

 © 2016, IJCSE All Rights Reserved 48

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Review Paper Volume-4, Issue-9 E-ISSN: 2347-2693

Comparative Study of Different Division Algorithms for Fixed and

Floating Point Arithmetic Unit for Embedded Applications

Rohini.S.Hongal

1*
 and Anita DJ

2

1*

Department of Electronic and Communication, BVBCET, Hubli, India
2
Department of Electronic and Communication, BVBCET, Hubli, India

 Available online at: www.ijcseonline.org
Received: 22/Aug/2016 Revised: 02/Sept/2016 Accepted: 20/Sept/2016 Published: 30/Sep/2016

Abstract— ALU is very essential unit of any embedded processors. Very basic operations like addition, subtraction, multiplication

and division are part of ALU unit. In literature, we have many algorithms to perform addition, subtraction and multiplication but

less on division algorithm. The division algorithm performs, either by addition or subtraction, based on the signs of the divisor and

partial remainder. Floating point division is considered as a high latency operation. Division algorithms have been developed to

reduce latency and to improve the computational efficiency, hardware cost, area and power of processors. This paper presents

different division algorithms such as Digit Recurrence Algorithm restoring, non-restoring and SRT Division (Sweeney, Robertson,

and Tocher), Multiplicative Algorithm, Approximation Algorithms, CORDIC Algorithm and Continued Product Algorithm. This

paper intended to compare various techniques used and their features relevant for various applications.

Keywords- Division; SRT; Non Restoring; Restoring; FPGA; CORDIC; DSP

I. INTRODUCTION

Computers have evolved rapidly since their creation.

However, there is one thing that has not changed: The main

purpose of computers is to do the arithmetic to run programs

and applications. Basically, computers handle lots of numbers

based on the three basic arithmetic operations of addition,

multiplication and division. Compared to addition and

multiplication, division is the least used operation. However,

computers will experience performance degradation if

division is ignored [1], [2], [3]. A survey by Oberman and

Flynn [9] presents the main algorithms used for implementing

division in hardware. There are three main classes for

hardware-oriented division algorithms: digit recurrence,

functional iteration and table based methods. Each method

has its own advantages [1], however digit recurrence division

is most common algorithm for division and square root in

many floating point units, since it is simple and lower in

complexity than division by convergence [2], [4], [5].

Restoring, non-restoring and SRT dividers are representative

algorithms for digit recurrence division. Division is

equivalent to repeat subtraction of the divisor from the

dividend until the quantity left is smaller in magnitude than

the divisor. The number of subtractions is the quotient, and

the quantity left is the remainder. This process, if done

straight forwardly, is very time consuming. It is substantially

speeded if the most significant digits of the divisor and

dividend are aligned before the first subtraction, and the

divisor then shifted to the right one position whenever the

partial remainder become smaller than the divisor before

shifting. One shift may be necessary before any subtraction, if

the initial alignment makes the divisor larger than the

dividend. In binary, at most one subtraction can be made

between shifts except as noted below. Two conventional

techniques avoid the need to compare the remainder with the

divisor after every subtraction. In restoring division,

subtraction continues until the sign of the partial remainder

changes; the change causes an immediate addition of the

divisor and a corresponding decrement of the accumulating

quotient, before the right shift. In non-restoring division, the

sign change causes a shift followed by one or more additions

until the sign changes back.

Of the four basic arithmetic operations: addition, subtraction,

multiplication, and division, division is the hardest to

implement in hardware. One of the main reasons for this is

that while addition, subtraction and multiplication are well

defined and give exact answers, division is less so. The result

of a division between integers (or even between floating

point numbers with finite precision) will in general be a

rational number, which in many cases cannot be represented

exactly in binary with a fixed number of bits. This leads

either to an approximate answer, or to a second definition of

division: integer division. Integer division considers both the

dividend and divisor to be integers, and expresses the result

uniquely as a quotient and remainder:

Dividend = Quotient ×Divisor + Remainder (1)

where the quotient is an integer, and the remainder satisfies

 *Corresponding Author:

 Rohini. S. Hongal

 e-mail: rohini_sh@bvb.edu , Tel.: +91-99803-03578

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 49

 0 ≤ Remainder < Divisor (2)

 Within an image processing context, division occurs

within several common image processing operations:

contrast expansion, intensity normalisation, contrast ratio

calculation, colour conversion (calculating the hue and

saturation) are a few.

1. ALGORITHMS

Given two non-negative real numbers X (the dividend) and D

(the divisor), the quotient q and the remainder r are non-

negative real numbers defined by the following expression:

X = q.D + r with r < D.ulp, where ulp is the unit in the least

significant position. If X<D and D are the (unsigned)

significant of two IEEE-754 floating-point numbers, then

they belong to the range [1,2), and q lies in the range [0.5, 1).

This result can be normalized by shifting the quotient by one

bit to the left, and adjusting the exponent accordingly.

Division generally does not provide finite length result. The

accuracy must be defined beforehand by setting the allowed

maximum length of the result (p). The number of algorithmic

cycles will therefore depend upon the aimed accuracy, not

upon the operand length (n).

A. Restoring and Non-Restoring Algorithm

To divide two integers, the most well-known procedures are

restoring and non-restoring digit-recurrence algorithms [3],

[4]. The corresponding FPGA implementations are

straightforward, and the area/time figure is always better for

non-restoring. Figure1 depicts restoring and non-restoring

division algorithm. In the latter one, a correction step must be

added in order to modify the last remainder whenever

negative.

Figure 1. Comparison of Restoring and Nonrestoring division algorithms

B. SRT Division

As others digit-recurrence algorithms, SRT generates a fixed

number of quotient bits at every iteration as shown in figure

2. The algorithm can be implemented with the standard radix-

r (r = 2k) SRT iteration architecture. The n-bit integer division

requires t = n/k iterations. An additional step is required in

order to convert the signed-digit quotient representation into a

standard radix-2 notation. The division x/d produces k bits of

the quotient q per iteration. The quotient digit qj is

represented using a radix-r notation (radix complement or

sign-magnitude). The first remainder w0 is initialized to X. At

iteration j, the residual wj is multiplied by the radix r (shifted

by k bits on the left, producing r.wj). Based on a few most

significant bits of r.wj and d (nr and nd bits respectively), the

next quotient digit qj+1 can be inferred using a quotient digit

selection table (Qsel). Finally, the product qj+1 × d is

subtracted to r.wj to form the next residual wj+1. At the last

bit position we get incorrect results. This is the main

drawback of SRT division algorithm.

Figure 2. SRT standard array diagram

C. Adder-Cell-based Method

The design of division operator using the adder-cell-based

method will always result in a very compact divider

architecture. This method is classified as non-iterative

technique, where the divider unit consists of half-adder and

full-adder cells as well as other logic gate units and

supporting modules [11]. A binary divider that uses carry

save adder units is presented for example in [12].

D. Digit Recurrence Algorithm

In modern floating point arithmetic units the most common

algorithm employed to division function is a digit recurrence

algorithm [13] [14] [15]. The algorithm performs both

operations based on shifting and subtraction as the

fundamental operators. A combined floatingpoint square-root

and division operation can also be implemented by using a

subtractive SRT (Sweeney, Robertson and Tocher) algorithm

[16], which can be classified as a digit recurrence algorithm.

The subtractive SRT algorithm can be extended by using

Radix-8 IDS (Interleaved Digit Set) algorithm to improve the

performance of the traditional digit recurrence algorithm.

Another variant of the digit recurrence method is Svoboda

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 50

algorithm. A new Svoboda-Tung Division algorithm is for

instance proposed in [17].

E. Taylor’s Series Expansion Algorithm

A Taylor’s Series Expansion Algorithm [18] for example can

be used to calculate division operation using a sequential

series of a harmonic equation. However, the Taylor’s Series

Expansion algorithm is rarely used and perform slow

computation to calculate the division operations.

F. Goldschmidt’s Algorithm

The basic idea behind the Goldschmidt’s Algorithm is the

iterative parallel multiplication of the dividend and divisor by

updated factors in such as a way that the final divisor will be

driven to one. Thus, the final dividend gives the quotient (the

division result). Oberman et al. for example [19] proposes a

floating-point divider and square root for AMD-K7 by using

Goldschmidt’s algorithm. The Goldschmidt’s algorithm has

been broadly used on many commercial microprocessors and

is also known as division by multiplicative normalization or

division by convergence [20]. Figure 3 shows detailed step

by step procedure of Goldschmidt’s algorithm. The

disadvantage of the Goldschmidt’s algorithm in term of the

area overhead is the need for two independent parallel

multiplication. As we know, a multiplier requires large

number of logic area, especially when it is implemented in

floating-point arithmetic. Goldschmidt Algorithm used for

finding division and square root. Hardware and software

implementation both are possible in this algorithm.

Goldschmidt and Newton Raphson both are similar

algorithms but slight changes in implementation part.

Newton Raphson uses only software implementation.

G. Newton-Raphson Algorithm

The Newton-Raphson division algorithm is almost similar

with the Goldschmidt’s algorithm. In the Newton-Raphson

method however, the iterative refinement is applied only to

the reciprocal value of the divisor, which will be convergent

after several iterations [21]. The division operation of the

Newton-Raphson method can be divided into three steps, i.e.

the initial estimation of the divisor’s reciprocal, the iterative

refinement of the divisor’s reciprocal and the multiplication

step between the divided and the final convergent divisor’s

reciprocal. The work in [22] has presented for example a

decimal floating-point divider using Newton-Raphson

iteration, where an accurate piece-wise linear approximation

is used to obtain an initial estimate of a divisor’s reciprocal.

The main disadvantage of Newton-Raphson is requires large

number of gate counts which is not feasible to implement on

FPGA. It needs multiplication and addition/subtraction at

each iteration.

Figure 3. Flowchart of Goldschmidt Algorithm

H. CORDIC Algorithm

Beside the aforementioned method to implement the division

operation, there is also another powerful algorithm to

implement the divider unit called CORDIC (COrdinate

Rotation DIgital Computer) algorithm [23]. Like digit

recurrence method, CORDIC is also classified into iterative

method. The main powerful characteristic of the CORDIC

algorithm is the capability to implement several trigonometric

function [24], [23], phase and magnitude functions [25], and

hyperbolic functions [26] as well as linear operational

function such as multiplication and division functions.

II. DESIGN METHODOLOGY

A. Restoring Division Algorithm

In the restoring division method, the quotient is represented

using a non-redundant number system. This is “paper and

pencil” usual algorithm. Its main characteristic is the full

width comparisons required to deduce the new quotient digit

[6]. In restoring division, the divisor is shift-positioned and

subtracted from the dividend. If subtraction of the divisor

produces a negative result at any bit position relative to the

dividend, the operation at that bit position is unsuccessful, and

a 0 is placed in the corresponding location of the quotient.

The divisor is added back (restored) to the result of the

division operation, then the next highest bit of the dividend is

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 51

shifted into the left bit position of the result. As each bit of the

dividend is shifted from right to left, the quotient is built up

from left to right. After n shifts, where n represents the

number of bits in the dividend, the division operation is

complete. Complete hardware for restoring division is shown

in Fig.1.In this figure an n-bit positive divider is loaded into

register M and n- bit dividend is loaded into register Q at the

start of the operation. After the division is complete, the n-bit

quotient is in register Q and the remainder is in register A.

The result after the last restore operation is the remainder.

Figure 4. Hardware Design of Restoring Division Algorithm

Restoring division algorithm is very similar to manually

performing long division. Algorithm for restoring division is

mentioned below along with flowchart shown in Fig.5.

• Step 1: Set Count to 0 and put 0 in A register.

• Step 2: Start loop for n times.

• Step 3: Shift A & Q left one binary position.

• Step 4: Subtract M from a, placing the answer back in

A.

• Step 5: if the sign of A < 0, set Q0 to 0 and add M

back to A (restore A); otherwise, set q0 to 1.

• Step 6: Check for count, when count = n-1 then stop

the loop.

START

Q<- Dividend

COUNT<- 0

M<- Divisor

A<- 0

Left-shift A,Q

A<- A-M

A<0?

COUNT

=n-1?

A<- A-M

STOP

COUNT<- COUNT + 1

Left-shift A,Q

Yes

Yes

No

Figure 5. Flowchart of Restoring Division Algorithm

This template has been tailored for output on the US-letter

paper size. If you are using A4-sized paper, please close this

file and download the file for “MSW A4 format”.

B. Non-Restoring Division Algorithm

Non-restoring Division Algorithm (NrDA) comes from the

restoring division. The restoring algorithm calculates the

remainder by successively subtracting the shifted

denominator from the numerator until the remainder is in the

appropriate range. The operation in each step depends on the

result of the previous step. Non-restoring division has a

quotient digit set of {I, - I} instead of the conventional binary

digit set [7], [9]. By the non-restoring division approach, we

find the -1 of the quotient bit can be simply set to 0, and the

quotient is the actual quotient that we want to find [8]. We

dismantle Q into bits.

Algorithm for restoring division is mentioned below along

with flowchart shown in Fig.6.

• Step 1: Subtract the divisor from the most significant

bit (MSB) of the dividend.

• Step 2: “Bring down” the next MSB of the divisor

and append it to the result of step 1.

• Step 3: Check the sign for the result of step 2. If the

result of step 2 is positive:

o Set the next MSB of the quotient to 1.

o Subtract the divisor from the result to

produce a new result.

If the result from step 2 is negative:

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 52

o Set the next MSB of the quotient to 0.

o Add the divisor to the result to produce a

new result.

• Step 4: Repeat steps 2 and 3 until all bits of the

quotient are determined.

START

Q<- Dividend

COUNT<- 0

M<- Divisor

A<- 0

Left-shift A,Q

A<- A-M

A<0?

COUNT

=n-1?

A<- A-M

STOP

COUNT<- COUNT + 1

Left-shift A,Q

Yes

Yes

No

A<0

?
A<-A +M

Yes

No

Figure 6. Flowchart of Non-Restoring Division Algorithm

Non-restoring arithmetic does not restore the result if the

subtraction goes negative. Instead, it performs an addition in

the next iteration. In this way the partial remainder will be

kept between –D and D. The addition is equivalent to a bit

weighting of qi = -1 in the previous algorithm. Since qi € {

1,1} , qi should be referred to as a quotient digit rather than a

quotient bit. The test whether we add or subtract is also

simpler, since we only need to test the sign of the partial

remainder so far:

 (3)

 (4)

 It is also necessary to convert the -1 and 1 weightings to

conventional binary digits at the end. If a 0 bit is used to

represent the -1 digit, then the obtained quotient is Q0 = q1 q2

q3 q4 q5 q6 q7 q8 where the subtraction is replaced by the

addition of a two’s complement. Therefore a 1 is simply

appended to the bits we already have. Also observe that for

positive dividends the first iteration will always be a

subtraction, therefore the quotient bit for this is not actually

needed (unless the dividend is negative). Therefore, the

iteration may be initialised by setting 0 R = 2V _ D . The next

8 iterations will give the 8 output bits, and again the addition

or subtraction for the final iteration is not needed (since the

remainder is discarded).

 The advantage of using non-restoring arithmetic over the

standard restoring division is that a test subtraction is not

required; the sign bit determines whether an addition or

subtraction is used. The disadvantage, though, is that an extra

bit must be maintained in the partial remainder to keep track

of the sign.

 One limitation of the iteration expressed in equation is

that separate hardware is used to perform the addition and

subtraction, and the results are multiplexed to give the

remainder. This may be simplified to a single addition, and

multiplexing whether D or –D is added:

 (5)

 (6)

 A further optimisation is to replace the –D with the two’s

complement of D:

 (7)

 (8)

 The addition of the 1 as part of the 2’s complement does

not actually require additional logic because the 2Ri-1 will

leave the least significant bit as 0. The 1 can be inserted

instead if qi=1.

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 53

TABLE I. COMPARISON OF DIFFERENT DIVISION ALGORITHMS

Algorithms Advantages Limitations

Newton-Raphson

Similar to

Goldschmidt

algorithm. Software

implementation is

faster.

Requires large number

of gate counts which is

not feasible to

implement on FPGA.

It needs multiplication,

addition/subtraction at

each iteration.

Goldschmidt

Used for finding

division and square

root. Hardware-

Software

implementation is

possible.

Area overhead is the

need for two

independent parallel

multiplication. As

multiplier requires large

number of logic area,

especially when it is

implemented in

floating-point

arithmetic.

CORDIC

To implement

trigonometric

functions, and reduce

area.

Cost effective because

of ASIC design.

SRT

SRT generates a fixed

number of quotient

bits at every iteraton.

At the last bit position,

we get incorrect results.

Requires additional step

of each iteration.

Restoring

Full width

comparisons required

to deduce the new

quotient digit.

Slower; requires time

because of restoration in

each cycle.

Non-Restoring

Test subtraction is not

required; the sign bit

determines whether

an addition or

subtraction is used.

An extra bit must be

maintained in the partial

remainder to keep track

of the sign.

III. CONCLUSION

Traditionally dividers have been avoided by DSP algorithm

designers due to the complexity and cost of the hardware

implementation. This paper compares different division

algorithms which are used in Embedded applications.

Restoring algorithms are slower than non-restoring

algorithms, and a properly implemented non-restoring

algorithm uses the least resources. A further advantage of the

non-restoring algorithm is that it works without change with

signed dividends, and only a relatively trivial change is

required for it to work with a signed divisor.

REFERENCES

[1] S. F. Oberman and M. J. Flynn, "Design Issues in Division and

other Floating-Point Operations," IEEE Transactions on

Computers, Vol-46, Page No (154-161), 1997.

[2] Inwook Kong, "Modified Improved Algorithms and Hardware

Designs for Division by Convergence," Doctoral dissertation.

University of Texas at Austin, 2009.

[3] Peter Soderquist and Miriam Leeser, "Division and Square

Root: Choosing the right Implementation”, IEEE Micro, Vol-

17, Issue-04, pp (56-66), 1997.

[4] Milos D. Ercegovac and Tomas Lang, “Division and Square

Root: Digit Recurrence Algorithms and Implementations”,

Boston: KJuwer Academic Publishers, 1994.

[5] S. F. Oberman and M. J. Flynn, "Division Algorithms and

Implementations”, IEEE Transactions on Computers, Vol-46,

no.-08, Page No (833-854), Aug 1997.

[6] Nicolas Boullis and Arnaud Tisserand, “On digit-recurrence

division algorithms for self-timed circuits”, in Research Report

published at Institute National De Recherche En Informatique

Et En Automatique, France, 2012.

[7] Kihwan Jun and Earl E. Swartzlander, “Modified Non-

restoring Division Algorithm with Improved Delay Profile and

Error Correction”, Signals Systems and Computers

(ASILOMAR), Page No (1460-1464), 2012.

[8] Jen-Shiun Chiang, Eugene Lai and Jun-Yao Liao,”A Radix-2

Non-Restoring 32-b/32-b Ring Divider with Asynchronous

Control Scheme”, Tamkang Journal of Science and

Engineering, Vol-02, Issue-01 Page No (37-43), 1999.

[9] Jagannath Samanta, Mousam Halder, Bishnu Prasad De,

“Performance Analysis of High Speed Low Power Carry

Look-Ahead Adder Using Different Logic Styles”,

International Journal of Soft Computing and Engineering

(IJSCE), ISBN:2231-2307, Volume-02, Issue-06, Page No

(330–336), 2013.

[10] A. Beaumont Smith and S. Samudrala, “Method and System of

a Microprocessor Subtraction- Division Floating-Point

Divider”, Patent US 7, 127, 483 B2, Oct. 24, 2006.

[11] D. J. Desmonds, “Binary Divider with Carry Save Adders”,

Patent US 4, 320, 464, March 16, 1982.

[12] J. Ebergen, I. Sutherland, and A. Chakraborty, “New Division

Algorithms by Digit Recurrence,” in Conference Record of the

Thirty-Eighth Asilo- mar Conference on Signals, Systems and

Computers, Vol-02, Page No (1849–1855), 2004.

[13] L. Montalvo, K. Parhi, and A. Guyot, “A Radix-10 Digit-

Recurrence Division Unit: Algorithm and Architecture”, IEEE

Transaction on Computers, Vol-56, No.6, Page No (727–739),

June 2007.

[14] I. Rust and T. Noll, “A digit-set-interleaved radix-8

division/square root kernel for double precision floating point”,

IEEE International Symposium on System on Chip (SoC),

Page No (150–153), Nov 2010.

[15] L. Montalvo, K. Parhi, and A. Guyot, “New Svoboda-Tung

Division”, IEEE Transaction on Computers, Vol-47, No. 9,

Page No (1014–1020), Sep 1997.

[16] T.-J. Kwon, J. Sondeen, and J. Draper, “Floating-point division

and square root using a Taylor-series expansion algorithm”, in

the 50th Midwest Symposium on Circuits and Systems

(MWSCAS 2007), Page No (305–308), 2007.

[17] S. F. Oberman, “Floating Point Division and Square Root

Algorithms and Implementation in the AMD-K7

Microprocessor”, in 14th IEEE Symposium on Computer

Arithmetic, Page No (106–115), 1999.

[18] M. J. Schulte, D. Tan, and C. L. Lemonds, “Floating-Point

Division Algorithms for an x86 Microprocessor with a

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 54

Rectangular Multiplier,” in Proc. Int'l. Conf. on Computer

Design (ICCD), Page No (304–310), 2007.

[19] W. Gallagher and E. Swartzlander, “Fault-Tolerance Newton-

Raphson and Goldschmidt Dividers using Time Shared TMR”,

IEEE Transaction on Computers, Vol-49, No. 6, Page No

(588–595), June 2000.

[20] L. K. Wang and M. Schulte, “Processing Unit Having Decimal

Floating-Point Divider Using Newton-Raphson Iteration”,

Patent US 7,467,174 B2, Dec 16, 2008.

[21] P. Surapong, F. A. Samman, and M. Glesner, “Design and

Analysis of Extension-Rotation CORDIC Algorithms based on

Non-Redundant Method”, International Journal of Signal

Processing, Image Processing and Pattern Recognition, Vol-

05, No. 1, Page No (65–84), March 2012.

[22] K. Maharatna, S. Banerjee, E. Grass, M. Krstic, and A. Troya,

“Modified Virtually Scaling-Free Adaptive CORDIC Rotator

Algorithm and Architecture”, IEEE Trans. on Circuits and

Systems Floating-Point Division Operator based on CORDIC

Algorithm 87 tems for Video Technology, Vol-15, No. 11,

Page No (1463–1474), Nov 2005.

[23] F. A. Sammany, P. Surapong, C. Spies, and M. Glesner,

“Floating-point-based Hardware Accelerator of a Beam Phase-

Magnitude Detector and Filter for a Beam Phase Control

System in a Heavy-Ion Synchrotron Application”, in Proc. Int'l

Conf. on Accelerator and Large Experimental Physics Control

Systems (ICALEPCS), 2011.

[24] H. Hahn, D. Timmermann, B. Hosticka, and B. Rix, “A

Unified and Division-Free CORDIC Argument Reduction

Method with Unlimited Convergence Domain Including

Inverse Hyperbolic Functions”, IEEE Transaction on

Computers, Vol-43, No. 11, Page No (1339–1344), Nov 1994.

Authors Profile

Mrs Rohini S Hongal pursed Bachelor of Science from University
Visvesvaraya, Belgaum in 2002 and Master of Technology in VLSI
Design and Embedded Systems from same University in year 2009.
She is currently pursuing Ph.D. and working as Assistant Professor
in Department of Electronic and Communication, BVBCET, Hubli
since 2003. She is a member of IEI. She has published more than 25
research papers in reputed international journals and conferences
(includes IEEE,Springer) and it’s also available online. Her main
research work focuses on Analog and Digital VLSI, Quantum
Computation, Embedded Design and IoT. She has 13 years of
teaching experience and 3 years of Research Experience.

Ms Anita DJ pursed Bachelor of Engineering from Karnatak
University, Dharwad India in year 2000 and Masters in VLSI
Design and Embedded Systems Design from Visvesvaraya
Technological University, Belgaum, India in year 2008. She served
the Institutions as Assistant Professor in Department of ECE, from
colleges SDMCET Dharwad, BVBCET Hubli and PESIT
Bangalore, India . She is a life member of IEI and IETE. She has
attended many FDP’s to upgrade her, to latest trends in the field,
both National & International Level including IEEE. Her main
research area focuses on VLSI Design and Embedded Systems. She
has 8 years of teaching experience and 1 year of Research
Experience.

