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Abstract— ALU is very essential unit of any embedded processors. Very basic operations like addition, subtraction, multiplication 

and division are part of ALU unit.  In literature, we have many algorithms to perform addition, subtraction and multiplication but 

less on division algorithm. The division algorithm performs, either by addition or subtraction, based on the signs of the divisor and 

partial remainder.  Floating point division is considered as a high latency operation. Division algorithms have been developed to 

reduce latency and to improve the computational efficiency, hardware cost, area and power of processors.  This paper presents 

different division algorithms such as Digit Recurrence Algorithm restoring, non-restoring and SRT Division (Sweeney, Robertson, 

and Tocher), Multiplicative Algorithm, Approximation Algorithms, CORDIC Algorithm and Continued Product Algorithm. This 

paper intended to compare various techniques used and their features relevant for various applications. 
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I.  INTRODUCTION  

Computers have evolved rapidly since their creation. 

However, there is one thing that has not changed: The main 

purpose of computers is to do the arithmetic to run programs 

and applications. Basically, computers handle lots of numbers 

based on the three basic arithmetic operations of addition, 

multiplication and division. Compared to addition and 

multiplication, division is the least used operation. However, 

computers will experience performance degradation if 

division is ignored [1], [2], [3]. A survey by Oberman and 

Flynn [9] presents the main algorithms used for implementing 

division in hardware. There are three main classes for 

hardware-oriented division algorithms: digit recurrence, 

functional iteration and table based methods. Each method 

has its own advantages [1], however digit recurrence division 

is most common algorithm for division and square root in 

many floating point units, since it is simple and lower in 

complexity than division by convergence [2], [4], [5]. 

Restoring, non-restoring and SRT dividers are representative 

algorithms for digit recurrence division. Division is 

equivalent to repeat subtraction of the divisor from the 

dividend until the quantity left is smaller in magnitude than 

the divisor. The number of subtractions is the quotient, and 

the quantity left is the remainder. This process, if done 

straight forwardly, is very time consuming. It is substantially 

speeded if the most significant digits of the divisor and 

dividend are aligned before the first subtraction, and the 

divisor then shifted to the right one position whenever the 

partial remainder become smaller than the divisor before 

shifting. One shift may be necessary before any subtraction, if 

the initial alignment makes the divisor larger than the 

dividend. In binary, at most one subtraction can be made 

between shifts except as noted below. Two conventional 

techniques avoid the need to compare the remainder with the 

divisor after every subtraction. In restoring division, 

subtraction continues until the sign of the partial remainder 

changes; the change causes an immediate addition of the 

divisor and a corresponding decrement of the accumulating 

quotient, before the right shift. In non-restoring division, the 

sign change causes a shift followed by one or more additions 

until the sign changes back. 

Of the four basic arithmetic operations: addition, subtraction, 

multiplication, and division, division is the hardest to 

implement in hardware. One of the main reasons for this is 

that while addition, subtraction and multiplication are well 

defined and give exact answers, division is less so. The result 

of a division between integers (or even between floating 

point numbers with finite precision) will in general be a 

rational number, which in many cases cannot be represented 

exactly in binary with a fixed number of bits. This leads 

either to an approximate answer, or to a second definition of 

division: integer division. Integer division considers both the 

dividend and divisor to be integers, and expresses the result 

uniquely as a quotient and remainder: 

 

Dividend = Quotient ×Divisor + Remainder                     (1) 

 

where the quotient is an integer, and the remainder satisfies  
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  0 ≤ Remainder < Divisor                                             (2)  

                   

      Within an image processing context, division occurs 

within several common image processing operations: 

contrast expansion, intensity normalisation, contrast ratio 

calculation, colour conversion (calculating the hue and 

saturation) are a few. 

 

1. ALGORITHMS 

Given two non-negative real numbers X (the dividend) and D 

(the divisor), the quotient q and the remainder r are non-

negative real numbers defined by the following expression: 

X = q.D + r with r < D.ulp, where ulp is the unit in the least 

significant position. If X<D and D are the (unsigned) 

significant of two IEEE-754 floating-point numbers, then 

they belong to the range [1,2), and q lies in the range [0.5, 1). 

This result can be normalized by shifting the quotient by one 

bit to the left, and adjusting the exponent accordingly. 

Division generally does not provide finite length result. The 

accuracy must be defined beforehand by setting the allowed 

maximum length of the result (p). The number of algorithmic 

cycles will therefore depend upon the aimed accuracy, not 

upon the operand length (n).  

 

A. Restoring and Non-Restoring Algorithm  

To divide two integers, the most well-known procedures are 

restoring and non-restoring digit-recurrence algorithms [3], 

[4]. The corresponding FPGA implementations are 

straightforward, and the area/time figure is always better for 

non-restoring. Figure1 depicts restoring and non-restoring 

division algorithm. In the latter one, a correction step must be 

added in order to modify the last remainder whenever 

negative. 

 

Figure 1.  Comparison of Restoring and Nonrestoring division algorithms  

B. SRT Division  

As others digit-recurrence algorithms, SRT generates a fixed 

number of quotient bits at every iteration as shown in figure 

2. The algorithm can be implemented with the standard radix-

r (r = 2k) SRT iteration architecture. The n-bit integer division 

requires t = n/k iterations. An additional step is required in 

order to convert the signed-digit quotient representation into a 

standard radix-2 notation. The division x/d produces k bits of 

the quotient q per iteration. The quotient digit qj is 

represented using a radix-r notation (radix complement or 

sign-magnitude). The first remainder w0 is initialized to X. At 

iteration j, the residual wj is multiplied by the radix r (shifted 

by k bits on the left, producing r.wj ). Based on a few most 

significant bits of r.wj and d (nr and nd bits respectively), the 

next quotient digit qj+1 can be inferred using a quotient digit 

selection table (Qsel). Finally, the product qj+1 × d is 

subtracted to r.wj to form the next residual wj+1. At the last 

bit position we get incorrect results. This is the main 

drawback of SRT division algorithm. 

 
Figure 2.  SRT standard array diagram   

C. Adder-Cell-based Method  

The design of division operator using the adder-cell-based 

method will always result in a very compact divider 

architecture. This method is classified as non-iterative 

technique, where the divider unit consists of half-adder and 

full-adder cells as well as other logic gate units and 

supporting modules [11]. A binary divider that uses carry 

save adder units is presented for example in [12]. 

 

D. Digit Recurrence Algorithm  

In modern floating point arithmetic units the most common 

algorithm employed to division function is a digit recurrence 

algorithm [13] [14] [15]. The algorithm performs both 

operations based on shifting and subtraction as the 

fundamental operators. A combined floatingpoint square-root 

and division operation can also be implemented by using a 

subtractive SRT (Sweeney, Robertson and Tocher) algorithm 

[16], which can be classified as a digit recurrence algorithm. 

The subtractive SRT algorithm can be extended by using 

Radix-8 IDS (Interleaved Digit Set) algorithm to improve the 

performance of the traditional digit recurrence algorithm. 

Another variant of the digit recurrence method is Svoboda 
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algorithm. A new Svoboda-Tung Division algorithm is for 

instance proposed in [17]. 

 

E. Taylor’s Series Expansion Algorithm 

A Taylor’s Series Expansion Algorithm [18] for example can 

be used to calculate division operation using a sequential 

series of a harmonic equation. However, the Taylor’s Series 

Expansion algorithm is rarely used and perform slow 

computation to calculate the division operations. 

F. Goldschmidt’s Algorithm 

The basic idea behind the Goldschmidt’s Algorithm is the 

iterative parallel multiplication of the dividend and divisor by 

updated factors in such as a way that the final divisor will be 

driven to one. Thus, the final dividend gives the quotient (the 

division result). Oberman et al. for example [19] proposes a 

floating-point divider and square root for AMD-K7 by using 

Goldschmidt’s algorithm. The Goldschmidt’s algorithm has 

been broadly used on many commercial microprocessors and 

is also known as division by multiplicative normalization or 

division by convergence [20]. Figure 3 shows detailed step 

by step procedure of Goldschmidt’s algorithm. The 

disadvantage of the Goldschmidt’s algorithm in term of the 

area overhead is the need for two independent parallel 

multiplication. As we know, a multiplier requires large 

number of logic area, especially when it is implemented in 

floating-point arithmetic. Goldschmidt Algorithm used for 

finding division and square root. Hardware and software 

implementation both are possible in this algorithm. 

Goldschmidt and Newton Raphson both are similar 

algorithms but slight changes in implementation part. 

Newton Raphson uses only software implementation. 

G. Newton-Raphson Algorithm 

The Newton-Raphson division algorithm is almost similar 

with the Goldschmidt’s algorithm. In the Newton-Raphson 

method however, the iterative refinement is applied only to 

the reciprocal value of the divisor, which will be convergent 

after several iterations [21]. The division operation of the 

Newton-Raphson method can be divided into three steps, i.e. 

the initial estimation of the divisor’s reciprocal, the iterative 

refinement of the divisor’s reciprocal and the multiplication 

step between the divided and the final convergent divisor’s 

reciprocal. The work in [22] has presented for example a 

decimal floating-point divider using Newton-Raphson 

iteration, where an accurate piece-wise linear approximation 

is used to obtain an initial estimate of a divisor’s reciprocal. 

The main disadvantage of Newton-Raphson is requires large 

number of gate counts which is not feasible to implement on 

FPGA. It needs multiplication and addition/subtraction at 

each iteration. 

 

 
Figure 3.  Flowchart of Goldschmidt Algorithm  

 

H. CORDIC Algorithm 

Beside the aforementioned method to implement the division 

operation, there is also another powerful algorithm to 

implement the divider unit called CORDIC (COrdinate 

Rotation DIgital Computer) algorithm [23]. Like digit 

recurrence method, CORDIC is also classified into iterative 

method. The main powerful characteristic of the CORDIC 

algorithm is the capability to implement several trigonometric 

function [24], [23], phase and magnitude functions [25], and 

hyperbolic functions [26] as well as linear operational 

function such as multiplication and division functions. 

 

II. DESIGN METHODOLOGY 

A. Restoring Division Algorithm 

In the restoring division method, the quotient is represented 

using a non-redundant number system. This is “paper and 

pencil” usual algorithm. Its main characteristic is the full 

width comparisons required to deduce the new quotient digit 

[6]. In restoring division, the divisor is shift-positioned and 

subtracted from the dividend. If subtraction of the divisor 

produces a negative result at any bit position relative to the 

dividend, the operation at that bit position is unsuccessful, and 

a 0 is placed in the corresponding location of the quotient. 

The divisor is added back (restored) to the result of the 

division operation, then the next highest bit of the dividend is 
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shifted into the left bit position of the result. As each bit of the 

dividend is shifted from right to left, the quotient is built up 

from left to right. After n shifts, where n represents the 

number of bits in the dividend, the division operation is 

complete. Complete hardware for restoring division is shown 

in Fig.1.In this figure an n-bit positive divider is loaded into 

register M and n- bit dividend is loaded into register Q at the 

start of the operation. After the division is complete, the n-bit 

quotient is in register Q and the remainder is in register A. 

The result after the last restore operation is the remainder. 

 

Figure 4.  Hardware Design of Restoring Division Algorithm  

Restoring division algorithm is very similar to manually 

performing long division. Algorithm for restoring division is 

mentioned below along with flowchart shown in Fig.5. 

• Step 1: Set Count to 0 and put 0 in A register. 

• Step 2: Start loop for n times. 

• Step 3: Shift A & Q left one binary position. 

• Step 4: Subtract M from a, placing the answer back in 

A. 

• Step 5: if the sign of A < 0, set Q0 to 0 and add M 

back to A (restore A); otherwise, set q0 to 1. 

• Step 6: Check for count, when count = n-1 then stop 

the loop.  

START

Q<- Dividend

COUNT<- 0

M<- Divisor

A<- 0

Left-shift A,Q

A<- A-M

A<0?

COUNT

=n-1?

A<- A-M

STOP

COUNT<- COUNT + 1

Left-shift A,Q

Yes

Yes

No

 

Figure 5.  Flowchart of Restoring Division Algorithm   

This template has been tailored for output on the US-letter 

paper size. If you are using A4-sized paper, please close this 

file and download the file for “MSW A4 format”. 

B. Non-Restoring Division Algorithm 

Non-restoring Division Algorithm (NrDA) comes from the 

restoring division. The restoring algorithm calculates the 

remainder by successively subtracting the shifted 

denominator from the numerator until the remainder is in the 

appropriate range. The operation in each step depends on the 

result of the previous step. Non-restoring division has a 

quotient digit set of {I, - I} instead of the conventional binary 

digit set [7], [9]. By the non-restoring division approach, we 

find the -1 of the quotient bit can be simply set to 0, and the 

quotient is the actual quotient that we want to find [8]. We 

dismantle Q into bits. 

Algorithm for restoring division is mentioned below along 

with flowchart shown in Fig.6.  

• Step 1: Subtract the divisor from the most significant 

bit (MSB) of the dividend. 

• Step 2: “Bring down” the next MSB of the divisor 

and append it to the result of step 1. 

• Step 3: Check the sign for the result of step 2. If the 

result of step 2 is positive: 

o Set the next MSB of the quotient to 1. 

o Subtract the divisor from the result to 

produce a new result. 

If the result from step 2 is negative: 
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o Set the next MSB of the quotient to 0. 

o Add the divisor to the result to produce a 

new result. 

• Step 4: Repeat steps 2 and 3 until all bits of the 

quotient are determined. 

START

Q<- Dividend

COUNT<- 0

M<- Divisor

A<- 0

Left-shift A,Q

A<- A-M

A<0?

COUNT

=n-1?

A<- A-M

STOP

COUNT<- COUNT + 1

Left-shift A,Q

Yes

Yes

No

A<0

?
A<-A +M

Yes

No

 

Figure 6.  Flowchart of Non-Restoring Division Algorithm   

Non-restoring arithmetic does not restore the result if the 

subtraction goes negative. Instead, it performs an addition in 

the next iteration. In this way the partial remainder will be 

kept between –D and D. The addition is equivalent to a bit 

weighting of qi = -1 in the previous algorithm. Since qi  € { 

1,1} , qi should be referred to as a quotient digit rather than a 

quotient bit. The test whether we add or subtract is also 

simpler, since we only need to test the sign of the partial 

remainder so far: 

 

 

                                                   (3) 

 

   (4) 

 

 

    It is also necessary to convert the -1 and 1 weightings to 

conventional binary digits at the end. If a 0 bit is used to 

represent the -1 digit, then the obtained quotient is Q0 = q1 q2 

q3 q4 q5 q6 q7 q8 where the subtraction is replaced by the 

addition of a two’s complement. Therefore a 1 is simply 

appended to the bits we already have. Also observe that for 

positive dividends the first iteration will always be a 

subtraction, therefore the quotient bit for this is not actually 

needed (unless the dividend is negative). Therefore, the 

iteration may be initialised by setting 0 R = 2V _ D . The next 

8 iterations will give the 8 output bits, and again the addition 

or subtraction for the final iteration is not needed (since the 

remainder is discarded).  

 

     The advantage of using non-restoring arithmetic over the 

standard restoring division is that a test subtraction is not 

required; the sign bit determines whether an addition or 

subtraction is used. The disadvantage, though, is that an extra 

bit must be maintained in the partial remainder to keep track 

of the sign. 

 

     One limitation of the iteration expressed in equation is 

that separate hardware is used to perform the addition and 

subtraction, and the results are multiplexed to give the 

remainder. This may be simplified to a single addition, and 

multiplexing whether D or –D is added:       

   

 

                                                    (5) 

 

                                         (6) 

      

  A further optimisation is to replace the –D with the two’s 

complement of D: 
 

 

                                                  (7) 

 

 

                                      (8) 

 

      

     The addition of the 1 as part of the 2’s complement does 

not actually require additional logic because the 2Ri-1 will 

leave the least significant bit as 0. The 1 can be inserted 

instead if qi=1. 
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TABLE I.  COMPARISON OF DIFFERENT DIVISION ALGORITHMS  

Algorithms Advantages Limitations 

Newton-Raphson 

Similar to 

Goldschmidt 

algorithm. Software 

implementation is 

faster. 

Requires large number 

of gate counts which is 

not feasible to 

implement on FPGA. 

It needs multiplication, 

addition/subtraction at 

each iteration. 
 

Goldschmidt 

Used for finding 

division and square 

root. Hardware-

Software 

implementation is 

possible. 

Area overhead is the 

need for two 

independent parallel 

multiplication.  As 

multiplier requires large 

number of logic area, 

especially when  it is 

implemented in 

floating-point 

arithmetic. 
 

CORDIC 

To implement 

trigonometric 

functions, and reduce 

area. 
 

Cost effective because 

of ASIC design. 

SRT 

SRT generates a fixed 

number of quotient 

bits at every iteraton. 

At the last bit position, 

we get incorrect results. 

Requires additional step 

of each iteration. 
 

Restoring 

Full width 

comparisons required 

to deduce the new 

quotient digit. 
 

Slower; requires time 

because of restoration in 

each cycle. 

Non-Restoring 

Test subtraction is not 

required; the sign bit 

determines whether 

an addition or 

subtraction is used. 

An extra bit must be 

maintained in the partial 

remainder to keep track 

of the sign. 

 

III. CONCLUSION 

Traditionally dividers have been avoided by DSP algorithm 

designers due to the complexity and cost of the hardware 

implementation. This paper compares different division 

algorithms which are used in Embedded applications. 

Restoring algorithms are slower than non-restoring 

algorithms, and a properly implemented non-restoring 

algorithm uses the least resources. A further advantage of the 

non-restoring algorithm is that it works without change with 

signed dividends, and only a relatively trivial change is 

required for it to work with a signed divisor. 
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