

 © 2018, IJCSE All Rights Reserved 530

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-7, July 2018 E-ISSN: 2347-2693

Testing Refactoring Implementations of Object-Oriented Systems

B. Nagaveni

1*
, A. Ananda Rao

2
, P. Radhika Raju

3

1*

Department of CSE, JNTUA college of engineering, Ananthapuramu, Andhra Pradesh, India.
 2
Department of CSE, JNTUA college of engineering, Ananthapuramu, Andhra Pradesh, India.

3
Department of CSE, JNTUA college of engineering, Ananthapuramu, Andhra Pradesh, India.

*Corresponding Author: nagaveni.buruga@gmail.com, Tel.: 9985234692

Available online at: www.ijcseonline.org

Accepted: 21/Jul/2018, Published: 31/July/2018

Abstract— Testing the refactoring as for formal semantics is dealt with as a test. Refactoring engines like Eclipse, Netbeans

and many other contains various kinds of refactoring techniques like move, inline, copy, extract method etc. Usually,

developers used to write the test cases to control their refactoring implementations. Few automated testing techniques are used

for testing the refactoring implementations of object-oriented systems. In existing, the pre-conditions are recognized and stated

that they are extremely stable. In earlier, the testing is done in JRRT (jastAdd refactoring tool) using the process of Alloy

Analyzer and the JDolly technique. Using the similar process and techniques, the proposed work makes, testing on the

refactoring implementations in the Netbeans Refactoring Engine. Creating the meta-models using the Alloy Analyzer and

generating the programs from the model by using the JDolly program generator for applying the testing concept on it. Test

Oracles are involved to retain the nature of the programs after implementing the refactoring concept.

Keywords— Alloy meta-models, Automated testing, Program generation, Refactoring implementations.

I. INTRODUCTION

Refactoring is the foremost programming tool of the recent

object-oriented techniques that can be formalized and used to

develop the program. Refactoring is an exact control

approach to upgrade the plan of existing code. With the help

of a refactoring concept, the total design and structure of an

existing program are improved, at the same time its

functionality remains unchanged. Once the outline has been

overhauled, it will be simpler to proceed [1, 2, 3].

For example, to Pull-up the method from the sub class to a

super class, there is a need to contain at least two classes in a

program.

Generally, few Refactoring Engines are used to automate the

application of refactoring. The testing process of refactoring

techniques can be done through the usage of Alloy meta-

models and generated programs from the JDolly.

 The Refactoring Tests are tested with the JUnit testing

tool for checking whether the tests are passed or not. So by

using that JUnit tool the research is done and the tests are

successfully passed. Each test execution or passed time will

also be notified in the project.

II. RELATED WORK

Alloy is a declarative specification language, and is used in

the Alloy Analyzer tool [4]. The JDolly produces a massive

representation of programs according to the specified scope

of a program. The additional rules can also be considered for

guiding the program generation. The testing can be

concluded through the oracles. By using the unit testing in

terms of object – oriented systems, with this kind of process

the refactoring functionality is tested highly.

III. PROPOSED MODEL

A. Alloy and Alloy Analyzer

Figure 1. Alloy Analyzer

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 531

An alloy is addressed due to the creation of micro-

models that can be used to check automatically

for correctness. The Alloy Analyzer device allows us to do

examination on Alloy determinations [4].

B. Alloy Meta-model

Alloy meta-model is encoded in the Alloy. The large

numbers of well-formed rules are mentioned in java as

shown in Figure 2. These can be used for creation of an

instance. It can allow a various kinds of requirements for

associating in to a program.

Figure.2 Alloy Rules

Figure.3 Alloy program

Figure 4. Alloy Meta-model

Figure 3 shows the particulars of a Alloy model respectively.

This information is most important to achieve the

restructuring of a code.

For the above mentioned program in Figure 3, the Alloy

Meta-model will be as shown in Figure 4.

C. JDolly

JDolly is a program generator, it intensely allows programs,

for the inclined scope [6]. According to the scope and rules

JDolly translated the Alloy models in to java programs. It

discovers a proper occurrence from the Alloy specifications,

to satisfy the rules with in a specified limit. It configures few

necessary parameters for generating java programs. Using

skips, developers can identify the bugs. The extension is

about the quantity of bundles, classes, techniques and fields

in the projects. The additional rule parameter is used to

develop the particular type of action to improve the structure.

D. Program Generation

In the Figure 4, to utilize the enclose reusable formulas and

determine operations the predicates (pred) are used. It uses at

most three objects as default scope for each signature [7].

The user can also use various scopes for individual

signatures. The below Alloy fragment represents the run and

predicate using the scope of 3.

Figure.5 Alloy Fragment

A Java Alloy Analyzer API is used to find every possible

solution. For each generated Alloy solution, a java program

is mapped with their equivalent java abstract syntax. The

reuse of Java abstract syntax tree is used for program

generation.

E. Assertions

In the context of object-oriented software systems the

assertions are the formal rules. Related to software systems

source program, behaviours of assertions are inserted as an

annotation. Assertions can be clearly explained through

JUnit. Assertion method is used to regulate the test case

status, whether it is right or wrong.

A class named Assert was provided by the JUnit to use a

group of assertion methods, which are used in writing the test

cases and detecting the test failures [8] . The annotations are

@Test, @Before, @After, @Before Class, @After Class,

@Ignore. These can be used according to their specifications

respectively [9]. The assert Equals method is required to

https://en.wikipedia.org/wiki/Correctness_(computer_science)

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 532

generate the number of programs in terms of specifying the

programs number.

F. Oracles

Oracles are used to figure out the correctness of the

refactoring transformations. Based on this functionality, the

implementations are tested for the correctness of the program

and also evaluated the output of each transformation [10].

Framework

Figure 6. Process to test refactoring implementations

The framework represented in Figure 6 explains the process

of testing refactoring implementations in Netbeans. The

tester tests the entire process according to the above

represented framework. After the usage of all rules the

programs are generated and these generated programs are

tested according to the Junit test process.

IV. IMPLEMENTATION

In this section, different types of refactoring implementations

are tested by using the JDolly [11]. A few Refactoring

Implementations are tested in the Netbeans Refactoring

engine, by considering the process shown in Figure 6.

A. Rename

To evaluate this, refactoring can apply on package, class,

method, and field. Once the change is happened, it will be

updated in the entire source code of a project.

B. Pull-up

The programs must declare a Method/ Field in a sub class in

order to test the Pull-up Method/ Field.

C. Push-down

The programs must declare a Method/ Field in a sub class in

order to test the Pull-up Method/ Field.

D. Encapsulation

To test the Encapsulate Field refactoring, the programs must

maintain at least one public method and field respectively.

E. Move

Move Method refactoring can be tested by the program

containing with two classes. One of the classes must have a

field and a method of the equivalent type of the other class.

Few other refactoring implementations are tested according

to their specifications respectively.

Programs shown in Figure 7 and Figure 8, performs the re-

designing concept for one of the implementation. Programs

mentioned in the below are generated from the JDolly

program generator.

Figure 7. Before applying Pull-up method

Figure 8. After applying Pull-up method

For these programs the transformation is applied and

declared that the Pull-up method preserves the program

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 533

behavior and converted the refactoring transformation

clearly [12].

V. EXPERIMENTAL RESULTS

 The Table 1 contains the clear information i.e., the input

given to the peculiar refactoring implementation and how it

generate the programs. According to their specifications

scope is also represented for all refactoring implementations.

The count of generated programs is mentioned.

GP = Generated programs;

 Skip = Reduces the testing time;

Working with the JDolly, the programs are generated as, for

the Rename class 15916, Rename method 11263 and

Rename field 19424 programs.

The Add parameter and Encapsulation field generated the

30186 and 2000 programs respectively. The Pull-up method

and field generated programs are 11709 and 10927.

The 26348 and 11936 programs are generated by the other

techniques. A Move method generated the 22905 number of

programs according to its requirements. The skip number 25

is considered to reduce the testing time of the refactoring

implementations [13, 14].

The other different methods accomplished with the 20.062s

and 11.672s. The another method tests done with the 27.206s

and 13.625s respectively. All the refactoring implementation

tests are passed and executed in Netbeans refactoring engine

successfully.

Figure 9. Test Results.

In the Figure 9, the Test Results are shown as per the

specified requirements. By considering the JDolly program

generator the programs are generated and applying those

generated programs for testing the Refactoring

Implementations.

Table 1. Evaluation of Refactoring Implementations.

VI. CONCLUSION and Future Scope

This proposed work is a way to test Refactoring

Implementations in Netbeans refactoring engine. With the

help of Alloy Analyzer and the JDolly program generator,

19580 java programs are generated. Few refactoring

implementations such as rename, pull-up, pushdown,

encapsulation, add parameter and move method are tested

successfully and their behaviour transformation is checked

with oracles. Using oracles the refactoring transformations

are tested correctly.

In future the work can be extended to test the refactoring

implementations using the other program generator tools

other than JDolly. And also the JDolly can be improved to

increase the possibility of testing refactoring techniques in

object- oriented system concepts.

REFERENCES

[1] M. Schafer and O.de Moor, “Specifying and implementing

refactorings,” in proceedings of the 25
th
 ACM International

Conference on Object-Oriented Programming, Systems,

Languages, and Applications, ser. OOPSLA’ 10. ACM, 2010, pp.

286-3-1.

[2] W.F.O pdyke, "Refactoring Object-Oriented Frameworks,"Ph.D.

dissertation, Univ. of Illinois at Urbana-Champaign, 1992.

Refactoring

Implementations

Skip Scope GP Time(sec)

P C M F

Rename Class 25 2 3 3 15916 28

Rename Method 25 2 3 3 11263 13

Rename Field 25 2 3 1 2 19424 31

Add Parameter 25 2 3 3 30186 37

Pull-up Method 25 2 3 4 11709 20

Pull-up Field 25 2 3 2 1 10927 11

Encapsulation

Field

25 2 3 3 1 2000 3

Move method 25 2 3 3 1 22905 32

Pushdown

Method

25 2 3 4 26348 41

Pushdown Field 25 2 3 1 2 11936 13

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 534

[3] Melina Mongiovi Member, IEEE, Rohit Gheyi, Gustavo Soares,

Márcio Ribeiro, Paulo Borba and Leopoldo Teixeira” Detecting

overly strong preconditions in refactoring engines”, IEEE

Transactions on Software Engineering DOI 10.1109, 2007.

[4] G. Soares, R. Gheyi, D. Serey, and T. Massoni, “Making program

refactoring safer,” IEEE Software, vol. 27, pp. 52–57, 2010.

[5] D. Jackson, I. Schechter, and H. Shlyahter, “Alcoa: the Alloy

constraint analyzer,” in Proceedings of the 31st International

Conference on Software Engineering, ser. ICSE ’00. IEEE

Computer Society, 2000, pp. 730–733.

[6] G. Soares, M. Mongiovi, and R. Gheyi, “Identifying overly strong

conditions in refactoring implementations,” in Proceedings of the

27th IEEE International Conference on Software Maintenance, ser.

ICSM ’11. IEEE Computer Society, 2011, pp. 173–182.

[7] D. Soares, R. Gheyi, and T. Massoni, “Automated behavioral

testing of refactoring engines,” IEEE Transactions on Software

Engineering, vol. 39, pp. 147–162, 2013.

[8] Liangliang kong “Essential of unit testing tool for special

testing.”IEEE xplore, 2008.

[9] D. S. Rosenblum, “A Practical Approach to Programming with

Assertions”, IEEE transactions on software engineering,

vol21(1),1995,pp.1

[10] M. Mongiovi, G. Mendes, R. Gheyi, G. Soares, and M. Ribeiro,

“Scaling testing of refactoring engines,” in Proceedings of the 30th

IEEE International Conference on Software Maintenance and

Evolution, ser. ICSME ’14. IEEE Computer Society, 2014, pp.

371–380.

[11] Brett Daniel Danny Dig Kely Garcia Darko Marinov “Automated

Testing of Eclipse and NetBeans Refactoring Tools”

[12] Narendar Reddy kancharla, Ananda Rao Akepogu, Gopi chand

merugu, Kiran kumar Jogu “ A Quantitative methods to detect

design defects after refactoring” in software engineering research

and practice 2008.

[13] M. Monogivi, R. Gheyi, G. Soares, L. Teixeira, and P. Borba,

“Making refactoring safer through impact analysis”, science of

ComputerProgramming, vol. 93, pp. 39-64, 2014.

[14] G. Fraser and A. Arcuri, “EvoSuite: automatic test suite generation

for object-oriented software,” in proceedings of the 19
th
 European

Conference on Foundations of software Engineering, ser. FSE ’11

ACM, 2011, pp.416-419.

Authors Profile

MS. B. Nagaveni completed her Bachelor of

Technology under the afliated college of

Jawaharlal Nehru Technological University

Anantapur in 2016. She is pursuing her

Master of Technology in computer science

and engineering in 2018 from Jawaharlal

Nehru Technological University Ananthapuramu, Andhra

Pradesh, India.

Prof. A. Ananda Rao received his B.Tech.

Degree in computer science and engineering

from university of Hyderabad, erstwhile

Andhra pradesh, India and M.Tech. Degree

in A.I & Robotics from university of

Hyderabad, erstwhile Andhra pradesh, India.

He received his Ph.D. Degree from Indian

Institute of Technology Madras, chennai, India.

He is a professor of Computer Science and Engineering

Department and currently working as a Director, Research &

Development, JNT University Anantapur, Ananthapuramu,

Andhra pradesh, India.

Dr. Rao has published more than 160 publications in various

national and international Journals/Conferences. He received

the best research paper award for the paper titled : An

approach to testcase design for cost effective software

testing, “IAENG- International conference on Software

Engineering, Hong Kong 2009.

P. Radhika Raju received B.Sc. (Comp. Sci)

from Sri Krishnadevaraya University,

Ananthapuramu; MCA degree from Indira

Gandhi National Open University (IGNOU),

India and M.Tech degree in Computer

Science from Jawaharlal Nehru

Technological University Anantapur, Ananthapuramu, A.P,

India. She Completed her Ph.D degree from JNT University

Anantapur. She authored a text book and has publications in

National and International Journals/Conferences. Her

research interest include primarily Software Engineering.

She is now working as a Lecturer in department of Computer

Science and Engineering, JNTUA College of Engineering,

Ananthapuramu, A.P.

