
 © 2014, IJCSE All Rights Reserved 12

 International Journal of Computer ScienceInternational Journal of Computer ScienceInternational Journal of Computer ScienceInternational Journal of Computer Sciencessss and Engineeringand Engineeringand Engineeringand Engineering Open Access
Research Paper Volume-2, Issue-4 E-ISSN: 2347-2693

Test Case Design for Critical Systems using Test Matrix and Truth Table

Himanshu Joshi
1*

, Ravi Leelu Chowdary
2
 and Hearsh Varma

3

1*,2
Departmet of CSE, JNTUH-CEH, India,

2
 Quality analyst team, S&P Capital IQ, India

www.ijcaonline.org

Received: 7 /04/2014 Revised: 12/04/2014 Accepted: 20/04/2014 Published: 30/04/2014

Abstract— Testing is done to find out any errors in the applications and to ensure that they are fit for use. Ordinarily, teams put in

their best efforts to find and fix as many bugs as possible. Sometimes due to factors such as lack of exhaustive test cases & build

deadlines extensive testing is not done. Also, missing test cases in terms of complex systems due to human errors is very much

possible. The post production errors are not catastrophic when the applications are meant for non-critical purposes. But, in life

critical applications such as aerospace & medicine, fully comprehensive testing needs to be performed. The success of stopping a

bug leakage in release phase depends considerably on the test cases used to perform the testing. Effective set of test cases should

be designed to enable detection of maximum number of errors. This paper proposes Test Matrix technique & Truth Table

techniques as profound testing mechanisms for complex test flows and inputs.

Index Term— Testing, Test Matrix, Truth Table

I. INTRODUCTION

In general, test activities contain the below phases which are

depicted in Figure 1 [1].

� Test planning

� Test case design

� Test execution

� Test reporting

The test case design plays the most significant role for

improving the quality of product and testing, test case design

techniques when not designed properly, lead to poor testing

[2]. This is so because it defines the input values, execution

procedure, expected output, pre-conditions and post-

conditions. Test cases bring in some standardization,

minimize the ad-hoc approach in testing and validate the

testing coverage of the application [3].

Effective test cases are written using experience and in-depth

analysis of the application. Test cases are drawn from the

available specifications and later on modified as per actual

functional & structural flow of the system. To derive the test

cases there are so many techniques like boundary value

analysis, equivalence partitioning, etc [4]. These techniques

are helpful only to derive critical test inputs, but these

techniques will not solve the purpose of achieving the

effective test design.

The above mentioned approach is reactive which makes it

non suitable for life critical/ safety critical applications.

Many formal methods have been devised for testing critical

applications. IBM CICS & Inmos/Oxford T800 Transputer

Floating-Point Unit Projects are notable ones [5].

Funding done by NASA & DARPA has resulted in many

tools for formal testing of complex systems.

Fig. 1: Test Activities

The problem with formal methods is that they are too

expensive and time consuming. Hence, this paper presents

simpler and proactive approach for designing test cases for

life critical applications. The following proposed techniques

can be applied to formulate the effective test cases which in

turn help to maximize the test coverage.

� Test Matrix Technique (identifies combinations of

test flows)

� Truth Table Technique (identifies combinations of

test inputs)

The rest of the paper is organized as follows. Section 2

describes the Test Matrix technique. Truth Table mechanism

is discussed in section 3. Section 4 briefs the result &

discussion. Section 5 presents the conclusion.

Corresponding Author: Himanshu Joshi, hmnshjsh@gmail.com

 International Journal of Computer Sciences and Engineering Vol.-2(4), pp (12-15) April 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 13

II. TEST MATRIX TECHNIQUE

Test Matrix Technique is a technique in which combination

of test flows are plotted in m-by-n matrix structure. Hence, it

is called ‘Test Matrix’.

The evaluation of this test matrix comes from the basic

mathematical matrix concept. In mathematics, a square (n ×

n) or rectangular (m × n) array of elements (numbers or

algebraic variables) used to facilitate the study of problems

in which the relation between the elements is important. A

matrix is a collection of numbers arranged into a fixed

number of rows and columns. In most of the cases, the

numbers are real numbers. In general, matrices can contain

complex numbers those are not present here.

Below is an example of a matrix with three rows and three

columns [6].

The top row is row 1. The leftmost column is column 1. This

matrix is a 3x3 matrix because it has three rows and three

columns. In describing matrices, the format is:

rows X columns

Each number that makes up a matrix is called an element of

the matrix. The elements in a matrix have specific locations.

The advantage of matrices is that they can be studied

algebraically by assigning a single symbol to a matrix rather

than considering each element separately.

For example, for the given input sets, the combinations of

test flows are plotted in a matrix structure as shown in Figure

2.

Fig. 2: Test Matrix

For given N input sets, many flows like A-S1-M1…N1, A-

S2-M1…N1 and so on can be derived. Each flow may

behave in a different manner. So it’s important to capture all

the flows. If number of input sets is very less say 2 sets, it

may look simple in deriving combinations. But, when we

think of huge number of input sets, this technique will stand

out to be easier compared to other methods.

The relation between the input sets is clearly established, so

that impact of these combinations in the output is clearly

visible. In this technique, the matrix formation starts with

first two input sets (set1 & 2) by relating the corresponding

inputs as follows;

Considering input set 1 & 2;

Considering input set 1,2, & 3;

Considering input set 1,2,3,…& N;

Once the first matrix is formed, the next matrix is formed by

adding third input set. This procedure is followed till the last

input set. At the end, we come out with all combinations of

test flows.

III. TRUTH TABLE TECHNIQUE

In Truth Table Technique combination of test inputs are

derived from boolean values as shown in figure 3 present

below [7].

Fig. 3: Truth Table

 International Journal of Computer Sciences and Engineering Vol.-2(4), pp (12-15) April 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 14

A truth table is a breakdown of a logic function by listing all

possible values the function can attain. It is rarely possible to

guess the numerical solution to a problem, and because there

are an infinite number of numbers it is obvious that one

cannot try all possible solutions in order to find one that

solves the problem [8]. But in logic, we only have two

"numbers": True and False. Therefore, any logical statement

(input set) which contains a finite number of logical

variables (inputs) can be analyzed using a table which lists

all possible values of the variables: a "truth table”. Since

each variable (input) can take only two values, a statement

(input set) with "n" variables requires a table with 2
n
 rows.

In this technique, once the inputs are available, the

combination of inputs is formed as per the below procedure.

Step 1: Collecting and organizing the inputs

The inputs are collected from the available test data and

organized in such a way that the truth table can be formed

(horizontal alignment of inputs-P, Q).

Step 2: Assigning boolean values

From the organized inputs, the boolean values (0 & 1) are

assigned to the table. This ends with the table filled in by the

combination of 0’s & 1’s.

Step 3: Deriving combination of inputs

Once the truth table is formed with boolean values, the

combination of inputs are derived by converting 1’s into

valid (√) and 0’s into invalid (Empty).

For the given inputs P and Q, the table yields 4 combinations

of inputs (2
2
 = 4) as shown in figure 4.

If an application has two inputs P & Q, then the test

execution can be done without considering two inputs, by

selecting any one of the inputs at a time, by selecting both.

Fig. 4: Derived input combinations

The extension to more than two inputs should now be

obvious:

1. For the two inputs, the rows are split into four sections:

the first and third quarters are valid while the second

and fourth quarters are invalid

2. For the three inputs, the rows are split into eighths, with

alternating eighths having valid's and invalid's

3. In general, for ‘n’ inputs, the rows are split into 2
n
 parts,

with alternating valid's and invalid's in each part.

IV. RESULT & DISCUSSION

The quality of an application relies on the complete coverage

of each flow cascaded with different equations and critical

inputs. In an application involved with enormous amount of

formulae/equations, complex flows with critical inputs, each

flow will cascade different equations. Hence, it is vital to test

each & every flow with all the critical inputs. In order to

cover all the flows, the test matrix technique is applied by

organizing the input sets in a matrix structure. From the final

matrix, each & every flow of the application is arrived.

The truth table technique is used by organizing the inputs to

arrive at the combination of inputs. These techniques will

also help to filter out the critical flows & inputs. The

combinations of flows & inputs are identified. Since this

application involves enormous amount of

formulae/equations, the equations with different parameters

are formulated in MS Excel using macros to verify the result

of the clustered equations of each flow.

With all this work, the effective test case design is in place.

During the test execution, the result of each flow in the

application is compared with excel result. In this way, it is

feasible to get closer to the exhaustive testing. Based on the

application needs, these techniques can be applied together

or separately.

V. CONCLUSION

The usage of test matrix and truth table techniques will be

more beneficial compared to other formal methods because

of the following:

� Covers all combinations of test inputs and flows

� Enables designing an effective set of test cases which

in turn enables detection of the maximum number of

errors

� Makes all stakeholders of a project understanding the

application flow clearly and quickly.

� Reduces the test case design cycle time to a greater

extent.

� Helps a lot during regression testing to identify &

execute the critical test flows/inputs.

� Acts as a knowledge base about the application.

The techniques can be refined in future to create a more

generalized and standardized version.

 International Journal of Computer Sciences and Engineering Vol.-2(4), pp (12-15) April 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 15

ACKNOWLEDGMENT

Thanks to all the near ones for supporting us in completing

this paper.

REFERENCES

[1] Software Testing,

http://en.wikipedia.org/wiki/Software_testing, 2014

[2] Eldh S, Hansson H, Punnekkat S, “Analysis of Mistakes as a

Method to Improve Test Case Design”, IEEE Fourth

International conference on Software Testing, Verification

and Validation (ICST), E-ISBN: 978-0-7695-4342-0, Page

No (70-79), March 21-25, 2011

[3] What is the procedure to write an effective test case?,

http://www.bayt.com/en/specialties/q/8821/what-is-the-

procedure-to-write-an-effective-test-case/, 2014

[4] Boundary Value Analysis & Equivalence Class Partitioning

with Simple Example,

http://www.softwaretestingclass.com/boundary-value-

analysis-and-equivalence-class-partitioning-with-simple-

example/, 2014

[5] Formal Methods for Life Critical Software,

http://shemesh.larc.nasa.gov/fm/papers/Butler-1993-Formal-

Methods-For-Life-Critical-Software.pdf, 2014

[6] Definition of Matrix,

http://chortle.ccsu.edu/vectorlessons/vmch13/vmch13_2.html

, 2014

[7] Truth Table, http://en.wikipedia.org/wiki/Truth_table, 2014

[8] Logical Operations & Truth Tables,

http://kias.dyndns.org/comath/21.html, 2014

AUTHORS PROFILE

Himanshu Joshi is currently pursuing his

Bachelor’s degree at JNTU Hyderabad

with majors in Computer Science. He has

two research internships to his credit of

which one is with Honeywell Technology

Solutions Lab Pvt. Ltd., Bangalore and

another with APGENCO. His domain of

interests inter alia includes autonomic

computing, cross platform application

development and computational bio-

chemistry.

Hearsh Varma is currently pursuing his

Bachelor’s degree at JNTU Hyderabad

with majors in Computer Science. He has

done a research internship at Honeywell

Technology Solutions Lab Pvt. Ltd.,

Bangalore. His domain of interests inter

alia includes cloud computing, risk

assessment methodologies and database

management.

Ravi Leelu Chowdary is a Quality Analyst

at S&P Capital IQ Hyderabad. She

graduated from GNITS with bachelors in

Computer Science and Engineering.

During final year of graduation she has

done research on Load Performance, risk

assessment. When free she works on

Micro-Enterprise ideas and estimates risk

for the same. She also enjoys doing mixed

media art works and oil paintings which

has been her hobby from past 13 years.

