
 © 2014, IJCSE All Rights Reserved 72

 International Journal of Computer Science and EngineeringInternational Journal of Computer Science and EngineeringInternational Journal of Computer Science and EngineeringInternational Journal of Computer Science and Engineering Open Access
Survey Paper Volume-2, Issue-5 E-ISSN: 2347-2693

Hierarchical Reinforcement Learning in Complex Learning Problems: A Survey

Samiksha Mahajan
*

Dept. of Information Technology and Computer Science, VVES’s Vikas College, Mumbai 400 083, India

www.ijcaonline.org

Received: 07/04/2014 Revised: 03 /05/2014 Accepted: 22/05/ 2014 Published: 31 /05/2014

Abstract — Reinforcement Learning (RL) is an active research area of machine learning research based on the mechanism of learning from

rewards. RL has been applied successfully to variety of tasks and works well for relatively small problems, but as the complexity grows,

standard RL methods become increasingly inefficient due to large state spaces. This paper surveys Hierarchical Reinforcement Learning (HRL)

as one of the alternative approaches to cope with issues regarding complex problems and increasing the efficiency of reinforcement learning.

HRL is the subfield of RL that deals with the discovery and/or exploitation of underlying structure of a complex problem and solving it using

reinforcement learning by breaking it up into smaller sub-problems. This paper gives an introduction to HRL, discusses its basic concepts,

different algorithms, approaches and related work regarding Hierarchical Reinforcement Learning. At last but not the least this paper briefly

gives variation between flat RL and HRL following its pros and cons. It concludes with research scope of HRL in complex problems.

 Keywords/Index Term—Machine Learning; Reinforcement Learning; Hierarchical Reinforcement Learning

I. INTRODUCTION

Reinforcement Learning is a type of Machine Learning,

inspired by behaviorist psychology and one of the most

active research areas in Artificial Intelligence. It is a

computational approach to learning where an agent tries to

maximize the total amount of reward it receives when

interacting with a complex, uncertain environment. [1][2]

RL is successfully studied in many other disciplines such as

Game theory, Control theory, Operation research,

Robotics, Economics, Information theory, Simulation based

optimization, Statistics and Genetic algorithms.

Current line of research is to establish highly data efficient

and robust RL algorithms that are able to solve complex

problems. In such complex problems, Curse of

Dimensionality [3] refers to the exponential increase in the

state-space with each additional variable or dimension that

describes the problem. Due to the table structure of state

action pairs, with large state spaces, reinforcement learning

becomes increasingly inefficient, which presents a major

obstacle in successfully applying RL to complex domains.

Learning in environments with extremely large state spaces

is infeasible without some form of generalization.

A method for dealing with this is Hierarchical

Reinforcement Learning. It is an approach to reinforcement

learning which splits the global goals of a reinforcement

learning agent up into smaller subgoals, and then attempts

to tackle each subgoal separately. By doing this the state

space is decreased and therefore the efficiency increased.

Thus hierarchical reinforcement learning is mentioned as a

good way of increasing efficiency in reinforcement

learning.[2]

II. CONCEPTS RELATED TO HIERARCHICAL

REINFORCEMENT LEARNING

Complex problems cannot be described by only a few

variables, but fortunately the real world is highly structured

with many constraints and with most parts independent of

most other parts. Without structure it would be impossible

to solve complex problems of any size [4]. Structure can

significantly reduce the naive state space generated by sheer

enumeration. Reinforcement learning is concerned with

problems represented by actions as well as states,

generalizing problem solving to systems that are dynamic in

time. Hence we often refer to reinforcement learning

problems as tasks, and sub-problems as sub-tasks [5].

Below are the concepts related to hierarchical

reinforcement learning.

• Hierarchical Decomposition

Many large problems have hierarchical structure that allows

them to be broken down into sub problems. The sub

problems, being smaller are solved more easily. The

solutions to the sub problems are recombined to provide the

solution for original large problem. A heuristic from [6] for

problem solving is decomposing and recombining or divide

and conquer in today’s parlance.

Decomposition can make finding the final solution

significantly more efficient with improvements in the time

and space complexity for both learning and execution.

Many times similar tasks need to be executed in different

contexts. If reinforcement learner is unaware of underlying

structure, it would relearn the same task in multiple

different contexts, when it is clearly better to learn the task

once and reuse it. In [8] a hierarchical reinforcement

learning approach was used to create a program which

plays a board game called ‘The Settlers of Catan’, which is

a popular modern board game. It is a very complex board

game and therefore a flat reinforcement learning approach

would have been inefficient. In their approach they use

hierarchical reinforcement learning and model trees for

value function approximation. Both Q-learning and SARSA

are used as the conventional reinforcement learning

algorithms at different stages of the learning process.

• Semi Markov Decision Process (SMDP)

 International Journal of Computer Sciences and Engineering Vol.-2(5), PP(72-78) May 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 73

In reinforcement learning environments, states are often

assumed to fulfill the Markov property. MDP is the

probabilistic model of a sequential decision problem, where

states can be perceived exactly, and the current state and

action selected determine a probability distribution on

future states. The model is Markov if the state transitions

are independent of any previous environment states or agent

actions. [2]

SMDP is a generalization of the Markov Decision Process

(MDP) where the times between transitions are allowed to

be random variables whose distribution may depend upon

the current state, the action taken, (possibly) the next state.

An SMDP can be seen as representing the system at

decision points, while MDP represents the system at all

times. Semi-Markov decision processes (SMDPs) serve as

theoretical basis for many hierarchical RL approaches

developed during the last decay. Hierarchical reinforcement

learning is a sample-based framework for solving SMDPs

that finds the “best” policy consistent with a given

hierarchy [8]. These algorithms enable agents to construct

hierarchical policies that allow using multi-step actions as

“subroutines.” HRL algorithms can be described using the

SMDP framework.

An SMDP is defined as a tuple M=(S, A, P, R). S is the set

of states, and A is the set of actions the agent may take at a

decision point. P is a transition probability function, where

P(s, N|s, a) denotes the probability that action a taken in

state s will cause a transition to state s in N time steps.

Rewards can accumulate over the entire duration of an

action. The reward function R(s, N|s, a) is the expected

reward received from selecting action a in state s and

transitioning to state s with a duration of N time steps.

The use of hierarchical actions transforms a Markov

Decision Process (MDP) into a Semi-Markov Decision

Process (SMDP) and that convergence results still hold for

the learning algorithms known to converge in the absence

of hierarchy. [9, 10, 11, 12]

• State Abstraction

The method for dividing up the global state space of a

problem into smaller state spaces is given in [13]. It

describes how a problem’s state space can be divided up

into a series of intervals if the states in the same interval

block have the same properties in terms of transitions and

rewards. Decomposing large MDPs lead to state

abstraction, thus reduce the overall state space of the given

problem and thus reduce learning time. An abstracted state

space is smaller than the state space of an original MDP.

There are broadly two kinds of conditions under which

state-abstractions can be introduced [5, 14]. They are given

as follow:

o Eliminate irrelevant variables: When reinforcement

learning algorithms are given redundant information,

they will learn the same value-function or policy for all

the redundant states. Thus eliminating irrelevant

variables leads to state abstraction. This type of state

abstraction is used by [15] who exploit independence

between variables in dynamic Bayesian nets. It is

introduced by [14] for Max Node and Leaf Irrelevance

in the MAXQ graph [16] extend this form of model

minimization to state-action symmetry couched in the

algebraic formations of morphisms. They state

conditions under which the minimised model is a

homomorphic image and hence transitions and rewards

commute. Some states may not be reachable for some

sub-tasks in the task-hierarchy. This Shielding

condition [14] is another form of elimination of

irrelevant variables, in this case resulting from the

structure of the task-graph.

Funnelling: Funneling is a type of state abstraction

where abstract actions move the environment from a

large number of initial states to a small number of

resulting states.

The effect is exploited for example by [18] in plant control

and by [19] to reduce the size of the MDP.

• Abstract Actions
Approaches to HRL employ actions that persist for multiple

time-steps. These temporally extended or abstract actions

hide the multi-step state-transition and reward details from

the time they are invoked until termination. Abstract

actions are employed in many fields including AI, robotics

and control engineering. They are similar to macros in

computer science that make available a sequence of

instructions as a single program statement. Abstract actions

may execute a policy for a smaller MDPs or SMDPs. This

establishes a hierarchy where a higher-level parent task

employs child subtasks as its abstract actions, which is

called as Task Hierarchies [14].

In hierarchical problem solving, the decomposed

subproblem can be solved by abstract actions. It can be

realized by the set of primitive actions to reach the subgoal.

Thus in hierarchical reinforcement learning the

corresponding action policy can be learned based on the

abstract states identified subgoals and abstract actions [17].

• Optimality

HRL cannot guarantee optimal solution to decomposed

problems. Types of optimality in HRL can be given as

follows:

• Hierarchical Optimality

The overall learned policy is the best policy consistent with

the hierarchy. Policies that are hierarchically optimal are

ones that maximize the overall value function consistent

with the constraints imposed by the task-hierarchy.

• Recursive Optimality

In Recursive optimality, sub-task policies to reach goal

terminal states are context free ignoring the needs of their

parent tasks. Here the sub-tasks can be re-used in various

contexts, but they may not be optimal in each situation.

 International Journal of Computer Sciences and Engineering Vol.-2(5), PP(72-78) May 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 74

• Hierarchical Greedy Optimality

In Hierarchical Greedy Optimality, a subtask policy

proceeding to termination may be sub-optimal and by

constantly interrupting the sub-task a better sub-task may be

chosen. It is better than hierarchical and recursive

optimality but does not guarantee of global optimality.

III. APPROACHES FOR HRL

Hierarchical reinforcement learning involves breaking the

target Markov decision problem into a hierarchy of sub

problems or subtasks. There are three general approaches to

defining these subtasks i.e three prominent HRL approaches

are: Options, a formalization of abstract actions; HAMQ, a

partial program approach, and MAXQ value function

decomposition including state abstraction. While choosing

the appropriate hierarchy, we have to look at available

domain knowledge: If some behaviors are completely

specified – use Options; if some behaviors are partially

specified – use HAM; if less domain knowledge available –

use MAXQ. We can use all three to specify different

behaviors in tandem.

• Options

Options approach is to define each subtask in terms of a

fixed policy that is provided by the programmer (or that has

been learned in some separate process).

An option is a triple < I, π, β > in which, I ⊆ S is an

initiation set, β: S
+
 → [0, 1] is a termination condition, and

π: S × A→ [0, 1] is a policy [20]. An option < I, π, β > is

available in state st if and only if st ∈ I. If the option is

taken, then actions are selected according to π until the

option terminates stochastically according to β. In

particular, a Markov option executes as follows. First, the

next action at is selected according to probability

distribution π (st, ·). The environment then makes a

transition to state st+1, where the option either terminates,

with probability β (st+1), or else continues, determining at+1

according to π (st+1, ·), possibly terminating in st+2

according to β (st+2), and so on. When the option terminates,

the agent has the opportunity to select another option. An

option is temporally extended action with well defined

policy. When option policies and termination depend on

only the current state s, options are called Markov options.

The option policy and termination depends on the entire

history sequence of states, actions and rewards since the

option was initiated. Options of this sort are called semi-

Markov options. Options can only input complete policy

and requires complete specification of policy.

• HAMQ (Hierarchical Abstract Machine)

In the hierarchy of abstract machines (HAM) approach to

HRL the designer specifies abstract actions by providing

stochastic finite state automata called abstract machines that

work jointly with the MDP [9].

A HAM is a program which, when executed by an agent in

an environment, constrains the actions that the agent can

take in each state. An abstract machine is a triple <µ; I; δ)

where µ is a finite set of machine states, I is a stochastic

function from states of the MDP to machine states that

determines the initial machine state, and δ is a stochastic

next-state function, mapping machine states and MDP

states to next machine states [5]. HAMs are a way to

partially specify procedural knowledge to transform an

MDP to a reduced SMDP. Extended HAM approach is

given by introducing more expressible agent design

languages for HRL (Programmable HAM -PHAM) [22]

and ALisp, a Lisp-based high-level partial programming

language [23].

• MAXQ
The third approach MAXQ is to define each subtask in

terms of a termination predicate and a local reward function

[21]. MAXQ algorithm expects the hierarchical structure to

be supplied by the designer. It suggests breaking the main

problem’s value function up into an additive combination of

smaller value functions, each associated with a smaller

problem i.e. MAXQ represents the value of a state as a

decomposed sum of sub-task completion values plus the

expected reward for the immediate primitive action. A

completion value is the expected cumulative reward to

complete the sub-task after taking the next abstract action.

Detailed overview of MAXQ is given [24]. The MAXQ

algorithm is tested against flat Q-Learning and significantly

outperforms it. Function approximation and optimistic

exploration are combined to allow MAXQ to cope with

large and even infinite state spaces [35].

IV. ALGORITHMS AND RELATED WORKS IN HRL

There are several important design decisions that must be

made when constructing a hierarchical reinforcement

learning system. [21]

o Specify subtasks

Hierarchical reinforcement learning involves breaking the

target Markov decision problem into a hierarchy of sub

problems or subtasks. The three general approaches to

defining these subtasks are Options, Ham and MAXQ as

mentioned in above section III.

o Employ state abstractions within subtasks

The second design issue is whether to employ state

abstractions within subtasks. A subtask employs state

abstraction if it ignores some aspects of the state of the

environment.

o Non-hierarchical execution

The third design issue concerns the non-hierarchical

execution of a learned hierarchical policy. Extra learning

i.e. in all states (and at all levels of the hierarchy) is

required, in order to support this non-hierarchical

execution. In HRL, the only states where learning is

 International Journal of Computer Sciences and Engineering Vol.-2(5), PP(72-78) May 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 75

required at the higher levels of the hierarchy are states

where one or more of the subroutines could terminate.

o Learning algorithm

The final issue is what form of learning algorithm to

employ. Finding online algorithms that work for general

hierarchical reinforcement learning has been difficult,

particularly within the termination predicate family of

methods. Some relied on each subtask having a unique

terminal state[30]; Some employed a mix of online and

batch algorithms to train her hierarchy[31]; and work within

the options framework usually assumes that the policies for

the sub problems are given and do not need to be learned at

all.

Some important algorithms in HRL are as given below:

• H-DYNA Algorithm
DYNA is a reinforcement learner that uses both real and

simulated experience after building a model of the reward

and state transition function. A gating mechanism called

Hierarchical-DYNA (H-DYNA) was developed [30] which

first learns elementary tasks such as to navigate to specific

goal locations. Each task is treated as an abstract action at a

higher level of control. H-DYNA differs from hierarchical

planners in two ways: first, the abstract models are learned

using experience gained while learning to solve other tasks

in the same environment, and second, the abstract models

can be used to solve stochastic control tasks.

• HEXQ

The HEXQ (hierarchical exit Q function) approach is a

series of algorithms motivated by MAXQ value-function

decomposition and bottom-up structure learning [25]. It has

ability to abstract tasks dynamically. HEXQ automatically

builds task-hierarchies from interactions with the

environment assuming an underlying finite state factored

MDP. It employs both variable elimination and funnel type

state abstractions to construct a compact representation. As

one subtask is learnt for each exit, HEXQ solutions are

hierarchically optimal. HEXQ can use hierarchical greedy

execution to try to improve on the hierarchically optimal

solution, and the HEXQ policy converges to the globally

optimal result for task-hierarchies were only the root-

subtask has stochastic transition or reward functions. The

introduction of parallel decomposition of variables and

sequential actions allows HEXQ to create abstract state

variables not supplied by the designer. It conveys safe

decomposition [25]. In more recent versions, state variables

are tackled in parallel [26].

[36] propose a Bayesian network model causal graph based

approach - Variable Influence Structure Analysis (VISA)

that relates the way variables influence each other to

construct the task-hierarchy [27]. Unlike HEXQ this

algorithm combines variables that influence each other and

ignores lower-level activity.

• HDG (Hierarchical Distance to Goal)

Algorithm

HDG learning algorithm [31] uses a hierarchical

decomposition of the state space to make learning to

achieve goals more efficient with a small penalty in path

quality and introduces the important idea of composing the

value function from distance components along the path to

a goal. It uses hierarchical approach to solving problems

when goal of achievement are given to the agent

dynamically. It is descendent of Watkins’ Q-learning

algorithm.

HDG algorithm was extended to automatically generate

hierarchies in goal directed systems [33]. But again none of

these systems focused on discovering subgoals in the state

space to facilitate hierarchy.

• HABS(Hierarchical Assignment of Behaviors

by Self-organizing)
The HABS algorithm [32] is derived mainly from

HASSLE. It was developed to overcome the action

explosion problem in HASSLE and to allow neural

networks to be used as function approximator for the high

level policy. If this feature could be dropped and replaced

by something that always uses a fixed set of behaviors as

high level actions, the number of high level actions would

remain constant when the problem size grows. That way the

useful aspects of HASSLE will retain, like using the

abstracted state space and starting with a priori

uncommitted subpolicies.

• Feudal Reinforcement Learning

The feudal reinforcement learning algorithm [34]

emphasizes state abstraction. It is referred as information

hiding and involves hierarchy of learning modules. It has

the idea that decision models should be constructed at

coarser granularities further up the control hierarchy.

• HASSEL Algorithm

HASSLE algorithm [28] outperformed variants of plain RL

in deterministic and stochastic versions of a large MDP. It

discovers subgoals and the corresponding specialized

subtask solvers by learning how to transition between

abstract states. In the process subgoal abstract actions are

generalized to be reused or specialized to work in different

parts of the state-space or to reach different goals. HASSEL

is extended with function approximation [29].

Some recent work in HRL is discussed below:

A method for learning a hierarchy of actions in a

continuous environment is given [37] by learning a

qualitative representation of the continuous environment

and then and actions to reach qualitative states.[38] presents

methods that learn to parameterize and order a set of motion

templates to form abstract actions (options) in continuous

time. A skill discovery method for reinforcement learning

in continuous domains is introduced [39] that constructs

chains of skills leading to an end-of-task reward. The

method is further developed to build skill trees faster from a

set of sample solution trajectories.

 International Journal of Computer Sciences and Engineering Vol.-2(5), PP(72-78) May 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 76

Automatic basis function construction to HRL extended

[40]. The approach is based on hierarchical spectral

analysis. Hierarchical Approaches of graphs induced on an

SMDP's state space from sample trajectories. Brief review

of more recent progress in general representation discovery

is provided in [41]. The review includes temporal and

homomorphic state abstractions, with the latter generalized

to representing value functions abstractly in terms of a basis

functions. A hierarchical reinforcement learning method

based on action sub rewards is proposed which can reduce

state spaces greatly and choose actions with favorable

purpose and efficiency so as to optimize reward function

and enhance convergence speed [42]. The approach is given

[43] to optimizing Natural Language Generation for

situated interactions using HRL with Bayesian Networks.

SHARSHA contributes to research in hierarchical

reinforcement learning. It supports convergent policy

learning within hierarchical reactive plans, while other

convergent methods rely on more constrained

representations and a non-interruptible execution model

[48].

Some real world applications where HRL is implemented

successfully are Toy Robot [44], Flight Simulator [45],

AGV Scheduling [46], Keepaway soccer [47].

V. FLAT RL AND HRL

The main reason for introducing hierarchical architectures

in RL is to bridge the gap between theoretical

considerations to machine intelligence and practical

application to real-world problems. In large-scale problems

the performance of flat RL is too poor with regard to

learning speed and computational effort. It also scales badly

with the size of state and action-spaces and the length of the

sequence of actions to reach the terminal state.

Advantages of HRL over flat RL:

a) Improved exploration as it can take big steps at

high levels of abstraction.

b) Learning from fewer trials as fewer parameters

must be learned and subtasks can ignore irrelevant

features of full state.

c) Faster learning for new problems because subtasks

learned on previous problems can be reused

d) Allows transfer at multiple levels of hierarchy,

which can speed up learning.

e) Task decompositions are helpful in reducing the

size of the problem, and therefore in exorcising the

Curse of Dimensionality

Limitations of HRL:

a) HRL automatically handles exploration-

exploitation shift but at the same time it lacks in

sufficient exploration and sufficient subtlety.

b) Some of the existing algorithms only work well for

the problem which they were designed to solve.

VI. CONCLUSIONS AND FUTURE SCOPE

Hierarchical reinforcement learning is a key to scaling

reinforcement methods to large, complex, real world

problems. Complex learning task can be broken down into

several smaller subtasks in multiple levels of hierarchy, by

using appropriately formulated background knowledge. So

that it can be learned more quickly, easily and then

recombined to solve complex large problems.

While choosing the appropriate hierarchy approach, we

need to look up the domain knowledge. If some behaviors

are completely specified –use Options, if some behaviors

are partially specified – use HAM and if less domain

knowledge available – use MAXQ approach. We can use

all three to specify different behaviours in system.

HRL research must give more leverage to automated

discovery of hierarchy and state abstraction. Exploration

must improve before attempts to learn simultaneously at

multiple levels of hierarchy.

Even applied successfully on complex problems, HRL

research needs effectiveness (in terms of optimality, and

choosing right options) on more large and complex

continuous control tasks and real world problems. HRL

research must give more leverage to automated discovery of

hierarchy and state abstraction. Also exploration must

improve before attempts to learn simultaneously at multiple

levels of hierarchy.

VII. REFERENCES

[1] Richard Sutton and Andrew Barto (1998).Reinforcement

Learning.MIT Press.ISBN 0-585-02445-6.

[2] Kaelbling, Leslie Pack, Michael L. Littman, and Andrew

W. Moore. "Reinforcement learning: A survey." arXiv

preprint cs/9605103 (1996).

[3] Richard Ernest Bellman (1961). Adaptive control

processes: a guided tour. Princeton University Press.

[4] Rusell, Stuart, and Peter Norvig. "Artificial intelligent:

A modern approach." (2003).

[5] Hengst, Bernhard. "Hierarchical

approaches." Reinforcement Learning. Springer Berlin

Heidelberg, 2012. 293-323.

[6] Polya G (1945) How to Solve It: A New Aspect of

Mathematical Model. Princeton University Press

[7] Pfeiffer, M (2004). Reinforcement Learning of

Strategies for Settlers of Catan. Proceedings of the

International Conference on Computer Games: Artificial

Intelligence, Design and Education, Reading, UK.

November 2004

[8] A. Barto and S. Mahadevan. Recent advances in

hierarchical reinforcement learning. Special Issue on

Reinforcement Learning, Discrete Event Systems

Jouranl, 13:41–77, 2003.

[9] Parr, R. and Russell, S. (1997). Reinforcement learning

with hierarchies of machines. In Proceedings of

Advances in Neural Information Processing Systems 10.

MIT Press.

 International Journal of Computer Sciences and Engineering Vol.-2(5), PP(72-78) May 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 77

[10] Parr, R. (1998). Hierarchical Control and Learning for

Markov Decision Processes. PhD thesis, University of

California at Berkeley.

[11] Precup, D. and Sutton, R. S. (1997). Multi-time models

for temporally abstract planning. In Proceedings of

Advances in Neural Information Processing Systems 10.

MIT Press.

[12] Precup, D., Sutton, R. S., and Singh, S. (1998).

Theoretical results on reinforcement learning with

temporally abstract behaviors. In Proceedings of the

Tenth European Conference on Machine Learning,

ECML’98. Springer-Verlag.

[13] Asadi, M and Huber, M (2004). State Space Reduction

for Hierarchical Reinforcement Learning. In

Proceedings of the 17th International FLAIRS

Conference, pp. 509 - 514, Miami Beach, FL. 2004

AAAI

[14] Dietterich TG (2000) Hierarchical reinforcement

learning with the MAXQ value function decomposition.

Journal of Artificial Intelligence Research 13:227- 303

[15] Boutilier C, Dearden R, Goldszmidt M (1995)

Exploiting structure in policy construction. In:

Proceedings of the 14th international joint conference

onArtificial intelligence -Volume 2, Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, pp 1104-1111

[16] Ravindran, Balaraman. "SMDP homomorphisms: An

algebraic approach to abstraction in semi markov

decision processes." (2003).

[17] Chiu, Chung-Cheng, and Von-Wun Soo. "Subgoal

identification for reinforcement learning and planning in

multiagent problem solving." Multiagent System

Technologies. Springer Berlin Heidelberg, 2007. 37-48.

[18] Forestier, J-P., and Pravin Varaiya. "Multilayer control

of large Markov chains."Automatic Control, IEEE

Transactions on 23.2 (1978): 298-305.

[19] Dean, Thomas, and Shieu-Hong Lin. "Decomposition

techniques for planning in stochastic domains." IJCAI.

Vol. 2. 1995.

[20] Sutton, Richard S., Doina Precup, and Satinder Singh.

"Between MDPs and semi-MDPs: A framework for

temporal abstraction in reinforcement

learning."Artificial intelligence 112.1 (1999): 181-211.

[21] Dietterich, Thomas G. "Hierarchical reinforcement

learning with the MAXQ value function

decomposition." arXiv preprint cs/9905014 (1999).

[22] Andre D, Russell SJ (2000) Programmable

reinforcement learning agents. In: Leen TK, Dietterich

TG, Tresp V (eds) NIPS, MIT Press, pp 1019-1025

[23] Andre D, Russell SJ (2002) State abstraction for

programmable reinforcement learning agents. In:

Dechter R, Kearns M, Sutton RS (eds) Proceedings of

the Eighteenth National Conference on Artificial

Intelligence, AAAI Press, pp 119-125

[24] Dietterich, Thomas G. "An overview of MAXQ

hierarchical reinforcement learning." Abstraction,

Reformulation, and Approximation. Springer Berlin

Heidelberg, 2000. 26-44.

[25] Hengst, Bernhard. Discovering hierarchy in

reinforcement learning. University of New South Wales,

2003.

[26] Hengst B (2008) Partial order hierarchical reinforcement

learning. In: Australasian Conference on Artificial

Intelligence, pp 138-149

[27] Jonsson A, Barto AG (2006) Causal graph based

decomposition of factored mdps. In Journal of Machine

Learning, vol 7, pp 2259-2301

[28] Bakker B, Schmidhuber J (2004) Hierarchical

reinforcement learning based on subgoal discovery and

subpolicy specialization. In: Proceedings of the 8-th

Conference on Intelligent Autonomous Systems, IAS-8,

pp 438-445

[29] Moerman W (2009) Hierarchical reinforcement

learning: Assignment of behaviors to sub-policies by

self-organization. PhD thesis, Cognitive Artificial

Intelligence, Utrecht University

[30] Singh, S. P. (1992). Transfer of learning by composing

solutions of elemental sequential tasks. Machine

Learning, 8, 323-339.

[31] Kaelbling, L. P. (1993). Hierarchical reinforcement

learning: Preliminary results. In Proceedings of the

Tenth International Conference on Machine Learning,

pp. 167{173 SanFrancisco, CA. Morgan Kaufmann.

[32] Moerman, Wilco, and Cognitive Artificial

Intelligence. Hierarchical reinforcement learning:

Assignment of behaviours to subpolicies by self-

organization. Diss. PhD thesis, Cognitive Artificial

Intelligence, Utrecht University, 2009.

[33] Moore, A. W., Baird, L. C., and Kaelbling, L. (1999).

Multi-value-functions: Efficient automatic action

hierarchies for multiple goal MDPs. In Dean, T., editor,

Proceedings of the International Joint Conference on

Artificial Intelligence (IJCAI99), volume 2, pages 1316–

1321, San Francisco, CA. Morgan Kauffman Publishers,

Inc.

[34] Dayan P, Hinton GE (1992) Feudal reinforcement

learning. Advances in Neural Information Processing

Systems 5 (NIPS)

[35] Jong NK, Stone P (2009) Compositional models for

reinforcement learning. In: The European Conference on

Machine Learning and Principles and Practice of

Knowledge Discovery in Databases

[36] Jonsson A, Barto AG (2006) Causal graph based

decomposition of factored mdps. In Journal of Machine

Learning, vol 7, pp 2259-2301

[37] Mugan J, Kuipers B (2009) Autonomously learning an

action hierarchy using a learned qualitative state

representation. In: Proceedings of the 21st international

joint conference on Artificial intelligence, Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, pp

1175-1180

[38] Neumann G, Maass W, Peters J (2009) Learning

complex motions by sequencing simpler motion

templates. In: Proceedings of the 26th Annual

International Conference on Machine Learning, ACM,

New York, NY, USA, ICML '09, pp 753-760

[39] Konidaris G, Barto AG (2009) Skill discovery in

continuous reinforcement learning domains using skill

chaining. In: Bengio Y, Schuurmans D, Lafferty J,

Williams CKI, Culotta A(eds) Advances in Neural

Information Processing Systems 22, pp 1015-1023

[40] Osentoski S, Mahadevan S (2010) Basis function

construction for hierarchical reinforcement learning. In:

Proceedings of the 9th International Conference on

Autonomous Agents and Multiagent Systems: volume 1

- Volume 1, International Foundation for Autonomous

 International Journal of Computer Sciences and Engineering Vol.-2(5), PP(72-78) May 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 78

Agents and Multiagent Systems, Richland, SC, AAMAS

'10, pp 747-754

[41] Mahadevan S (2010) Representation discovery in

sequential descision making. In 24thConference on

Artificial Intelligence (AAAI), Atlanta July 11-15 2010

[42] Fu, Yuchen, et al. "A Reward Optimization Method

Based on Action Subrewards in Hierarchical

Reinforcement Learning." The Scientific World

Journal 2014 (2014).

[43] Dethlefs, Nina, and Heriberto Cuayáhuitl. "Combining

hierarchical reinforcement learning and Bayesian

networks for natural language generation in situated

dialogue." Proceedings of the 13th European Workshop

on Natural Language Generation. Association for

Computational Linguistics, 2011.

[44] Kober, Jens, Erhan Oztop, and Jan Peters.

"Reinforcement learning to adjust robot movements to

new situations." Proceedings of the Twenty-Second

international joint conference on Artificial Intelligence-

Volume Volume Three. AAAI Press, 2011.

[45] Ryan, Malcolm, and Mark Reid. "Learning to fly: An

application of hierarchical reinforcement learning." In

Proceedings of the 17th International Conference on

Machine Learning. 2000.

[46] Ghavamzadeh, Mohammad, and Sridhar Mahadevan.

"Hierarchical average reward reinforcement

learning." The Journal of Machine Learning Research 8

(2007): 2629-2669.

[47] Stone, Peter, Richard S. Sutton, and Gregory Kuhlmann.

"Reinforcement learning for robocup soccer

keepaway." Adaptive Behavior 13.3 (2005): 165-188.

[48] Shapiro, Daniel, Pat Langley, and Ross Shachter. "Using

background knowledge to speed reinforcement learning

in physical agents." Proceedings of the fifth

international conference on Autonomous agents. ACM,

2001.

AUTHOR PROFILE

Samiksha Mahajan received her M.Sc

and M.Phil in Computer Science from

Nagpur University. She has teaching

experience at UG and PG level for

computer science and IT. Research

interests: Artificial Intelligence, Machine Learning.

