Dynamic Resource Allocation in Cognitive Radio Networks – Priority Scheduling approach: Literature Survey

S. Tamilarasan^{1*} and P. Kumar²

¹Department of CSE, Brindavan College of Engineering, Bangalore, India ²CITE, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India

Available online at: www.ijcseonline.org

Received: 22/Jun/2016Revised: 10/Jul/2016Accepted: 16/Aug/2016Published: 31/Aug/2016AbstractIn this paper we presents a comprehensive literature survey of cognitive radio technology, focusing on its
application to dynamic resource allocation, based on priority scheduling approach. Dynamic spectrum access provides resource
sharing between primary users called licensed users (PUs) and Secondary Users called unlicensed users (SUs). An essential
examination test is that in what capacity ought to be apportioned or relegated accessible unused range to unlicensed clients. The
fitting bit of unmoving repeat range existing together learned radios while enhancing hard and fast transmission limit usage
furthermore minimizing impedance is required for the profitable extent use in CRN. The system for settled extent segment came
to fruition to less range utilization over the entire reach. In this paper we presented the different approaches used for dynamic
resource allocation and scheduling in heterogeneous Cognitive radio networks.

Keywords—Cognitive Radio; Energy; OFDM; Resource Allocation; Spectrum sensing; Heterogenitive services

I. INTRODUCTION

The cognitive radio (CR) is an emerging technology because; it offers a limited frequency range resource naturally, so that we can make to enable the radio exploitation on its demand [1]. Software defined radio (SDR) lies at the art of the cognitive radio network and support to dynamically reconfigurable radio that can become accustomed its operating parameters to the neighbouring environment [2]. A license is allotted to every user to operate in certain frequency spectrum. Generally, the spectrum remains unused and it is very difficult to find the unused spectrum. The owed spectrums have not been utilized appropriately and it varies with time, frequency and geographical locations. Cognitive radio and Dynamic spectrum access technology have been introduced to minimize the spectrum scarcity and the unutilized spectrum [3].

CR is a programmable wireless system which can sense their circumferences and dynamically adjust their broadcast waveform, channel access method, effective use of spectrum, and required protocols for good network and application routine[1][2][5]. CR makes intelligent communication such as transmitting and receiving, and also identified which channels are used and not and transfer to unused channels. This approach minimizing interference with other users and make it optimal use of available radio frequency spectrum [5].we can formulate efficient utilization of the CR spectrum by allocate a secondary user (SU) to utilize a licensed frequency band when the primary user (PU) is absent. So the detection of spectrum hole is important as shown in Figure 1. [1][4][5].

Figure 1. Spectrum hole technology[3]

In this paper, we presents as follows: Section I: Introduction, Section II: Dynamic spectrum access, Section III Dynamic Spectrum Access Technology, section IV Cognitive Radio Software, V different approach and section: VI conclusion this article.

II. DYNAMIC SPECTRUM ACCESS

The objective of Dynamic Spectrum Access (DSA) is that coexistence between primary (licensed users) and secondary (unlicensed) users, to minimize the fixed frequency limitation. The different models of DSA in CR have shown the following figure [2] [4] [6].

Figure 2. Taxonomy of Dynamic Spectrum Access

A. Dynamic Exclusive Use Model

The dynamic exclusive use model support to the present spectrum regulation policy, the spectrum bands are a unit licensed to services for exclusive use [2]. Its main objective is to introduce flexibility in spectrum allocation and usage. It also supports two approaches such as Spectrum Property Rights and Dynamic Spectrum Allocation [2].

Spectrum Property Rights

- Licensees to advertise and trade frequency band and to freely decide technology.
- Licensees contain the correct to lease or share the frequency band for profit, such behaviour isn't licensed by the regulation policy.

Dynamic Spectrum Allocation

- To improve frequency spectrum efficiency through dynamic spectrum assignment by exploiting the spatial and temporal traffic information of different services [2] [7].
- B. Open Sharing Model
 - All users have the same rights to use the spectrum.
 - Uncontrolled- commons
 - ✓ This maintained the uncontrolled commons model, no entity has exclusive license to the spectrum band.
 - Managed-commons
 - ✓ Supports to avoid the tragedy of commons by striking a restricted form of constitution of spectrum access.
 - Private-commons

Vol.-4(8), PP (**01-11**) Aug 2016, E-ISSN: **2347-2693**

- ✓ Support to use of advanced technologies which enable multiple users to access the frequency radio spectrum.
- C. Hierarchical Access Model
 - It enabled Hierarchical Access Structure with primary and secondary users.
 - This approach opens licensed spectrum to Secondary Users (SUs) while restricted interference alleged by primary users (licensees).
 - 0 Underlay
 - ✓ This approach imposes malicious limitations on the transmission power of secondary users so that they operate below the noise floor of primary users. By dissemination of transmitted signals over a wide frequency band (UWB).
 - 0 Overlay
 - ✓ This approach does not automatically impose malicious limitations on the transmission power of secondary users, but moderately on when and where they may transmit. It directly aims at spatial and temporal radio spectrum white space by allowing secondary users to identifying exploit local and immediate radio spectrum availability in a non-intrusive manner[2] [7] [10].

III. DYNAMIC SPECTRUM ACCESS TECHNIQUES

A. Game Theory Approach for Cognitive Radio Networks

- Game theory approach is a mathematical structure which contains a models, notations, functions and technology. Game theory support to analyse the iterative decisions performance of individual's interest about their own benefit.
- The mathematical structures of the game theory are used to analyse and designed the communication among the multiple decision makers [1] [4] [6].
- There are three main aspect game theory are
 - A finite number of decision makers or players are in every game functions are denoted by N.
 - A set of action, represented by Ai, for every player i; and

• A game theory set consisting utility or payoff (Ui = A \rightarrow R) functions for all players. The action of all players determined by A =Xi ϵ NAI

• Cooperative Games:

Every player has to concern about all the overall benefits and they are not bothered about their own personal benefits. Some researchers like Yang C, 2010, Zhang J, 2009 used the game theory and to reduce the transmission power of SUs and generating interference to PU transmissions.

• Competitive Games:

All users are mostly concerned about his individual payoff and then all its decisions are made competitively and additionally selfishly. Existing literature, we found that Game Theoretical concepts have been widely used for spectrum distributions in CR networks (Niyato D, 2008) (Wang B, 2010) (Tan Yi, 2010), where the PU and SU take part in a game, behave rationally to choose strategies that maximize their individual payoffs.

B. Measurement based model for DSA in WLAN channel

Stefan Geirhofer and Lang Tong [8] proposed model is based on actual measurements in the 2.4 GHz ISM band using a vector signal analyser to collect complex baseband data. Moreover, they achieved data with good accuracy by applying Continuous-time semi-Markov model.

Their proposed system setup is shown in figure 3.

Figure 3. The Mesurement Setup [8]

The WLAN setup includes Net-gear WGT624 wireless router and three computers with wireless adapter cards (two Net-gear WG311T and one WG511T). The router operates in a 22MHZ frequency band around 2.462 GHZ (channel 11). The routers and workstations are resides in the same room resulting in a high signal-to-noise ratio (SNR) between nodes and no hidden terminals. Traffics were generated using the Distributed Internet Traffic Generator (D-ITG) [11], which allowed us to statistically characterize parameters such as inter-departure times and packet length. Their measurement based on two approaches. First, they could consider high rate UDP traffics from one workstation to the router (the other computers are turned off) to verify the operability of the setup. Consequently, they considered UDP traffics of constant packet length from all three computers with Poisson distributed inter-departure times at different rates. They engaged Agilent 89640A vector signal analyser to collect the complex data base band sample after confined the transmission of WLAN. The device that supports internally down converts 2.462GHZ to an internal IF frequency at a sample rate of 44MHZ [7].

C. Dynamic Spectrum Access using a network coded cognitive control channel

Dynamic Spectrum Access using a network coded cognitive control channel support to permit the users to make an effective communication from the available channels. It contains most important aspects of opportunistic spectrum accesses are

- Implementation of the control channel.
- Multi-channel medium access control.
- Primary user detection.
- Secondary users reuse the unused spectrum of primary uses.

Every secondary user visits all channels in the form of pseudo random fashion and exchange control information. Pre-deterministic algorithm is used to exchange information effectively from secondary users. In each allocation period primary users performed over all channels and keep track of the changing pattern of primary user's activity. The detection information gathered by each during an allocation period is to be disseminated to all users using the control channel. The same deterministic algorithm also support to cooperative detection. Dynamic resource allocation algorithm runs independently by all users and the transmission opportunity is assigns only on free channels. The network coding and cooperative techniques are to identify unused radio spectrum [7] [8].

D. Markovian Queuing Model centralized architecture for DSA

Central controller plays an important role of bandwidth allocation to intended users in centralized architecture of Markovian queuing approach. These technologies support to get all information of unused spectrum hole and minimized the hidden problem. One transceiver is dedicated to control among the SUs. Second a SDR based which inspect the availability of spectrum in its neighbourhood. In infrastructure, forwards the spectrum holes information to

the base station. In infrastructure forwards the spectrum holes information to less master/controller. The unused available channels bandwidth is owed to SU. The equivalent queuing diagrams as shown in figure.

E. A Fuzzy Logic Based Spectrum Access Method

A fuzzy is a multi-valued logic and it will take more input parameter to take decision. For an example some determining input parameters are signal strength, node velocity, secondary user velocity, spectrum efficiency and distance between the primary licensed and secondary unlicensed user [11][14].

IV. COGNITIVE RADIO SOFTWARE

Obviously, software system of cognitive radio involves the essential function to perform its capabilities. The essential functionality of software organization of cognitive radio would be discussed below [2].

A. The radio Hardware

• It precise the self-configuration capability of signal processing device and it also contains radio frequency circuitry.

B. Software modules

- Software modules with codes are loaded into electronic devices.
- The software modules can define its interface to other software components.
- Common language is used to describe its interfaces naturally.
- Obviously, the common language practice gives more flexibility and reliability
- Examples: Field Programmable Gate Arrays (FPGAs), Digital Signal Processors (DSPs), or embedded general purpose processors.

C. Middleware

• Middleware layer is support to minimize the particulars of specific devices and software modules to common abstractions.

Vol.-4(8), PP (01-11) Aug 2016, E-ISSN: 2347-2693

- Example:
 - Setting the transmitting frequency of the radio frequency circuitry
 - Setting the encryption key of a software module
- Creating a middleware system will require progress of a frequent model for a wide range of hardware/software modules.

D. Logical Radio Layer

- Logical radio layers process of an action as depends on the hardware and software to act like multiple radios available links.
- Example: The radio would support communications on numerous frequencies, time slots, or CDMA codes, each of which looks like an autonomous link.

E. Device Manager

- Device manager performs the following operations
 - ✓ Software Radio is loaded into hardware components.
 - ✓ Sets-up the logical radios.

F. Configuration Manager

- Configuration manager on the physical layer and manages application loading into hardware.
- It also interacts with modules libraries below to determine which radio modules are needed to meet user requirements.

G. Module Libraries

- The libraries modules are nothing but the collections of radio functions
- Example:
- Modulations (AM, FM, BPSK, QPSK, etc.)
- Error control
- Encryption
- Adaptive algorithms
- The libraries modules are made with a multiplicity of tools
- Example:
 - General purpose compilers, cross compilers, hardware design languages, and FPGA design tools.
 - Coordinating the multiple sources that may go into building a specific module is a challenging task.

H. Rules Engine and Policies

© 2016, IJCSE All Rights Reserved

- The operations of the radio is very limited due to regulatory, geographical, or physical constrains the policies are used.
- Policies should be usable independent of a particular radio.
- To interpret policies and to determine the allowed operation (device managers, logical radios, middleware, and hardware drivers) a "rules engine" is used.

I. Smart Controller

- It governed radio resources interface with in the wireless networks.
- It enhanced wide range of radio communication and wireless networking services.
- It provides reliability, and robustly manages all the components that compose up a cognitive radio.

V. COMPARATIVE ANALYSIS

TABLE I.COMPARATIVE ANALYSIS OF DSA IN CRN

Years of	Algorithm	Result		
Publication	Used(Methodology)			
2010. [12].	Game approach- Two- tire game approach.	Maximize the utilization of entire network resource.		
	RA-Game: Every PU chooses the expected quantities of sub-	Relay scheme improves the throughput of SUs.		
	channels to reach the highest payoff.	Future Direction		
	PS-Game: Every PU advertises his unused radios to SUs nearby, which is made as an auction game.	Extend our approach to multiple cells and more relays		
	Distributed algorithm autonomously distributes PUs and SUs.			
	It covers Nash Equilibrium			
2013 [13].	Novel Resource allocation framework based on bandwidth power minimization approach	The future framework recovers the utilization of spectrum by striking an optimum balance between the consumed power and bandwidth.		
	Iterative water-filling scheme also used			
2012 [15].	StackelberggameApproach is used.An iteration algorithm	The proposed scheme improves energy efficiency significantly in heterogeneous wireless		

	based on price updating	networks with femtocells and cognitive radios.
2013 [16].	The framework for multi-SU resource allocation game with Nash bargaining solution (NBS) under the cognitive radio scenario (CR-MSU- NBS game) – sum of pair wise is used	Fairness and throughput are improved 33.4%
2013 [17].	Dualdecompositiontechnique.Suboptimallowcomplexity algorithm.	Performance is significantly improved due to the deployment of multiple antennas at the SUs.
2013 [18].	Jointly designing sensing paraments and resource allocation algorithm used. An iterative algorithm also used.	Throughput and fairness improved significantly.
2013 [19]	Compressive Sensing technique named Finite Rate of Innovation in a Cognitive Radio Network (FRI) used	Proposed technique is Improved the performance in a fair resource allocation for cognitive radio networks. <i>Future Direction</i> To improve the radio spectrum utility
		performance using different scenario and architecture in CRN
2014 [20].	centralized algorithm used for our comparison benchmark, and a distributed algorithm	Proposed algorithms are very efficient in coordinating transmissions in a MIMO-CRN.
	used to assign spectrum channel with fairness	<i>Future Direction</i> We can incorporating CR with MIMO and achieve efficient performance
2013 [21].	Proposed a very general scheduling model accomplishing goals such as making frequency, time slot, and data rate distribution to secondary users with possibly numerous antennas, in a heterogeneous multi- channel and multi-user	Achieved performance in terms of both total throughput and fairness for varying number of secondary users, frequencies, antennas, and window size. <i>Future Direction</i> To plan estimate calculations, which have
	scenario. Heuristic algorithm	hypothetically provable execution assurance, to

Vol.-4(8), PP (**01-11**) Aug 2016, E-ISSN: **2347-2693**

	used for fair schedulers	address the reasonable	
2012 [22].	proposed Hybrid Opportunistic Scheduling Algorithm	Achieved user fairness and Optimal growth rate for the secondary throughput.	
2013 [23]. I2012 [24].	Evolutionary game framework An entropy based coalition formation algorithm Lagrangian dual methods used for solve	Achievedeffectiveandflexible throughput.Itachievesalitachievesahighdetectionprobability and alowfalsealarmprobability. </th	
	methods used for solve the optimal power utilization. Discrete Stochastic optimization method is used to solve the joint power and channel allocation It can track the changing radio environment to dynamically allocate the resources.	computational multifaceted nature with defective channel detecting. It has provided quick optimal coverage during SUs sensing the channels It has provided the significant performance of throughput under the calculation of sensing error <i>Future Direction</i> Focus on joint access control method and dynamic resource allocation to maximize the total system capacity and minimize the interference to PU when there are sensing in the secondary networks.	
2013 [25].	Distributed Consensus Algorithms is used to solve the problem of distributed common control channel allocation among the cooperative neighbour CRs.	Network capacity and spectrum sensing efficiency are significantly improved during the comparative analysis with sequence-based rendezvous scheme.	
2016 [26]	Cross-layer approach called TCP-Freeze-CR technology	ST(Secondary Transmitter) with TCP- Freeze-CR can send about 10 times more packets than ST with standard TCP	

	1	·
		Future Direction
		Basic vitality recognition instrument just to detect essential transmission, and configure the test system where SUs never neglect to identify essential transmission.
2015 [27]	New approach called Virtual Prioritized Slice (VPS) algorithm is used to improve the scheduling of resources for Real Time (RT) and Non- Real Time (NRT) traffic.	Improved the performance significantly (reducing the blocking of real-time flow and improving the throughput of non-real- time flow). <i>Future Direction</i> To improve the performance of queuing approach
2012 [28].	barrier-based method is used to achieve the optimal power distribution	Achieved the optimal solution with an almost linear complexity, much better than standard techniques.
		Enterency also improved
		The case of imperfect channel state information, the presence of multiple users using the same sub channels and the interference among multiple primary cells should be investigated, to make the proposed RA algorithms more promising for applications.
2010 [29]	Proposed a suboptimal priority based resource allocation algorithm for the multiservice 2- hop OFDMA systems.	The proposed scheme performs better than the fixed allocation. Proposed suboptimal algorithm significantly reduced complexity compared to the optimal algorithm.
2012 [30]	Proposed two new load adaptive radio resource allocation techniques for the heterogeneous network	Provided the best performance improvement Improved the capacity of the networks This proposed algorithm might have enhanced the capacity of the system by a significant margin.
2014 [31].	Dynamic Resource Allocation Management Algorithm (DRAMA)	It accomplished the better use of accessible ranges. It uses the unused assets

	is proposed	andguaranteesapredominantlevelofadministrationforthemeandering clients.InlightofInlightofthelimitstreamlining, it helpsMBStooffloadtooffloadabundanceactivitythat lessenslargescalefemto-impedancesandraisesthesystemexecutionwhichexecutionwhichisappropriateforhigherorganizationdensitiesoffemtocell.Future DirectionFutureexplorationwillconcentrateontherangerentingelementsofmixtureaccesssystem.system.	2010 [37]	Entirely distributed	myopicpolicyareobtainedinclosed-form,whichcharacterizethescalingbehaviourofachievablethroughputofthemulti-channelopportunistic system.Theapproximationfactorofofthemyopicpolicyisanalysedthebinditsworst-caseperformance.Future DirectionDeterminingthe optimalityconjectureofthemyopicpolicyandgeneralizingtheresultstostochasticallynon-identicalchannelsbyinvestigatingWhittleindexpolicy.
2011 [32].	Optimal time-sharing and power allocation policy Quantized spectrum sensing mechanism approach.	Achieved efficient time and power resource management between the secondary users.	2010 [37]	and scalable cooperative spectrum- sensing scheme based on recent advances in consensus algorithms is used.	Achieved sensitivity in detecting the primary user's presence and robustness in choosing a desirable decision threshold. <i>Future Direction</i>
2010 [33]	The heuristic optimal resource allocation algorithm. Suboptimal sub- channels and power allocation algorithm	The proposed algorithm significantly improved the system performance.			Rearrange the information arrangement of location insights from every auxiliary client to spare the remote transfer speed. Vitality identification does
2010 [34].	Two classes of heuristics are proposed : Adaptation of a class of multistan hauristics	Achieved good performance.			not function admirably for spread-range signals; different methodologies will be examined to manage such systems.
	Novel approach called selective greedy algorithm.		2009 [38].	They projected Goal- programming approach and Rate-requirement calculation mechanism	Achieved better performance than existing algorithm.
2010 [35].	Partially Observable Markov Decision Process (POMDP) is proposed.	TCP throughput significantly improved if the lower-layer parameters in CR networks are optimized jointly.	2009 [39].	Opportunistic scheduling algorithm Lyapunov Optimization with collision queue.	Proposed algorithm provides an explicit performance guarantees.
		<i>Future Direction</i> Consider different parameters in CR systems, for example, vitality utilization and security, in the proposed structure.	2008 [40]	Conformation control algorithms for spectrum underlay in CDMA networks is used	The result had shown the impacts of different system, QoS and interference constraint parameters on the network performance.
2010 [36].	Myopic sensing policy is proposed	Lower and upper limits on the presentation of the	2008 [41]	Novel joint power/channel	Proposed system achieved the improved overall network throughput and

Vol.-4(8), PP (**01-11**) Aug 2016, E-ISSN: **2347-2693**

	A price-based iterative water-filling (PIWF)	reducing the average power consumption.		technique and Hybrid Genetic Algorithm also proposed	networks.
2008 [42].	algorithm. Proposed techniques are capped multi-level (CML) water-filling algorithm and a recursive decoupled power allocation algorithm	Achieved significant throughput and performance.	2016 [49]	Proposed fuzzy algorithm based on decision making multiple criteria. Used particularly a selection of a backup channel in spectral mobility. Also proposed a	Achieved an effective frequency channel selection. The results show a reduction of the rate of channel changes in contrast to the AHP selection method.
2007 [43]	Novel multi- reservation multiple access (MRMA) scheme is proposed.	MRMA can occupy a larger number of real-time traffic streams compared with FPLS while satisfying their access delay bounds.		benchmarking of performance of the two spectrum handoff models: Analytical Hierarchical Process and the proposed Fuzzy	Algorithm based on multiple-criteria decision making is an instrument for decision-making that improves efficiency for the selection of spectrum
2016 [44].	Stackelberg equilibrium or Stackelberg price game approach	Accomplished a huge execution of the traditional unicast and multicast plans in CRNs while accomplishing a close ideal execution tantamount to the comprehensive pursuit plan.	2012 [50].	Algorithm. Proposed a novel pre- equalization stage for Spatial modulation (SM) which allows	The proposed algorithm achieved significantly enhances the performance of SM
2016 [45].	Stackelberg game misusing the cognitive radio (CR) technology to utilize those scarce resources in CRN.	The proposed methodology can essentially enhance the throughput of casualty authorized hubs with somewhat diminishing system all out throughput.		mitigating the fading e ect of the wireless channel.	<i>Future Direction</i> To abuse spatial opposing qualities at the beneficiary not just to enhance the execution of SM.
2015 [46].	Dynamic spectrum learning and access (DSLA) scheme is proposed. A new low complexity VDF is proposed. Interpolation and Modified Frequency Transformation based VDF (IMFT-VDF)	Proposed algorithm achieved power-efficient and suitable for battery- operated cognitive radio terminals.			This is conceivable because of the additional degrees of opportunity presented by the numerous radio wire components accessible at the recipient yet continually keeping the many-sided quality to a tractable level, permitting the framework to be executed.
2016 [47].	used. They are analysing this situation from a game theoretic perspective and model the coexistence of CRNs with heterogeneous	They utilized the concept of <i>price of anarchy</i> to measure the efficiency of these solutions under selfish behaviour from CRNs.	2013 [51]	Proposed priority- based traffic scheduling approach	The prioritized system provides optimum solution compare through the system where all types of traffic are preserved the same in terms of SG traffic delivery.
2015 [48]	spectrum as a non- cooperative, recurrent spectrum sharing game.		2014 [52]	They proposed queue- based channel assembling strategy for multi-channel CRNs.	They obtained significant improvements like increase the capacity of the secondary network and
2013 [48]	mobility prediction algorithm. A novel bandwidth utilization optimization	Achieved required performance by network utilization, throughput, and QoS quality in the heterogeneous wireless		Two queuing approach is used to improve different types of traffic through distinct	spectrum utilization whereas reducing blocking probability and forced expiry probability.

Vol.-4(8), PP (**01-11**) Aug 2016, E-ISSN: **2347-2693**

	priorities. Markov chain	
2010 [53]	algorithm also used. They proposed a modified proportional fairness scheduling algorithm with interruption factor (MPF-IF)	Achieved better QoS guarantee for secondary users' traffics and more fairness for secondary users.
2011 [54]	They proposed generalized analytical framework based on the pre-emptive resumption priority M/G/1 queuing theory.	The generalized analytical framework can illustrate the general performance of connection-based channel usage and help evaluate QoS performance in various traffic conditions and achieved a significant improvement of throughput.
2013 [55]	Dynamic channel selection approach is proposed. The pre-emptive resume priority (PRP) M/G/1 queuing network model is used to characterize the spectrum usage behaviours in secondary and primary users.	Proposed scheme with the equal data delivery rate and a slight increase in service time at the light traffics reduces the connection commotion rate of secondary users significantly.
2014 [56]	They proposed channel accessing scheme with priority queue. Primary task is, real- time message scheduling in cognitive radio networks that maximizes the packet transmissions before they exceed their deadline (delay tolerance).	Proposed scheme Minimised the interference to licence users and to maximize transmitted packet there should be trade-off between sensing time and transmitting time. And also specified that the interference to primary user is not depending on priority system. Achieved a significant throughput.

VI. CONCLUSION

In this article we have presented a comparative study and analysis of dynamic resource allocation in heterogeneous services in cognitive radio networks. In this literature survey we studied different technique used to achieve best performance over secondary networks, effective resource utilization, channel allocation throughput, delay; power consumption etc., each method provides better performance based on them approaches. In future, we can combine dynamic resource allocation and priority scheduling to achieve a better performance of priority based heterogeneous CRN.

REFERENCES

- Anita Garhwal, Partha Pratim Bhattacharya, "A Survey on Dynamic Spectrum Access Techniques for Cognitive Radio" International Journal of Next-Generation Networks (IJNGN) Vol.3, No.4, Dec 2011, DOI: 10.5121/ijngn.2011.3402, PP: 15-32.
- [2]. S.Tamilarasan, Dr. P.Kumar, "A Study and Analysis of Dynamic Spectrum Networks Using Cognitive Radio in Wireless Ad-Hoc Networks", IJCST Vo. l. 6, Issue 2, April -June 2015, ISSN: 0976-8491 (Online) | ISSN: 2229-4333 (Print), PP: 217-221.
- [3]. Kang g. Shin, hyoil kim, alexander w. Min, ashwini kumar, U Niversity of Michigan, "Cognitive Radios For Dynamic Spectrum Access: From Concept To Reality", 1536-1284/10/\$25.00 © 2010 IEEE, IEEE Wireless Communications • December 2010, PP: 64-74.
- [4]. Pinki Yadav, Subhajit Chatterjee, Partha Pratim Bhattacharya, "A Survey on Dynamic Spectrum Access Techniques in Cognitive Radio", International Journal of Next-Generation Networks (IJNGN) Vol.4, No.4, December 2012, DOI: 10.5121/ijngn.2012.4403, PP: 27-46.
- [5]. Badr Benmammar, Asma Amraoui, Francine Krief, "A Survey on Dynamic Spectrum Access Techniques in Cognitive Radio Networks", International Journal of Communication Networks and Information Security (IJCNIS), Vol. 5, No. 2, August 2013, PP: 68-79.
- [6]. Goutam Ghosh, Prasun Das, Subhajit Chatterjee, "Cognitive Radio And Dynamic Spectrum Access – A Study", International Journal of Next-Generation Networks, DOI: 10.5121/ijngn.2014.6104, PP: 43-60.
- [7]. Elesa Ntuli, Fisseha Mekuria, Seleman Ngwira, Tranos Zuva, "A Review of Dynamic Spectrum Networks Using Cognitive Radio", Proceedings of the World Congress on Engineering and Computer Science 2014 Vol II, WCECS 2014, 22-24 October, 2014, San Francisco, USA
- [8]. Stefan Geirhofer, Lang Tong and Brian M. sadler "Measurement-Based Model for Dynamic Spectrum Access in WLAN Channel" communication and network consortium 19 July 2011.
- [9]. Prabhjot Kaur, Arun Khosla (2011), "Markovian Queuing Model for Dynamic Spectrum Allocation in Centralized Architecture for Cognitive Radios", IACSIT, Vol. 3, no. 1, pp 1-4.
- [10]. Partha Pratim Bhattacharya, Ronak Khandelwal, Rishita Gera, Anjali Agarwal, (2011), "Smart Radio Spectrum Management for Cognitive Radio", International Journal of Computer Networks and Communications, Vol. 3, no. 4.
- [11]. Partha Pratim Bhattacharya, Ronak Khandelwal, Rishita Gera, Anjali Agarwal, "Smart Radio Spectrum Management for Cognitive Radio", International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.4, July 2011, PP: 12-24, DOI: 10.5121/ijdps.2011.2402
- [12]. Peng Cheng, Anjin Guo, Youyun Xu, Xuyu Wang, Xinbo Gao, "A Game Approach for Dynamic Resource Allocation in Cognitive Radio Networks" IEEE - 2010.
- [13]. Yahia Tachwali, Brandon F. Lo, Ian F. Akyildiz, "Multiuser Resource Allocation Optimization Using Bandwidth-Power Product in Cognitive Radio Networks", IEEE journal on

Vol.-4(8), PP (01-11) Aug 2016, E-ISSN: 2347-2693

selected areas in communications, vol. 31, no. 3, march 2013, PP: 451-463

- [14]. S.Tamilarasan, P.Kumar, "A Survey on Dynamic Resource Allocation in Cognitive Radio Networks", International Journal of Computer Sciences and Engineering, Vol.-4(7), PP(86-93) Jul 2016, E-ISSN: 2347-2693
- [15]. Renchao Xie, F.Richard Yu, Hong Ji, "Spectrum Sharing and Resource Allocation for Energy-Efficient Heterogeneous Cognitive Radio Networks with Femtocells", IEEE ICC 2012 - Cognitive Radio and Networks Symposium, PP: 1661-1665
- [16]. Yinglei Teng Yuanyuan Liu Yong Zhang, "An Energy Efficient Resource Allocation in Cognitive Radio Networks with Pairwise NBS Optimization for Multi-Secondary Users", 2013 IEEE Wireless Communications and Networking Conference (WCNC): MAC, PP: 744-749
- [17]. Mehdi Ghamari Adian, Hassan Aghaeinia, "Optimal resource allocation for opportunistic spectrum access in multiple-input multiple-output –orthogonal frequency division multiplexing based cooperative cognitive radio networks", IET Signal Process., 2013, Vol. 7, Issue. 7, pp. 549–557.
- [18]. Jin-Ling Xu, Ming Chen, Nan Wang, "Optimal Cooperative Sensing and Resource Allocation in Cognitive Radio Networks", 978-1-4799-0308-5/13/\$31.00 © 2013 IEEE.
- [19]. Jeison Marin Alfonso, Leonardo Betancur Agudelo, "Centralized Spectrum Broker and Spectrum Sensing with Compressive Sensing Techniques for Resource Allocation in Cognitive Radio Networks", IEEE-2013
- [20]. Cunhao Gao, Shan Chu, and Xin Wang, "Distributed Scheduling in MIMO Empowered Cognitive Radio Ad Hoc Networks", IEEE Transactions On Mobile Computing, VOL. 13, NO. 7, JULY 2014, PP: 1456-1468
- [21]. Didem G¨oz¨upek, Fatih Alag¨oz, "A Fair Scheduling Model for Centralized Cognitive Radio Networks", IEEE-2013.
- [22]. Yang Li, Aria Nosratinia, "Hybrid Opportunistic Scheduling in Cognitive Radio Networks", IEEE Transactions On Wireless Communications, VOL. 11, NO. 1, JANUARY 2012, PP: 328-337
- [23]. Hongjuan Li Xiuzhen Cheng, Keqiu Li, Xiaoshuang Xing, Tao Jing, "Utility-Based Cooperative Spectrum Sensing Scheduling in Cognitive Radio Networks", 2013 Proceedings IEEE INFOCOM, PP: 165-169
- [24]. Renchao Xie, F. Richard Yu, Hong Ji, "Dynamic Resource Allocation for Heterogeneous Services in Cognitive Radio Networks With Imperfect Channel Sensing", IEEE Transactions On Vehicular Technology, VOL. 61, NO. 2, FEBRUARY 2012, PP: 770-780.
- [25]. Paulo M. R. dos Santos, Mohamed A. Kalil, Oleksandr Artemenko, Anastasia Lavrenko, Andreas Mitschele-Thiel, "Self-Organized Common Control Channel Design for Cognitive Radio Ad Hoc Networks", 2013 IEEE 24th International Symposium on Personal, Indoor and Mobile Radio Communications: Mobile and Wireless Networks, PP: 2419-2423.
- [26]. Sang-Seon Byun, "TCP over scarce transmission opportunity in cognitive radio networks", Computer Networks 2016 Elsevier B.V. PP: 101-114.
- [27]. Ayman AbdelHamid, Prashant Krishnamurthy, and David Tipper, "Resource Scheduling For Heterogeneous Traffic in

LTE Virtual Networks" 2015 16th IEEE International Conference on Mobile Data Management, PP: 173-178.

- [28]. Shaowei Wang, Zhi-Hua Zhou, Mengyao Ge and Chonggang Wang, "Resource Allocation for Heterogeneous Cognitive Radio Networks with Imperfect Spectrum Sensing", IEEE INFOCOM 2012, PP:1-12
- [29]. M. Shamim Kaiser and Kazi M. Ahmed, "Radio Resource Allocation for Heterogeneous Services in Relay Enhanced OFDMA Systems", Journal of Communications, VOL. 5, NO. 6, JUNE 2010, PP: 447-454.
- [30]. Alia Asheralieva, Jamil Y. Khan, Kaushik Mahata, "Dynamic Resource Allocation in a LTE/WLAN Heterogeneous Network", IV International Congress on Ultra-Modern Telecommunications and Control Systems 2012, IEEE, PP: 96-102.
- [31]. Afaz Uddin Ahmed, Mohammad Tariqul Islam, Mahamod Ismail, Mohammad Ghanbarisabagh, "Dynamic Resource Allocation in Hybrid Access Femtocell Network", The Scientific World Journal Volume 2014, Article ID 539720, PP: 1-7
- [32]. Vahid Asghari, Sonia Aissa, "Resource Management in Spectrum-Sharing Cognitive Radio Broadcast Channels: Adaptive Time and Power Allocation", IEEE Transactions on Communications, VOL. 59, NO. 5, MAY 2011
- [33]. Renchao Xie, Hong Ji, Pengbo Si, YiL, "Dynamic Channel and Power Allocation in Cognitive Radio Networks Supporting Heterogeneous Services", IEEE Communications Society subject matter experts for publication in the IEEE Globecom 2010 proceedings.
- [34]. Patrick Mitran, Long Bao Le, Catherine Rosenberg, "Queue-Aware Resource Allocation for Downlink OFDMA Cognitive Radio Networks", IEEE Transactions On Wireless Communications, VOL. 9, NO. 10, OCTOBER 2010, PP: 3100-3111.
- [35]. Changqing Luo, F. Richard Yu Hong Ji, "Cross-Layer Design for TCP Performance Improvement in Cognitive Radio Networks", IEEE Transactions On Vehicular Technology, VOL. 59, NO. 5, JUNE 2010
- [36]. Keqin Liu, Qing Zhao, Bhaskar Krishnamachari, "Dynamic Multichannel Access With Imperfect Channel State Detection", IEEE Transactions On Signal Processing, VOL. 58, NO. 5, MAY 2010, PP: 2795-2808
- [37]. Zhiqiang Li, F. Richard Yu, Minyi Huang, "A Distributed Consensus-Based Cooperative Spectrum-Sensing Scheme in Cognitive Radios", IEEE Transactions on Vehicular Technology, VOL. 59, NO. 1, JANUARY 2010 PP: 383-393.
- [38]. Yonghong Zhang, Cyril Leung, "Cross-Layer Resource Allocation for Mixed Services in Multiuser OFDM-Based Cognitive Radio Systems", IEEE Transactions on Vehicular Technology, VOL. 58, NO. 8, OCTOBER 2009, PP: 4605-4619.
- [39]. Rahul Urgaonkar, Michael J. Neely, "Opportunistic Scheduling with Reliability Guarantees in Cognitive Radio Networks", IEEE Transactions On Mobile Computing, VOL. 8, NO. 6, JUNE 2009, PP:766-777
- [40]. Long Bao Le, Ekram Hossain, "Resource Allocation for Spectrum Underlay in Cognitive Radio Networks", IEEE Transactions On Wireless Communications, VOL. 7, NO. 12, December 2008

Vol.-4(8), PP (01-11) Aug 2016, E-ISSN: 2347-2693

- [41]. Fan Wang, Marwan Krunz, and Shuguang Cui, "Price-Based Spectrum Management in Cognitive Radio Networks", IEEE Journal Of Selected Topics In Signal Processing, VOL. 2, NO. 1, February 2008, PP: 74-87.
- [42]. Lan Zhang, Ying-Chang Liang, YanXin, "Joint Beamforming and Power Allocation for Multiple Access Channels in Cognitive Radio Networks", IEEE Journal On Selected Areas In Communications, VOL. 26, NO. 1, January 2008, PP: 38-51.
- [43]. Hui Chen, Fei Yu, Henry C. B. Chan, Victor C. M. Leung, "A Novel Multiple Access Scheme over Multi-Packet Reception Channels for Wireless Multimedia Networks", IEEE Transactions On Wireless Communications, VOL. 6, NO. 4, APRIL 2007, PP:1501-1511
- [44]. C.K.Tan, T.C. Chuah, S.W.Tan, "Resource allocation for OFDMA-based multicast cognitive radio networks using a Stackelberg pricing game", Computer Communications, Volume 88, August 2016, PP: 57-72.
- [45]. Songlin Sun, Na Chen, Tiantian Ran, Junsi Xiao, Tao Tian, "A Stackelberg game spectrum sharing scheme in cognitive radio-based heterogeneous wireless sensor networks", Signal Processing, Volume 126, Sept 2016, PP: 8-16.
- [46]. Sumit J.Darak, Sumedh Dhabu, Christophe Moy, Honggang Zhang Jacques, Palicot, A.P.Vinod, "Low complexity and efficient dynamic spectrum learning and tunable bandwidth access for heterogeneous decentralized cognitive radio networks", Digital Signal Processing, Volume 37, Feb 2015, PP: 13-23.
- [47]. Muhammad aisal Amjad, Mainak Chatterjee, Cliff C.Zou, "Coexistence in heterogeneous spectrum through distributed correlated equilibrium in cognitive radio networks", Computer Networks, Volume 98, April 2016. PP: 109-122.
- [48]. Chenn Jung Huang, Chih Tai Guan, Heng Ming Chen, Yu Wu Wang, Sheng Yuan Chien Jui Jiun, Jia Jian Liao, "A self-adaptive joint bandwidth allocation scheme for heterogeneous wireless networks", Applied Soft Computing volume 37, Dec 2015, PP: 156-165.
- [49]. C. Salgado, C. Hernandez, V. Molina, Ferney A. Beltran-Molina, "Intelligent algorithm for spectrum mobility in cognitive wireless", The 7th International Conference on Ambient Systems, Networks and Technologies (ANT 2016), Procedia Computer Science 83 (2016) PP: 278 – 283
- [50]. M. G. Gonz'alez-P'erez, M. Luna-Rivera and D. U. Campos-Delgado, "Pre-equalization for MIMO Wireless Systems Using Spatial Modulation", The 2012 Iberoamerican Conference on Electronics Engineering and Computer Science Procedia Technology 3 (2012) PP: 1 8.
- [51]. Jingfang Huang, Honggang Wang, Yi Qian, and Chonggang Wang, "Priority-Based Traffic Scheduling and Utility Optimization for Cognitive Radio Communication Infrastructure-Based Smart Grid", IEEE TRANSACTIONS ON SMART GRID, VOL.4, NO.1, MARCH 2013.
- [52]. Indika A. M. Balapuwaduge, Lei Jiao, Frank Y. Li, "Channel Assembling with Priority-Based Queues in Cognitive Radio Networks: Strategies and Performance Evaluation", IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 13, NO. 2, FEBRUARY 2014. PP: 630-645.

- [53]. Tao Li Wan Bin Tang Shao Qian Li, "A Packet Scheduling Algorithm with Interruption Factor for Cognitive Radio", 978-1-4244-6585-9/10/\$26.00 ©2010 IEEE, PP: 189-193.
- [54]. Li-Chun Wang, Chung-Wei Wang, and Kai-Ten Feng, "QoS-Enhanced Spectrum Management in Cognitive Radio Networks", IEEE Wireless Communications, 2011, PP: 18-26.
- [55]. Mahboubeh Kahvand, Mohammad Taqi Soleimani, Miranda Dabiranzohouri, "Channel Selection in Cognitive Radio Networks: A New Dynamic Approach", 2013 IEEE 11th Malaysia International Conference on Communications 26th - 28th November 2013, Kuala Lumpur, Malaysia, PP: 407-411.

AUTHORS PROFILE

S.Tamilarasan: He is received the B.E(CSE) degree from Madras University, Chennai, Tamilnadu, India, M.E(CSE) degree from Anna University, Chennai, India, Currently doing doctoral degree in Center for Information Technology and Engineering, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, under the guidance of

Dr.P.Kumar, Assistant Professor, Information Technology and Engineering, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu. Presently I am working as Associated Professor, dept of CSE, Brindavan College of engineering, Bangalore.

Specialization: Mobile computing, Advanced Data Structure, Design and analysis of algorithm, Computer networks.

Research Area: His interesting research field is Cognitive Radio Network, Mobile wireless Ad-Hoc Networks.

Dr.P.Kumar, MTech, PhD: He is received M.Sc. (IT), M.Tech (IT), PhD (IT&CSE) from Manonmaniam Sundaranar University Tirunelveli, Tamilnadu, Now He is working as Assistant Professor in the department of Information Technology and Engineering, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu. He is published

several international and national journals. He is having more than seven years of research experiences and guiding to the research scholars and M.Phil students.

Specialization: Mobile computing, Advanced Data Structure, Design and Analysis of Algorithm, Computer Networks, image processing, Distributed Database Management Systems, Compiler Design.

Research Area: His interesting research field is Image Processing, Computer Networks, Wireless communications and networks and Mobile Computing.