracted tasks are

meaningful to developers. The result shows that it reduced a

live space between information which developers want and

software documentation automatically. And also shows that

sentences, tokens and tasks are evaluated. The better results

are evaluated by taking feedback from developers in terms

of accuracy.

The main contributions of this paper are:

• This work is mainly focus on software

documentation to extract some task from large

corpus through WordNet library using customize

portal.

• Natural language processing is applied to

categorize task into different phases and requires

machine learning technique for training set of task.

• Part-of-speech (POS) tagging is used to identify

task in a document with the help of WordNet

library and calculate frequency of each word

appearing in a document.

II. RELATED WORK

In this section, some related works which addresses

documentation related issues in task extraction is reviewed.

There are many techniques which are already available so

this section gives the review of all these techniques. Such

extracting issues are very important in software documents.

Also compared the propose approach with these available

approaches and defines that how the system provides

extraction technique to developers.

Treude, Martin P. Robillard, and Barth_el_emy Dagenais

described automatically extracting tasks from software

documentation is introduced. The tasks which are extracted

from documentation that already have been mentioned.

Their proposed system is platform independent, which does

not require any machine learning languages. One of the

important feature of their work is it enables task navigator

through the task extracted which is useful for search queries

of user interface. They show that software documentation

Information

Extraction

Data

Mining
DB Rules

Text

 International Journal of Computer Sciences and Engineering Vol.-4(7), PP(44-50) Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 46

contains sufficient information to extract development tasks

and it is use to reduce an information gap between software

documentation and developers. This approach is more

helpful to developers for identified search results with task

of development. Their work based on different techniques

for task extraction like natural language processing,

statistical techniques, syntactical analysis of text etc [1].

Samir Gupta, Sana Malik proposed a part of speech parsing

includes pos tagger and syntactic parser for source code

names. They present a POS tagger and syntactic chucker for

source code names that takes into account programmers

naming conventions to understand the regular, systematic

ways a program element is named and identified different

grammatical constructions that characterize a large number

of program identifiers. Their evaluation results show a

significant improvement in accuracy of POS tagging of

identifiers, over the current approaches [3].

S. L. Abebe and P. Tonella, defines the approaches of

natural language parsing to sentences constructed from the

terms that appear in program element identifiers. And also

shows parsing can be represented as a dependency tree.

They automatically extract ontology by mapping linguistic

entities (nodes and relations between nodes in the

dependency tree) to concepts and relations among concepts.

This paper also shows that how queries including ontology

concepts reduce the search space, when determining the

files relevant to the change request. They have extracted

domain concepts from program element names by applying

NLP and organizing such concepts into ontology. To

validate their approach, they have used the concepts in the

ontology to (re-formulate) queries used in concept location

[5].

 Next, we have focused on query expansion work by Haiduc

et al. approach based on the query of properties to improve

performance of reformulation strategy by automatically

recommends given query. Machine learning consists of

training set of data which is trained properly with a sample

number of queries and relevant results [11]. Yang et al. used

the context addition to reformulated query in which query

words are found to extract synonyms, antonyms,

abbreviations, and related words [12]. Hill et al. described a

similar tool for query expansion. They extracted noun

phrases, verb phrases, and prepositional phrases from

method and field declarations. Their approach used a

hierarchy of phrases and associated a method signature

which returns on an initial query [13]. Howard et al. focus

on the semantically similar words which are based on

software. Their technique mines semantically similar words

by leveraging comments and programmer conventions [14].

Again, the main difference to our work is that task

extraction suggestions appear after just three typed

characters and help the user complete the query rather than

reformulate it.

III. PROBLEM DEFINITION

To propose a highly centralized task extraction approach to
keep track of the actual usage of the extraction data in the
customize portal to meet the text mining, syntactical
analysis, natural language processing and machine learning
requirements from the software documentation, which
contains all documentation types and also it supports a
variety of task extraction methods, categorized each relevant
task into different phases of documentation like
documentation, development, testing and other etc. and also
taking a proper feedback from the developers.

IV. PROPOSED SYSTEM

A number of issues lead to extract task from software

documentation which are related to mismatch information

by developers. So to provide an effective mechanism which

monitors all the usage of the task on documentation is

necessary. In literature survey there are some techniques

which already available as discussed but they have some

limitations. So to overcome those limitations with the help

of applying customize portal framework. All data can be

securely extract on documentation is the main purpose of

this mechanism. In the existing system, this technique is

only applied to particular application but our proposed

system apply this framework to text file types which

contains all task types, also it also supports a natural

language techniques, text mining for text files, machine

learning technique using supervised , usage control for

extract files. The task is directly extracted from software

documentation in existing system but in our idea is to

manually extract task, categorized task into different phases

i.e. documentation, development, testing and other etc. then

after taking a feedback from developers in the form of

comment. In next section, the detailed flow of our work is

shown.

A. Flow Diagram of Proposed System

In this section, our whole project works modified and then

trying to build a customize application that is to give us best

result like accuracy in terms of frequency and

categorization of task. This approach can be useful to

improve the precision of tasks of software documentation.

So that it’s become easy to reduce a live space between

information which a developer wants and software

documentations. Basically our work is divided into three

phases. Firstly, admin uploads document on the server.

Based on that admin add number of tasks which is showed

by users. Admin has authority to add number of task into a

system. And also specify task description before

preprocessing, then choose particular user to assign some

task. Whenever admin loads task the machine leaning

 International Journal of Computer Sciences and Engineering Vol.-4(7), PP(44-50) Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 47

technique is used. Because data is trained properly and then

it is delivered to the number of users using supervised

learning. The document can be categorized into different

phases and also calculated frequency of each extracted task.

Users views documents and extracted task from admin

whichever user wants.

Whenever users extracted task at that time admin views all

user’s data which they have extracted. After preprocessing

is done the sentences, tokens, and tasks are calculated in

one document. User can comment about extracted task like

positive, negative and neutral in the form of feedback using

sentiment analysis. User can be able to see all

documentation related information like how many

sentences, tokens and tasks etc. are there in one file. This

dissertation is used supervised algorithm because all data

trained properly then it is delivered to the number of users.

B. Procedure of Task Extraction:

The data set is stored into the database and take one by one

document is nothing but text file. Text mining is applied

for discovery of structured data from large corpus. In our

case .txt file is supported only for task extraction. Here NLP

is applied in such a way that different types of steps are

executed. With the help of text mining we summarized data

after applying lucene algorithm for indexing of

documentation. And each index entries stored frequency of

each word in given document. The documentation corpus of

a project is also pre-monitored so that to get the extraction

of development tasks can be done by text files which kept

information as it is. The documentation of each page

contains redundant information like summaries, headers and

footers which is repeated and also from the files it

discarded. During pre-processing the meta-information kept

as it is to shows that HTML header represents a paragraph

and code is marked up explicitly. By using stand ford NLP

toolkit, the resulting files contains pre-tags which is

removed and tokens as well as sentences which is also

spited into them. Here WordNet library is used to identify

each word in a sentence with assigning Part-of–speech

(POS) and calculate how many times word occurs in one

whole document.

Task 1: The sentence is “Testing focuses primarily on the

evaluation and the assessment of product quality realized

through a number of core practices”. After applying natural

language processing the sentence is into tokens like

“testing”, “focuses”, “evaluation”, “assessment”, “product”,

“quality”, “realized”, “number”, “core”, “practices”,

“involves”, “activities”. So this type of document comes

under testing phase. Each token is assigned Part–of-speech

tagging to identify task such as verb and adjective from

word net library in task extraction process. In above

sentence task is identified like as testing, realize and involve

are verbs and quality is adjective. With the help of this task

is test quality realize involve after natural language

processing is applied.

Fig. 3 Proposed System Architecture

To identify each sentence by the StandfordNlp toolkit is the

main idea of this work. The whole sentence is tokenized and

syntax analyzer is used to check syntax or punctuation

occurred in a sentence. In the case to exclude automatically-

generate indexes, release notes, and download instructions.

Text Mining usually involves the process of structuring the

input text deriving patterns in the structured data, and

finally the data is evaluated and interpreted. Text mining

takes input as a documentation element in .txt file. NLP is

applied in such a way that the task is to be filtered and

structured with text files based on pre-processing. The

extracted tasks are divided into different phases of software

engineering (i.e. documentation, development and testing

etc.).The tokens and the grammatical dependencies between

tokens are stored into files that contain development tasks

or relevant concepts can be explicitly excluded from the

analysis. In semantic analysis, the Part-of-Speech (POS)

tagging is to identify each word in a sentence from

WordNet library. Lucene algorithm is used for indexing and

Data

Source Text Mining

Reduce Redundancy

Software

Documentation

Categorization

Of Task

Add comment on

task

Text

files
NLP

1.Documentation

2.Development

3.Testing

4.Other

 International Journal of Computer Sciences and Engineering Vol.-4(7), PP(44-50) Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 48

searching of words as well as sentences for POS tagging

where each document contains index entry. And finally the

accuracy of the extracted task to developers gives a proper

feedback in the form of comment is calculated.

C. Algorithm

In our proposed system, lucene algorithm for text mining is

used.

• Lucene indexing algorithm

Lucene is one of the most famous algorithms in text mining

for indexing and searching documents which is useful to

open source Java library. A term consists of pair of string

elements which is the basic unit for searching. This

algorithm is especially full text search library written in

Java.

1. Determine if the document is new, update in

index of not updated in index.

2. If document is already exists then do nothing. If

the document is new, create Lucene Document,

if it's not updated then delete the old document

and create new Lucene Document.

3. Extract the words from the document.

4. Remove the stop words.

5. Apply stemming.

6. Store the created Lucene Document in index.

D. Experimental Results

In our approach, data admin create and upload

documentation files on the server. Then admin add relevant

task and according to categorize then assign to respective

users. Then users search and click on extracted task and

give comment like positive or negative about extracted task

Admin view all comment about task which has been given

by user and also add comment regarding of that task. So

whenever next user view task then user will get all

information of extracted task. The dissertation work is done

which is shown in this section.

Fig. 4 Categorization of Tasks

In above result, this is dashboard of admin of customize

portal. The system is categorized relevant tasks into four

phases of software documentation i.e development,

documentation, testing and other etc using machine leaning

techniques. And also calculated frequency of each task is

mapped it in a bar graph and admin is assigned it according

to user needs. Admin has authority that which task is given

to which user. With the help of this, user will understand

how many tasks are there in our system. We can create

number of tasks of software documentation in our system.

Table 2 Precision, recall and f-measure statistics

• Number of Tasks

In our system, admin loads number of tasks in customize

portal. Such tasks can be extracted by manually and then

natural language processing is performed and then

uploading tasks on user side. Here the number of tasks is

measured. The number of task by changeable the size of

documents held by them is measured.

Fig. 5 Number of Tasks in System

In above fig. 5, it shows the number of task i.e the user’s

document verses the number of created tasks. As per base

Document PRECISION RECALL F-MEASURE

D1 80 2 3.902439024

D2 81.57894737 7 12.89364231

D3 88.88888889 8 14.67889908

D4 80.76923077 5 9.417040359

D5 80 2 3.902439024

D6 76.92307692 6 11.13172542

D7 83.33333333 8 14.59854015

D8 84.21052632 6 11.20186698

D9 81.08108108 7 12.88738877

D10 87.27272727 7 12.96046287

 International Journal of Computer Sciences and Engineering Vol.-4(7), PP(44-50) Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 49

paper, comparing with existing system, proposed system

number of tasks is much smaller than existing system. X-

axis shows the number of documents which grows from 0 to

100 and Y-axis shows the values up to 2000 for task

number. This number in our proposed system is 14 to 40 for

the documents. So as per above results our system give

good result in terms of number of tasks. This analysis with

values is given in below table 2 which is compared with

existing results.

• Accuracy of Results

Given the set of documents for each task, the average

precision and recall is measured in customize portal. For

better performance of system, we randomly selected 10

documents for analysis of result. Fig. shows precision,

recall and f-measure of task extraction based on verb and

adjective.

Fig. 6 Precision, Recall and F-measure

Fig. 6 Comparison of Precision Percentage between

Existing System and Proposed System

The above fig. 6 shows that comparison between existing

and proposed system is evaluated. This comparison is done

with the help of number of documents of extracted tasks.

Based on that precision of percentage is calculated which

shows that how proposed system is better than existing

system. X-axis shows the number of documents which

grows from 0 to 10 and Y-axis shows the values up to 100

for percentage of precision. As per the base paper, existing

system has smaller precision percentage than proposed

system.

V. CONCLUSION

In this paper, new approach for automatically extracting

with natural language processing technique is introduced.

This approach allows the developers of the data to not only

extract his data but also categorized relevant task into

different software phases like documentation, development,

testing and other etc. In this concept, NLP is used to get the

required data and also used text mining, machine learning,

sentiment analysis method and some more algorithms to

calculate the results. The result shows that tasks can be

extracted from customize portal and also reduced a live

space between information which developers want and

software documentation also developers can add comment

about extracted tasks.

ACKNOWLEDGMENT

This is to acknowledge and thank all the individuals who

played defining role in shaping this paper. Without their

constant support, guidance and assistance this paper would

not have been completed. Without their Coordination,

guidance and reviewing this task could not be completed

alone. I avail this opportunity to express my deep sense of

gratitude and whole hearted thanks to my guide and head of

computer Engineering. Dept. Prof. Dr. D. M. Thakore for

giving his valuable guidance, inspiration and

encouragement to embark this paper and our Honble

principal Dr.Anand Bhalerao at B.V.D.U College of

Engineering, Pune (BVDUCOE).

REFERENCES

[1] Christoph Treude, Martin P. Robillard, and Barth_el_emy

Dagenais ,”Extracting Development Task To Navigate

Software Documentation” in Proc, IEEE Soft,Vol.41

No.6,2015,pp,565-581, June 2015.

[2] S. Gupta, S. Malik, L. Pollock, and K. Vijay-Shanker, “Part-

of speech tagging of program identifiers for improved text-

based software engineering tools,” in Proc. 21st IEEE Int.

Conf. Program Comprehension, pp. 3–12,2013 .

[3] M. Barouni-Ebrahimi and A. A. Ghorbani, “On query

completion in web search engines based on query stream

mining,” in Proc. IEEE/WIC/ACM Int. Conf. Web Intell., pp.

317–320,2007.

[4] P. Mika, E. Meij, and H. Zaragoza, ”Investigating the

semantic gap through query log analysis,” in Proc. 8th Int.

Semantic Web Conf., pp. 441–455,2009.

 International Journal of Computer Sciences and Engineering Vol.-4(7), PP(44-50) Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 50

[5] S.L.Abebe and P.Tonella,“Natural language parsing of

program element names for concept extraction,” in Proc. 18

th IEEE Int. Conf. Program Comprehension, pp. 156–

159,2010.

[6] C. Treude and M.-A. Storey, “Effective communication of

software development knowledge through community

portals,” in Proc. 8th Joint Meet. Eur. Soft. Eng. Conf. ACM

SIGSOFT Symp. Found. Soft. Eng., pp. 91–101,2011.

[7] T. C. Lethbridge, J. Singer, and A. Forward, “How software

engineers use documentation: The state of the practice,” IEEE

Soft., vol. 20, no. 6, pp. 35–39, Nov./Dec. 2003.

[8] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J.

Bethard, and D. McClosky, “The Stanford Core NLP natural

language processing toolkit,” in Proc. 52 nd Annu. Meet.

Assoc. Computat. Linguistics: Syst. Demonstrations, pp. 55–

60,2014.

[9] G. Sridhara, E. Hill, L. Pollock, and K. Vijay-Shanker,

“Identifying word relations in software: A comparative study

of semantic similarity tools,” in Proc. 16th IEEE Int. Conf.

Program Comprehension, pp. 123–132, 2008.

[10] H. Zhong, L. Zhang, T. Xie, and H. Mei, “Inferring resource

specifications From natural language API documentation,” in

Proc. 24th IEEE/ACM Int. Conf. Automated Soft. Eng., pp.

307–318,2011.

[11] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia,

and T. Menzies, “Automatic query reformulations for text

retrieval in software engineering,” in Proc. 35th Int. Conf.

Soft. Eng., pp. 842–851,2013.

[12] J. Yang and L. Tan, “Inferring semantically related words

from software context,” in Proc. 9th Working Conf. Min.

Softw. Repositories, pp. 161–170,2012.

[13] E. Hill, L. Pollock, and K. Vijay-Shanker, “Automatically

capturing source code context of NL-queries for software

maintenance and reuse,” in Proc. 31st Int. Conf. Soft. Eng.,

pp. 232–242,2009.

[14] M. J. Howard, S. Gupta, L. Pollock, and K. Vijay-Shanker,

“Automatically mining software-based, semantically-similar

words from comment-code mappings,” in Proc. 10th Working

Conf. Min. Softw. Repositories, pp. 377–386, 2013.

[15] James H. Martin, “Speech and Language Processing: An

Introduction to Natural Language Processing, Computational

Linguistics and Speech Recognition”, by Prentice Hall

,January 2000.

AUTHORS PROFILE

Prachi Rayate is currently pursuing M. Tech Computer)

final year from Department of Computer Engineering from

Bharati Vidyapeeth’s Deemed University College of

engineering Pune, India. Her interests are in Data mining,

natural language processing and programming languages.

Prof. Dr. Devendra Singh Thakore is working as a head

of department in Computer Engineering Department at

Bharati Vidyapeeth’s Deemed University College of

engineering. Pune, Maharashtra, India. He received his

M.E. (Computer), M.B.A and P.H.D degrees from various

universities. His research interest includes Software

Engineering, Cloud Computing, and Data mining.

