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Abstract — Reinforcement Learning (RL) is an active research area of machine learning research based on the mechanism of learning from 

rewards. RL has been applied successfully to variety of tasks and works well for relatively small problems, but as the complexity grows, 

standard RL methods become increasingly inefficient due to large state spaces. This paper surveys Hierarchical Reinforcement Learning (HRL) 

as one of the alternative approaches to cope with issues regarding complex problems and increasing the efficiency of reinforcement learning.  

HRL is the subfield of RL that deals with the discovery and/or exploitation of underlying structure of a complex problem and solving it using 

reinforcement learning by breaking it up into smaller sub-problems. This paper gives an introduction to HRL, discusses its basic concepts, 

different algorithms, approaches and related work regarding Hierarchical Reinforcement Learning. At last but not the least this paper briefly 

gives variation between flat RL and HRL following its pros and cons. It concludes with research scope of HRL in complex problems. 
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I. INTRODUCTION  

Reinforcement Learning is a type of Machine Learning, 

inspired by behaviorist psychology and one of the most 

active research areas in Artificial Intelligence. It is a 

computational approach to learning where an agent tries to 

maximize the total amount of reward it receives when 

interacting with a complex, uncertain environment. [1][2] 

RL is successfully studied in many other disciplines such as 

Game theory, Control theory, Operation research,  

Robotics, Economics, Information theory, Simulation based 

optimization, Statistics and Genetic algorithms.  

Current line of research is to establish highly data efficient 

and robust RL algorithms that are able to solve complex 

problems. In such complex problems, Curse of 

Dimensionality [3] refers to the exponential increase in the 

state-space with each additional variable or dimension that 

describes the problem. Due to the table structure of state 

action pairs, with large state spaces, reinforcement learning 

becomes increasingly inefficient, which presents a major 

obstacle in successfully applying RL to complex domains. 

Learning in environments with extremely large state spaces 

is infeasible without some form of generalization.  

A method for dealing with this is Hierarchical 

Reinforcement Learning. It is an approach to reinforcement 

learning which splits the global goals of a reinforcement 

learning agent up into smaller subgoals, and then attempts 

to tackle each subgoal separately. By doing this the state 

space is decreased and therefore the efficiency increased. 

Thus hierarchical reinforcement learning is mentioned as a 

good way of increasing efficiency in reinforcement 

learning.[2]  

 

II. CONCEPTS RELATED TO HIERARCHICAL 

REINFORCEMENT LEARNING 

 

Complex problems cannot be described by only a few 

variables, but fortunately the real world is highly structured 

with many constraints and with most parts independent of 

most other parts. Without structure it would be impossible 

to solve complex problems of any size [4]. Structure can 

significantly reduce the naive state space generated by sheer 

enumeration. Reinforcement learning is concerned with 

problems represented by actions as well as states, 

generalizing problem solving to systems that are dynamic in 

time. Hence we often refer to reinforcement learning 

problems as tasks, and sub-problems as sub-tasks [5]. 

Below are the concepts related to hierarchical 

reinforcement learning. 

 

•  Hierarchical Decomposition 

Many large problems have hierarchical structure that allows 

them to be broken down into sub problems. The sub 

problems, being smaller are solved more easily. The 

solutions to the sub problems are recombined to provide the 

solution for original large problem. A heuristic from [6] for 

problem solving is decomposing and recombining or divide 

and conquer in today’s parlance. 

Decomposition can make finding the final solution 

significantly more efficient with improvements in the time 

and space complexity for both learning and execution. 

Many times similar tasks need to be executed in different 

contexts. If reinforcement learner is unaware of underlying 

structure, it would relearn the same task in multiple 

different contexts, when it is clearly better to learn the task 

once and reuse it. In [8] a hierarchical reinforcement 

learning approach was used to create a program which 

plays a board game called ‘The Settlers of Catan’, which is 

a popular modern board game. It is a very complex board 

game and therefore a flat reinforcement learning approach 

would have been inefficient. In their approach they use 

hierarchical reinforcement learning and model trees for 

value function approximation. Both Q-learning and SARSA 

are used as the conventional reinforcement learning 

algorithms at different stages of the learning process.  

 

• Semi Markov Decision Process (SMDP) 
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In reinforcement learning environments, states are often 

assumed to fulfill the Markov property. MDP is the 

probabilistic model of a sequential decision problem, where 

states can be perceived exactly, and the current state and 

action selected determine a probability distribution on 

future states. The model is Markov if the state transitions 

are independent of any previous environment states or agent 

actions. [2]  

 

SMDP is a generalization of the Markov Decision Process 

(MDP) where the times between transitions are allowed to 

be random variables whose distribution may depend upon 

the current state, the action taken, (possibly) the next state. 

An SMDP can be seen as representing the system at 

decision points, while MDP represents the system at all 

times. Semi-Markov decision processes (SMDPs) serve as 

theoretical basis for many hierarchical RL approaches 

developed during the last decay. Hierarchical reinforcement 

learning is a sample-based framework for solving SMDPs 

that finds the “best” policy consistent with a given 

hierarchy [8]. These algorithms enable agents to construct 

hierarchical policies that allow using multi-step actions as 

“subroutines.” HRL algorithms can be described using the 

SMDP framework.  

 

An SMDP is defined as a tuple M=(S, A, P, R). S is the set 

of states, and A is the set of actions the agent may take at a 

decision point. P is a transition probability function, where 

P(s, N|s, a) denotes the probability that action a taken in 

state s will cause a transition to state s in N time steps. 

Rewards can accumulate over the entire duration of an 

action. The reward function R(s, N|s, a) is the expected 

reward received from selecting action a in state s and 

transitioning to state s with a duration of N time steps. 

The use of hierarchical actions transforms a Markov 

Decision Process (MDP) into a Semi-Markov Decision 

Process (SMDP) and that convergence results still hold for 

the learning algorithms known to converge in the absence 

of hierarchy. [9, 10, 11, 12] 

 

• State Abstraction 

The method for dividing up the global state space of a 

problem into smaller state spaces is given in [13]. It 

describes how a problem’s state space can be divided up 

into a series of intervals if the states in the same interval 

block have the same properties in terms of transitions and 

rewards. Decomposing large MDPs lead to state 

abstraction, thus reduce the overall state space of the given 

problem and thus reduce learning time. An abstracted state 

space is smaller than the state space of an original MDP. 

There are broadly two kinds of conditions under which 

state-abstractions can be introduced [5, 14]. They are given 

as follow:  

o Eliminate irrelevant variables: When reinforcement 

learning algorithms are given redundant information, 

they will learn the same value-function or policy for all 

the redundant states. Thus eliminating irrelevant 

variables leads to state abstraction. This type of state 

abstraction is used by [15] who exploit independence 

between variables in dynamic Bayesian nets. It is 

introduced by [14] for Max Node and Leaf Irrelevance 

in the MAXQ graph [16] extend this form of model 

minimization to state-action symmetry couched in the 

algebraic formations of morphisms. They state 

conditions under which the minimised model is a 

homomorphic image and hence transitions and rewards 

commute. Some states may not be reachable for some 

sub-tasks in the task-hierarchy. This Shielding 

condition [14] is another form of elimination of 

irrelevant variables, in this case resulting from the 

structure of the task-graph. 

Funnelling: Funneling is a type of state abstraction 

where abstract actions move the environment from a 

large number of initial states to a small number of 

resulting states.  

The effect is exploited for example by [18] in plant control 

and by [19] to reduce the size of the MDP. 

 

• Abstract Actions 
Approaches to HRL employ actions that persist for multiple 

time-steps. These temporally extended or abstract actions 

hide the multi-step state-transition and reward details from 

the time they are invoked until termination.  Abstract 

actions are employed in many fields including AI, robotics 

and control engineering. They are similar to macros in 

computer science that make available a sequence of 

instructions as a single program statement. Abstract actions 

may execute a policy for a smaller MDPs or SMDPs. This 

establishes a hierarchy where a higher-level parent task 

employs child subtasks as its abstract actions, which is 

called as Task Hierarchies [14]. 

 

In hierarchical problem solving, the decomposed 

subproblem can be solved by abstract actions. It can be 

realized by the set of primitive actions to reach the subgoal. 

Thus in hierarchical reinforcement learning the 

corresponding action policy can be learned based on the 

abstract states identified subgoals and abstract actions [17]. 

 

• Optimality 

HRL cannot guarantee optimal solution to decomposed 

problems.  Types of optimality in HRL can be given as 

follows: 

• Hierarchical Optimality 

The overall learned policy is the best policy consistent with 

the hierarchy. Policies that are hierarchically optimal are 

ones that maximize the overall value function consistent 

with the constraints imposed by the task-hierarchy. 

• Recursive Optimality 

In Recursive optimality, sub-task policies to reach goal 

terminal states are context free ignoring the needs of their 

parent tasks. Here the sub-tasks can be re-used in various 

contexts, but they may not be optimal in each situation. 
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• Hierarchical Greedy Optimality 

In Hierarchical Greedy Optimality, a subtask policy 

proceeding to termination may be sub-optimal and by 

constantly interrupting the sub-task a better sub-task may be 

chosen. It is better than hierarchical and recursive 

optimality but does not guarantee of global optimality. 

 

III. APPROACHES FOR HRL 

 

Hierarchical reinforcement learning involves breaking the 

target Markov decision problem into a hierarchy of sub 

problems or subtasks. There are three general approaches to 

defining these subtasks i.e three prominent HRL approaches 

are: Options, a formalization of abstract actions; HAMQ, a 

partial program approach, and MAXQ value function 

decomposition including state abstraction. While choosing 

the appropriate hierarchy, we have to look at available 

domain knowledge: If some behaviors are completely 

specified – use Options; if some behaviors are partially 

specified – use HAM; if less domain knowledge available – 

use MAXQ. We can use all three to specify different 

behaviors in tandem. 

 

• Options 

Options approach is to define each subtask in terms of a 

fixed policy that is provided by the programmer (or that has 

been learned in some separate process).  

An option is a triple < I, π, β > in which, I ⊆  S is an 

initiation set, β: S
+
 → [0, 1] is a termination condition, and 

π: S × A→ [0, 1] is a policy [20]. An option < I, π, β > is 

available in state st if and only if st  ∈ I. If the option is 

taken, then actions are selected according to π until the 

option terminates stochastically according to β. In 

particular, a Markov option executes as follows. First, the 

next action at is selected according to probability 

distribution π (st, · ). The environment then makes a 

transition to state st+1, where the option either terminates, 

with probability β (st+1), or else continues, determining at+1 

according to π (st+1, · ), possibly terminating in st+2 

according to β (st+2), and so on. When the option terminates, 

the agent has the opportunity to select another option. An 

option is temporally extended action with well defined 

policy. When option policies and termination depend on 

only the current state s, options are called Markov options. 

The option policy and termination depends on the entire 

history sequence of states, actions and rewards since the 

option was initiated. Options of this sort are called semi-

Markov options. Options can only input complete policy 

and requires complete specification of policy. 

 

• HAMQ (Hierarchical Abstract Machine) 

In the hierarchy of abstract machines (HAM) approach to 

HRL the designer specifies abstract actions by providing 

stochastic finite state automata called abstract machines that 

work jointly with the MDP [9]. 

A HAM is a program which, when executed by an agent in 

an environment, constrains the actions that the agent can 

take in each state. An abstract machine is a triple <µ; I; δ) 

where µ  is a finite set of machine states, I is a stochastic 

function from states of the MDP to machine states that  

determines the initial machine state, and δ  is a stochastic 

next-state function, mapping machine states and MDP 

states to next machine states [5]. HAMs are a way to 

partially specify procedural knowledge to transform an 

MDP to a reduced SMDP. Extended HAM approach is 

given by introducing more expressible agent design 

languages for HRL (Programmable HAM -PHAM) [22] 

and ALisp, a Lisp-based high-level partial programming 

language [23]. 

 

• MAXQ 
The third approach MAXQ is to define each subtask in 

terms of a termination predicate and a local reward function 

[21]. MAXQ algorithm expects the hierarchical structure to 

be supplied by the designer. It suggests breaking the main 

problem’s value function up into an additive combination of 

smaller value functions, each associated with a smaller 

problem i.e. MAXQ represents the value of a state as a 

decomposed sum of sub-task completion values plus the 

expected reward for the immediate primitive action. A 

completion value is the expected cumulative reward to 

complete the sub-task after taking the next abstract action. 

Detailed overview of MAXQ is given [24]. The MAXQ 

algorithm is tested against flat Q-Learning and significantly 

outperforms it.  Function approximation and optimistic 

exploration are combined to allow MAXQ to cope with 

large and even infinite state spaces [35]. 

 

IV. ALGORITHMS AND RELATED WORKS IN HRL 

 

There are several important design decisions that must be 

made when constructing a hierarchical reinforcement 

learning system. [21] 

o Specify subtasks 

Hierarchical reinforcement learning involves breaking the 

target Markov decision problem into a hierarchy of sub 

problems or subtasks. The three general approaches to 

defining these subtasks are Options, Ham and MAXQ as 

mentioned in above section III. 

o Employ state abstractions within subtasks 

The second design issue is whether to employ state 

abstractions within subtasks. A subtask employs state 

abstraction if it ignores some aspects of the state of the 

environment. 

o Non-hierarchical execution 

The third design issue concerns the non-hierarchical 

execution of a learned hierarchical policy. Extra learning 

i.e. in all states (and at all levels of the hierarchy) is 

required, in order to support this non-hierarchical 

execution. In HRL, the only states where learning is 
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required at the higher levels of the hierarchy are states 

where one or more of the subroutines could terminate. 

o Learning algorithm 

The final issue is what form of learning algorithm to 

employ. Finding online algorithms that work for general 

hierarchical reinforcement learning has been difficult, 

particularly within the termination predicate family of 

methods. Some relied on each subtask having a unique 

terminal state[30]; Some employed a mix of online and 

batch algorithms to train her hierarchy[31]; and work within 

the options framework usually assumes that the policies for 

the sub problems are given and do not need to be learned at 

all. 

Some important algorithms in HRL are as given below: 

 

• H-DYNA Algorithm 
DYNA is a reinforcement learner that uses both real and 

simulated experience after building a model of the reward 

and state transition function. A gating mechanism called 

Hierarchical-DYNA (H-DYNA) was developed [30] which 

first learns elementary tasks such as to navigate to specific 

goal locations. Each task is treated as an abstract action at a 

higher level of control. H-DYNA differs from hierarchical 

planners in two ways: first, the abstract models are learned 

using experience gained while learning to solve other tasks 

in the same environment, and second, the abstract models 

can be used to solve stochastic control tasks. 

 

• HEXQ 

The HEXQ (hierarchical exit Q function) approach is a 

series of algorithms motivated by MAXQ value-function 

decomposition and bottom-up structure learning [25]. It has 

ability to abstract tasks dynamically. HEXQ automatically 

builds task-hierarchies from interactions with the 

environment assuming an underlying finite state factored 

MDP. It employs both variable elimination and funnel type 

state abstractions to construct a compact representation. As 

one subtask is learnt for each exit, HEXQ solutions are 

hierarchically optimal. HEXQ can use hierarchical greedy 

execution to try to improve on the hierarchically optimal 

solution, and the HEXQ policy converges to the globally 

optimal result for task-hierarchies were only the root-

subtask has stochastic transition or reward functions. The 

introduction of parallel decomposition of variables and 

sequential actions allows HEXQ to create abstract state 

variables not supplied by the designer. It conveys safe 

decomposition [25]. In more recent versions, state variables 

are tackled in parallel [26]. 

[36] propose a Bayesian network model causal graph based 

approach - Variable Influence Structure Analysis (VISA) 

that relates the way variables influence each other to 

construct the task-hierarchy [27]. Unlike HEXQ this 

algorithm combines variables that influence each other and 

ignores lower-level activity. 

• HDG (Hierarchical Distance to Goal) 

Algorithm 

HDG learning algorithm [31] uses a hierarchical 

decomposition of the state space to make learning to 

achieve goals more efficient with a small penalty in path 

quality and introduces the important idea of composing the 

value function from distance components along the path to 

a goal. It uses hierarchical approach to solving problems 

when goal of achievement are given to the agent 

dynamically. It is descendent of Watkins’ Q-learning 

algorithm.  

HDG algorithm was extended to automatically generate 

hierarchies in goal directed systems [33]. But again none of 

these systems focused on discovering subgoals in the state 

space to facilitate hierarchy. 

 

• HABS(Hierarchical Assignment of Behaviors 

by Self-organizing) 
The HABS algorithm [32] is derived mainly from 

HASSLE. It was developed to overcome the action 

explosion problem in HASSLE and to allow neural 

networks to be used as function approximator for the high 

level policy. If this feature could be dropped and replaced 

by something that always uses a fixed set of behaviors as 

high level actions, the number of high level actions would 

remain constant when the problem size grows. That way the 

useful aspects of HASSLE will retain, like using the 

abstracted state space and starting with a priori 

uncommitted subpolicies. 

 

• Feudal Reinforcement Learning 

The feudal reinforcement learning algorithm [34] 

emphasizes state abstraction. It is referred as information 

hiding and involves hierarchy of learning modules. It has 

the idea that decision models should be constructed at 

coarser granularities further up the control hierarchy. 

 

• HASSEL Algorithm 

HASSLE algorithm [28] outperformed variants of plain RL 

in deterministic and stochastic versions of a large MDP. It 

discovers subgoals and the corresponding specialized 

subtask solvers by learning how to transition between 

abstract states. In the process subgoal abstract actions are 

generalized to be reused or specialized to work in different 

parts of the state-space or to reach different goals. HASSEL 

is extended with function approximation [29]. 

Some recent work in HRL is discussed below: 

A method for learning a hierarchy of actions in a 

continuous environment is given [37] by learning a 

qualitative representation of the continuous environment 

and then and actions to reach qualitative states.[38] presents 

methods that learn to parameterize and order a set of motion 

templates to form abstract actions (options) in continuous 

time. A skill discovery method for reinforcement learning 

in continuous domains is introduced [39] that constructs 

chains of skills leading to an end-of-task reward. The 

method is further developed to build skill trees faster from a 

set of sample solution trajectories. 
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Automatic basis function construction to HRL extended 

[40]. The approach is based on hierarchical spectral 

analysis. Hierarchical Approaches of graphs induced on an 

SMDP's state space from sample trajectories.  Brief review 

of more recent progress in general representation discovery 

is provided in [41]. The review includes temporal and 

homomorphic state abstractions, with the latter generalized 

to representing value functions abstractly in terms of a basis 

functions. A hierarchical reinforcement learning method 

based on action sub rewards is proposed which can reduce 

state spaces greatly and choose actions with favorable 

purpose and efficiency so as to optimize reward function 

and enhance convergence speed [42]. The approach is given 

[43] to optimizing Natural Language Generation for 

situated interactions using HRL with Bayesian Networks. 

SHARSHA contributes to research in hierarchical 

reinforcement learning. It supports convergent policy 

learning within hierarchical reactive plans, while other 

convergent methods rely on more constrained 

representations and a non-interruptible execution model 

[48].  

Some real world applications where HRL is implemented 

successfully are Toy Robot [44], Flight Simulator [45], 

AGV Scheduling [46], Keepaway soccer [47]. 

 

V. FLAT RL AND HRL 

 

The main reason for introducing hierarchical architectures 

in RL is to bridge the gap between theoretical 

considerations to machine intelligence and practical 

application to real-world problems. In large-scale problems 

the performance of flat RL is too poor with regard to 

learning speed and computational effort. It also scales badly 

with the size of state and action-spaces and the length of the 

sequence of actions to reach the terminal state.  

 

Advantages of HRL over flat RL: 

 

a) Improved exploration as it can take big steps at 

high levels of abstraction. 

b) Learning from fewer trials as fewer parameters 

must be learned and subtasks can ignore irrelevant 

features of full state. 

c) Faster learning for new problems because subtasks 

learned on previous problems can be reused 

d) Allows transfer at multiple levels of hierarchy, 

which can speed up learning. 

e) Task decompositions are helpful in reducing the 

size of the problem, and therefore in exorcising the 

Curse of Dimensionality 

 

Limitations of HRL: 

 

a) HRL automatically handles exploration-

exploitation shift but at the same time it lacks in 

sufficient exploration and sufficient subtlety.  

b) Some of the existing algorithms only work well for 

the problem which they were designed to solve. 

VI. CONCLUSIONS AND FUTURE SCOPE 

Hierarchical reinforcement learning is a key to scaling 

reinforcement methods to large, complex, real world 

problems. Complex learning task can be broken down into 

several smaller subtasks in multiple levels of hierarchy, by 

using appropriately formulated background knowledge. So 

that it can be learned more quickly, easily and then 

recombined to solve complex large problems. 

While choosing the appropriate hierarchy approach, we 

need to look up the domain knowledge. If some behaviors 

are completely specified –use Options, if some behaviors 

are partially specified – use HAM and if less domain 

knowledge available – use MAXQ approach. We can use 

all three to specify different behaviours in system. 

HRL research must give more leverage to automated 

discovery of hierarchy and state abstraction. Exploration 

must improve before attempts to learn simultaneously at 

multiple levels of hierarchy. 

Even applied successfully on complex problems, HRL 

research needs effectiveness (in terms of optimality, and 

choosing right options) on more large and complex 

continuous control tasks and real world problems. HRL 

research must give more leverage to automated discovery of 

hierarchy and state abstraction. Also exploration must 

improve before attempts to learn simultaneously at multiple 

levels of hierarchy. 
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